
1/11

August 16, 2018

New modular downloaders fingerprint systems, prepare for more -
Part 1: Marap

proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-prepare-more-part-1-marap

August 16, 2018 Proofpoint Staff

Overview

Proofpoint researchers recently discovered a new downloader malware in a fairly large campaign (millions of
messages) primarily targeting financial institutions. The malware, dubbed “Marap” (“param” backwards), is
notable for its focused functionality that includes the ability to download other modules and payloads. The
modular nature allows actors to add new capabilities as they become available or download additional modules
post infection. To date, we have observed it download a system fingerprinting module that performs simple
reconnaissance.

https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-prepare-more-part-1-marap

2/11

Campaign Analysis

On August 10, 2018, we observed several large email campaigns (millions of messages) leading to the same
“Marap” malware payload in our testing. They shared many features with previous campaigns attributed to the
TA505 actor [1]. The emails contained various attachment types:

Microsoft Excel Web Query (“.iqy”) files
Password-protected ZIP archives containing “.iqy” files
PDF documents with embedded “.iqy” files
Microsoft Word documents containing macros

The campaigns are outlined below:

”sales” “.iqy” attachment campaign: Messages purporting to be from '"sales" <[random address]>' with the
subject "REQUEST [REF:ABCDXYZ]" (random letters) and attachment "REP_10.08.iqy" (campaign’s date)

Figure 1: “Sales” example email message with “.iqy” attachment

“Major bank” “.iqy” attachment campaign: Messages purporting to be from '"[recipient name]"
<random_name@[major bank].com>' with subject "IMPORTANT Documents - [Major Bank]" and attachment
"Request 1234_10082018.iqy" (random digits, campaign's date); note that this campaign abuses the brand and
name of a major US bank and has been obscured throughout the example.

3/11

Figure 2: “Major bank” sample message with “.iqy” attachment; bank branding obscured

PDF attachment campaign: Messages purporting to be from '"Joan Doe" <netadmin@[random domain]>'
(random display name) with subject "DOC_1234567890_10082018" (random digits, campaign’s date; also
"PDF", "PDFFILE", "SCN") and matching attachment "DOC_1234567890_10082018.pdf" (with embedded .iqy
file)

4/11

Figure 3: Message sample with PDF attachment with embedded .iqy file

Password-protected ZIP campaign: Messages purporting to be from '"John" <John@[random company]>'
(random name) with subject "Emailing: PIC12345" (random digits) and matching attachment "PIC12345.zip"

5/11

Figure 4: Message sample with password-protected zip attachment that contains a .iqy file

Microsoft Word attachment campaign: Messages purporting to be from '"Joan" <Joan@[random domain]>'
(random name) with subject "Invoice for 12345.10/08/2018" (random digits, today's date) with matching
attachment "Invoice_ 12345.10_08_2018.doc"

6/11

Figure 5: Message sample with Microsoft Word attachment (incorrectly described as “PDF format” in the
message body) with malicious macros

Malware Analysis

As noted, Marap is a new downloader, named after its command and control (C&C) phone home parameter
“param” spelled backwards. The malware is written in C and contains a few notable anti-analysis features.

Anti-Analysis Features

Most of the Windows API function calls are resolved at runtime using a hashing algorithm. API hashing is
common in malware to prevent analysts and automated tools from easily determining the code’s purpose. This
algorithm appears to be custom to Marap. Our implementation of the hashing algorithm in Python is available on
Github [3]. It is likely that the XOR keys used in our code will be different in other samples.

7/11

The second anti-analysis technique is the use of timing checks at the beginning of important functions (Figure
6). These checks can hinder debugging and sandboxing of the malware. If the calculated sleep time is too short,
the malware exits.

Figure 6: Anti-analysis timing checks

Most of the strings in the malware are obfuscated using one of three methods:

1. Created on the stack (stack strings)
2. Basic XOR encoding (0xCE was the key used in the analyzed sample, but it is likely this will change from

sample to sample)
3. A slightly more involved XOR-based encoding (An IDA Pro script implementing the decryption is available

on Github [4])

The last anti-analysis check compares the system’s MAC address to a list of virtual machine vendors. If a virtual
machine is detected and a configuration flag is set, the malware may exit.

Configuration

Marap’s configuration is stored in an encrypted format in the malware binary and/or in a file named “Sign.bin” in
the malware’s working directory (e.g., C:\Users\[username]\AppData\Roaming\Intel\Sign.bin). It is DES-
encrypted in CBC mode using an IV of “\x00\x00\x00\x00\x00\x00\x00\x00”. The key is generated using the
following process:

164 bytes of data are generated using a linear congruential generator (LCG) and two hardcoded seeds (it
is likely the seeds are different in other samples). An implementation of the LCG in Python is available on
Github [5].
The data is hashed with SHA1
An 8-byte DES key is created using CryptDeriveKey and the hash

An example decrypted configuration looks like:

15|1|hxxp://185.68.93[.]18/dot.php|hxxp://94.103.81[.]71/dot.php|hxxp://89.223.92[.]202/dot.php

It is pipe-delimited and contains configuration parameters for:

Sleep timeout between C&C communications
Flag indicating whether the malware should exit if it detects that it is running on a virtual machine
Up to three C&C URLs

Command and Control

Marap uses HTTP for its C&C communication but first it tries a a number of legitimate WinHTTP functions to
determine whether it needs to use a proxy and if so what proxy to use. An example C&C beacon is shown in
Figure 7 below.

8/11

Figure 7: Example C&C beacon

The request contains one parameter -- “param” -- and its data is encrypted using the same method as used for
the configuration, with the addition of base64 encoding. An example of the plaintext request looks like:

62061c6bcdec4fba|0|0

It is pipe-delimited and contains the following:

Bot ID (generated by hashing the hostname, username, and MAC address with the same hashing
algorithm used with API function hashing described above)
Hardcoded to “0”
Hardcoded to “0”

The response is encrypted similarly and an example decrypted response looks like:

319&1&0&hxxp://89.223.92[.]202/mo.enc

It is “&”-delimited and contains the following:

Command ID
Command
Flag controlling response type
Command arguments (there can be two arguments separated by a “#”)

Identified commands:

9/11

0: Sleep and beacon again
1: Download URL, DES decrypt, and manually load the MZ file (allocate a buffer, copy the PE header and
sections, reallocate, and resolve the import table). This command can pass back data from the
downloaded module to the C&C
2: Update configuration and write a DES-encrypted version to the file “Sign.bin”
3: Download URL, DES decrypt, save the MZ file to “%TEMP%/evt”, and execute with a command line
argument
4: Download URL, DES decrypt, create/hollow out a process (same executable as malware), and inject the
downloaded MZ file
5: Download URL, DES decrypt, save the MZ file as “%TEMP%/zvt”, and load it with the LoadLibrary API
6: Download URL, DES decrypt, and manually load the MZ file
7: Remove self and exit
8: Update self

After command execution a response message can be sent back to the C&C. It is pipe delimited and contains
the following:

Bot ID
Hardcoded “1”
Command ID
Command
Flag controlling response type
Command return value
Command status code (various error codes)
Response data

Either a simple status message
Or verbose “#” delimited data from modules

System Fingerprinting Module

At the time of publication, we have only seen a system fingerprinting module being sent from a C&C server. It
was downloaded from “hxxp://89.223.92[.]202/mo.enc” and contained an internal name of “mod_Init.dll”. The
module is a DLL written in C and gathers and sends the following system information to the C&C server:

Username
Domain name
Hostname
IP address
Language
Country
Windows version
List of Microsoft Outlook .ost files
Anti-virus software detected

Conclusion

As defenses become more adept at catching commodity malware, threat actors and malware authors continue
to explore new approaches to increase effectiveness and decrease the footprint and inherent “noisiness” of the
malware they distribute. We have observed ransomware distribution drop dramatically this year while banking
Trojans, downloaders, and other malware have moved to fill the void, increasing opportunities for threat actors to
establish persistence on devices and networks. This new downloader, along with another similar but unrelated

10/11

malware that we will detail next week, point to a growing trend of small, versatile malware that give actors
flexibility to launch future attacks and identify systems of interest that may lend themselves to more significant
compromise.

References

[1] https://www.proofpoint.com/us/threat-insight/post/ta505-shifts-times

[2] https://www.proofpoint.com/us/threat-insight/post/leaked-source-code-ammyy-admin-turned-flawedammyy-rat

[3] https://github.com/tildedennis/malware/blob/master/marap/func_hashes.py

[4] https://github.com/tildedennis/malware/blob/master/marap/str_decrypt3.py

[5] https://github.com/tildedennis/malware/blob/master/marap/lcg.py

Indicators of Compromise (IOCs)

IOC IOC
Type

Description

bea0276c51bd6dbccb64110a8655fd623cbb9ebf6e0105c57f62e53e209361b6 SHA256 “REP_10.08.iqy”
attachment

1c6661cc19d071df75ef94c58829f223b8634c00a03d1dadcde222c25475fa05 SHA256 “Request [random
digits]_10082018.iqy”
attachment

2c5729e17b64cd4e905ccfeabbc913ed945e17625c35ec1d6932194aae83d7c6 SHA256 PDF attachment

8a03144025cd2804a714cd4e3833c341b02edf0c745c810c88efd053cc813233 SHA256 Password-protected
ZIP attachment

hxxp://i86h[.]com/data1.dat URL Remote Excel cell
content

hxxp://i86h[.]com/data2.dat URL Intermediate
Powershell script

hxxp://i86h[.]com/data3.dat URL Payload

hxxp://r53x[.]com/1.rar URL Remote Excel cell
content

hxxp://r53x[.]com/1.zip URL Intermediate
Powershell script

hxxp://r53x[.]com/a3.dat URL Payload

bc1fc69f9747dc034ece7d9bb795c5e596d9be6ca71efe75c6c0fd18f3cbfbf5 SHA256 Marap

https://www.proofpoint.com/us/threat-insight/post/ta505-shifts-times
https://www.proofpoint.com/us/threat-insight/post/leaked-source-code-ammyy-admin-turned-flawedammyy-ratxxx
https://github.com/tildedennis/malware/blob/master/marap/func_hashes.py
https://github.com/tildedennis/malware/blob/master/marap/str_decrypt3.py
https://github.com/tildedennis/malware/blob/master/marap/lcg.py

11/11

hxxp://185.68.93[.]18/dot.php URL Marap C&C

hxxp://94.103.81[.]71/dot.php URL Marap C&C

hxxp://89.223.92[.]202/dot.php URL Marap C&C

Sign.bin File Marap’s encrypted
configuration file

hxxp://89.223.92[.]202/mo.enc URL Encrypted Marap
system fingerprinting
module download
URL

a6a31f6b6ac73131a792daa255df88d71ba8c467abfa2a5580221a694c96c2cc SHA256 Encrypted Marap
system fingerprinting
module

1b9f592fcf8b0f1349db7f49f3061396f21d38728eb0d84e1c90ad39e5ddb3ab SHA256 Marap system
fingerprinting module
DLL

ET and ETPRO Suricata/Snort Signatures

2832142 || ETPRO TROJAN Win32/Marap CnC Beacon

2832143 || ETPRO TROJAN Win32/Marap CnC Beacon Response

Subscribe to the Proofpoint Blog

