
1/18

James Haughom

Reversing Cerber - RaaS
rinseandrepeatanalysis.blogspot.com/2018/08/reversing-cerber-raas.html

Cerber has established itself as one of the most successful ransomware families to date.
Distributed as Raas (Ransomware as a Service), the malware has retained popularity with
over 6 known variants.

The malware is packed with Nullsoft PiMP (plugin Mini Packager) which hides much of the
malware's true functionality.

https://rinseandrepeatanalysis.blogspot.com/2018/08/reversing-cerber-raas.html

2/18

As a whole, the malware's entropy is quite high (6.1), indicating packed code.

The malware contains an anomalous PE section ".ndata" which has a virtual size much
higher than its physical/raw size. This indicates that there is a good chunk of code that won't
present itself until runtime, once the malware is loaded in memory.

https://2.bp.blogspot.com/-SkkGOANx7xg/W2hK_lN0yXI/AAAAAAAABjo/-8wqsP3HBhsfkDXQxfU_uCtrv8skInV2QCLcBGAs/s1600/exeinfo.PNG
https://4.bp.blogspot.com/-_WZlWOC8X1Y/W2hMDI9sGjI/AAAAAAAABj0/ppTvkw9wdD0qJtHqiVScAy1VEWWe4eaGwCLcBGAs/s1600/high%2Bentropy.PNG

3/18

pestudio marks the .text/.code section as highly entropic (6.4), this is where the actual
code/instructions are stored in a PE.

I conducted this analysis in a host-only virtual network with a Windows 10 VM routing its
network traffic to a REMnux VM running fakedns, iNetSim, and Wireshark. The malware
happily runs in the VM with security tools running, dropping several files to disk. The number
of bytes written to the file 'collages.dll' is the same as the virtual size of the '.ndata' section.

https://3.bp.blogspot.com/-Arw8ayObEGw/W2hK-AXi0ZI/AAAAAAAABjs/TUeKPi18lFQGiQvm9ND8e0ktOw9dnqZAwCEwYBhgL/s1600/pescanner.PNG
https://4.bp.blogspot.com/-r21YOKwBwoA/W2hNUXSsZ9I/AAAAAAAABkA/EyBslvXCdJc_ShhbufyV4V0OEJY1Wnk2wCLcBGAs/s1600/pe%2Bsections.PNG

4/18

The malware then makes a few modifications to the registry. A couple of these modifications
have to do with what the user is presented with (Wallpaper), the rest have to do with network
activity. This malware (interestingly enough) does not establish persistence, just encrypts
and exits.

The malware spawns an instance of itself, which then opens the ransom note
'_HELP_DECRYPT_N0BR8ST0_.hta'. The filename for this ransom note appears to be
unique to the system, format is '_HELP_DECRYPT_[A-Z0-9]{8}_.hta' <- simple regex for the
8 digit alphanumeric string.

Like most ransomware, a ransom note is dropped to the desktop, the Wallpaper is changed,
and encrypted files are tagged with a weird file extension '.94d4'. Another file extension
found during analysis was '.bde6' - this value appears to be randomly generated.

https://3.bp.blogspot.com/-tLDa0BOaexI/W2hQC1ID8zI/AAAAAAAABkc/7_SEapR0X0I1sP4DUoMyjVAVxWcmzeEbQCLcBGAs/s1600/1stwritefile.PNG
https://1.bp.blogspot.com/-8mXNzFAtnBo/W2hQJzbnF9I/AAAAAAAABk8/_f-JNng-B3w4trjPML_vUK0P90z51c0dwCEwYBhgL/s1600/regset.PNG
https://1.bp.blogspot.com/-9xs32Wjgep4/W2hQI2oXtPI/AAAAAAAABk4/wlHYlM0_SGojIfIE-De5MV_eZ5pp8TMCwCEwYBhgL/s1600/processtree.PNG

5/18

The malware contacts hundreds of hosts over port 6892.

https://4.bp.blogspot.com/-pMAEIOyLJUc/W2hQatlF14I/AAAAAAAABlI/Fng0cXJYzbYy1kPhSjZtDFTBipKs-o7YQCEwYBhgL/s1600/desktop.PNG

6/18

https://1.bp.blogspot.com/-inZjAAbGn2A/W2hQIO4J_cI/AAAAAAAABk8/gtdJeELPd6EqHGm50SjYbKTPBgH0Kt7AACEwYBhgL/s1600/fakedns.PNG

7/18

The same UDP packet is sent over and over.

The first half of the string is the same as the unique string at the end of the provided URL in
the ransom note.

https://2.bp.blogspot.com/-yGXd4ECKaxA/W2hQLNXtlFI/AAAAAAAABlA/6L_Nq6kf4nMFz62xhR20ZqRLGVKq9vMPgCEwYBhgL/s1600/wireshark.PNG
https://4.bp.blogspot.com/-dYR7-pUfUpE/W2hYech6NII/AAAAAAAABlY/1sLOcFGrt6YbjAHtyjoV1axVsZxg8PsTACLcBGAs/s1600/packet.PNG

8/18

LET THE REVERSING COMMENCE!!!

The process tree from behavioral analysis showed the original instance of cerber launching a
new cerber, this turned out to be pretty interesting. Notice the sixth value pushed onto the
stack for the CreateProcess API Call, the value 4 is passed for the dwCreationFlags
argument. The 4 indicates that this process is created in a suspended state. Do I sense
code injection?

The malware then takes a fairly common path for the injection. Reads memory of the newly
spawned cerber.exe, the parameter '2F4' is a handle to said cerber.

https://4.bp.blogspot.com/-yDgVf-mjwqs/W2hY6jMxFiI/AAAAAAAABlg/Y1HnPdF6vZMGYLQ6UiDYlj9iNKxbNLmTgCLcBGAs/s1600/hta%2Bs.PNG
https://3.bp.blogspot.com/-2nZkenGxvPo/W2hZr6349WI/AAAAAAAABls/dKisjJfBnHMUxJDlufc5qRuJx22vou3xwCLcBGAs/s1600/createprocess%2Bsus.PNG

9/18

The malware then hollows out the suspended process through the WinAPI call
'UnMapViewOfSection'. The parameter '400000' is passed as the base address as to where
begin hollowing/unmapping, which is the very beginning/start of the PE.

A buffer is then filled via 'RtlDecompressBuffer', which stores the contents that will be
injected into the suspended process. Notice the 'MZ' header, this an executable that will be
injected into the target process.

https://2.bp.blogspot.com/-tFCEa_IC9_c/W2hbo-z37uI/AAAAAAAABmA/cu_ntRWJhtsLn9tt3KB9qPf2K1nLOyvKACLcBGAs/s1600/readprocessmemory.PNG
https://1.bp.blogspot.com/-sOmalc-w0cQ/W2hcOjfQppI/AAAAAAAABmQ/KMnVc_2wIDc-44k5x8UbODxiyfT-MCGkgCLcBGAs/s1600/unmap%2Bview.PNG

10/18

The buffer is then written to the target process via 'WriteProcessMemory'. A pointer to the
executable seen in the dump window is passed as the data to be written. The base address
'400000', which was the start address of the hollowing, is now passed as the base address
for this executable to be written to in the hollowed out process.

To intercept this executable, I followed the base address in the memory map and then
dumped it. When attempting to load it into IDA, it is not recognized as a valid PE. Looking at
the file in HxD, there are around 32 bytes of noise before the magic bytes of the executable.

https://1.bp.blogspot.com/-n4xaIPdkJ4Q/W2heyG09hBI/AAAAAAAABmk/Ds9EQw4JPX4kWWnOqZNhyZhT4xTC8lkKgCLcBGAs/s1600/decompresssbuffer.PNG
https://2.bp.blogspot.com/-mqyUuy6X1H0/W2hfNbLf8-I/AAAAAAAABmw/9dEgWVNjKCIPHlYyXNs3FiqCAV0HQ6p5QCLcBGAs/s1600/buffer%2Bwriteprocessmemory.PNG

11/18

Deleting up until the 'MZ'/'4D5A' fixes the problem. This looks to be where the true
payload/ransomware code lies, this is the first time we have seen crypt-related APIs. So
essentially, the malware uses code injection as a way to unpack itself.

Now that the code has been injected/written, the malware must start a thread of execution to
invoke the code. The context of the thread is set via 'SetThreadContext'.

https://3.bp.blogspot.com/-pzB5DDuNXXA/W2hiVvhrsKI/AAAAAAAABnI/9f7UX_FJMiEUg0p_BMflrgYluAKLuzw3wCLcBGAs/s1600/binary%2Bfile.PNG
https://3.bp.blogspot.com/-TAk0ceYp70Y/W2hi5Up0uWI/AAAAAAAABnQ/EHNb82hyFdEWT0LyKs72dG8USDGEWlZGQCLcBGAs/s1600/ida%2Bnice.PNG

12/18

And finally, the thread is resumed and the code begins executing in the target process.

Just before taking the instruction to allow 'ResumeThread' to execute, I spawned a new
instance of x64dbg and attached to the still suspended cerber.exe. I then set breakpoints on
thread entry and thread start to halt execution once 'ResumeThread' is called. Next, I set
break points on all crypt-related APIs, as well as GetProcAddress, so that I can identify any
additional code that may be dynamically loaded. The first function to be dynamically
resolved via 'GetProcAddress' is 'CryptEncrypt'.

The next interesting code block was the usage of the API 'CryptStringToBinary'. This API
converts a string to an array of bytes. The data to be converted is a very long base64 string.

https://1.bp.blogspot.com/-w8ch2fiSuW4/W2hj02D4GII/AAAAAAAABnc/WX_uYAh4NpwAECtcPPOdfTgJwbjciAfQwCLcBGAs/s1600/setthread.PNG
https://3.bp.blogspot.com/-mr7B_91v7WA/W2hkf2MxhtI/AAAAAAAABnk/bgeBXovV6jM4Pm9h6TxjH7zo063doqI3ACLcBGAs/s1600/resumthread.PNG
https://2.bp.blogspot.com/-nc-pTYH1qC4/W2hlxvCCHFI/AAAAAAAABn4/igyGrMJPSdUqscReVCFSRnKzy1gMS8-rgCLcBGAs/s1600/cryptencryptgetproc.PNG

13/18

Decoded, the string looks to be a hard-coded Public Key.

The Public Key Info suggests that this is 'RSA 1.2.840.113549.1.1 - PKCS-1' encryption.

https://1.bp.blogspot.com/-LhUMUZoHeIc/W2hmQSW7L7I/AAAAAAAABoI/4JxGF-Rfkg4f9hCCQR1imXsyleJOjcDHQCLcBGAs/s1600/stringtobinary.PNG
https://3.bp.blogspot.com/-UoAlgOYzwr0/W2hrPVvqKQI/AAAAAAAABok/Wm_vZfKXAlEadtjd5u-lmXj6dsFNiTdKACLcBGAs/s1600/pub%2Bkey%2Bi%2Bthink%2Bdebugger.PNG
https://3.bp.blogspot.com/-4iPPPZZHBkg/W2hqmK1cT_I/AAAAAAAABoc/ydoQR7jhjLwYKbhvTUo7IKTdA8GSfXZIwCLcBGAs/s1600/pubkey%2Bi%2Bthink.PNG

14/18

Next, the malware creates a directory in the AppData folder where it stores some
housekeeping data.

Then a mutex is created. The name of the mutex is resolved dynamically ---- 'shell.
{FB79CB8E-F0B4-4B09-A183-601B6025EC35}' and is created just before network activity
occurs ('WSAStartup').

https://1.bp.blogspot.com/-cEXyELagEaA/W2hrvGl9WhI/AAAAAAAABow/B6XU8v49X24k4patumP77yrKX4LTJYjMACLcBGAs/s1600/rsa%2B1.2.840.PNG
https://2.bp.blogspot.com/-6Wyu4WN2Vuo/W2hsH9_ufAI/AAAAAAAABo4/Szj-WRazs8kZHGzqdM1z8JC6CERQJi4NwCLcBGAs/s1600/create%2Bdirectory.PNG

15/18

A UDP socket is created and will be used to blast that single string to hundreds of IPs.

'sendto' function is included in a loop to contact the external hosts.

https://4.bp.blogspot.com/-325mYcxU1lM/W2hsZiSWGNI/AAAAAAAABpA/gNOflJG90HMlMznqKwsOKSfQOazYEcYRwCLcBGAs/s1600/createmutex.PNG
https://4.bp.blogspot.com/-i0GQElmJ9lg/W2htMYwVrlI/AAAAAAAABpU/8Pewy8u91KwU786vAYaslLXVpme6CP_5QCLcBGAs/s1600/socket.PNG

16/18

Next, the encryption commences. Traversing directories via 'FindFirstFile' and
'FindNextFile'. The malware also looks for network resources to encrypt via
'WNetOpenEnum'.

Once encryption completes, the ransom note is opened via 'ShellExecute' with
parameters 'Open' and '_HELP_DECRYPT_N0BR8ST0_.hta'. This ransom note is far more
robust than most. Most ransom notes are a simple text file, this is an .hta that has several
functions, and is apparently quite universally accommodating. The ransom note even has a
button to change the language.

https://4.bp.blogspot.com/-lFejbJHs_YU/W2htNLRVv_I/AAAAAAAABpg/4-fg406_0d0tvYavwcjMClDsKcwadBNUgCEwYBhgL/s1600/sendto%2Bdbg.PNG
https://2.bp.blogspot.com/-wa6tM3KuVOs/W2huvWz0DwI/AAAAAAAABpo/v9rrBhzsr28M9QOe-AKRKgnosaORRiiJwCLcBGAs/s1600/find%2Bfirst%2Bfile%2Ba.PNG

17/18

Another interesting code segment is that the .hta file checks the victim's MAC address
against a few MAC addresses associated with VMware and some popular network
technology companies. If there is a match, the URL in the ransom note is updated to
English. Interesting!

The most interesting part of this malware to me was how it unpacked itself through code
injection and process hollowing. This malware just performs the encryption and then exits, no
persistence! Most filenames are randomized to evade signature based detection, so regex
will be our friends when sweeping for/detecting these artifacts. A Snort rule may be plausible
due to the port (6892), but UDP can be noisy. The rule would use PCRE to match the unique
long string passed over 6892.

Key Takeaways:
- Encrypts files on disk and in network shares
- Modifies registry
- Drops files on disk
- Performs code injection
- Contacts external hosts

Host-based IOCs:

 cerber.exe
 2d6ace7910f84eb775272a6590453a0e - md5

\AppData\Local\Temp\collages.dll
 2A4BF3D01B6C84A2130C110D02C772AC - md5

https://2.bp.blogspot.com/-PkUh5d5KLBk/W2hvqMwVZGI/AAAAAAAABp4/8KznVFXfcGouWeYbpgUvog2bA0KrgkhGwCLcBGAs/s1600/hta%2Blang.PNG
https://1.bp.blogspot.com/-BX-KCN5D5R0/W2hwGj9ZTBI/AAAAAAAABqA/DwNcF-cebmkNp5itjfZV_UgNkIgwWDdtQCLcBGAs/s1600/hta%2Bmac.PNG

18/18

\AppData\Local\Temp\floppy_disk.png
\AppData\Local\Temp\floppy_disk_disabled.png
\AppData\Local\Temp\flat.xsl
\AppData\Local\Temp\tmpCBD8.bmp
\AppData\Local\Temp\0ad3e319\4f11.tmp
\AppData\Local\Temp\0ad3e319\280c.tmp
\AppData\Local\Temp\nshBD76.tmp\System.dll
3E6BF00B3AC976122F982AE2AADB1C51 - md5
\Desktop_HELP_DECRYPT_N0BR8ST0_.hta - Ransom note

\Desktop_HELP_DECRYPT_N0BR8ST0_.jpg - Wallpaper

*.94d4 - file extension tagged onto encrypted files (randomly generated)
*.bde6 - file extension tagged onto encrypted files (randomly generated)
*.[a-z0-9]{4} - regex for file extension
shell.{FB79CB8E-F0B4-4B09-A183-601B6025EC35} - Mutex
\Sessions\1\BaseNamedObjects\SM0:6064:168:WilStaging_02 - Based named object
HKEY_CURRENT_USER\Control Panel\Desktop\WallPaper -REG_SZ -
C:\Users\REM\AppData\Local\Temp\tmpCBD8.bmp

Hard-coded Public Key:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvkty5qhqEydR9076Fevp
0uMP7IZNms1AA7GPQUThMWbYiEYIhBKcT0/nwYrBq0Ogv79K1tta04EHTrXgcAp/
OJgBhz9N58aewd4yZBm2coeaDGvcGRAc9e72ObFQ/TME/Io7LZ5qXDWzDafI8LA8
JQmSz0L+/G+LPTWg7kPOpJT7WSkRb9T8w5QgZRJuvvhErHM83kO3ELTH+SoEI53p
4ENVwfNNEpOpnpOOSKQobtIw56CsQFrhac0sQlOjek/muVluxjiEmc0fszk2WLSn
qryiMyzaI5DWBDjYKXA1tp2h/ygbkYdFYRbAEqwtLxT2wMfWPQI5OkhTa9tZqD0H
nQIDAQAB
-----END PUBLIC KEY-----

Network-based IOCs:
97.15.12.xxx:6892 - UDP
91.239.24.xxx: 6892 - UDP
xxx.12.15.97: 6892 - UDP

xxx.24.239.91: 6892 - UDP

