Volatility Plugin for Detecting Cobalt Strike Beacon

blogs.jpcert.or.jp/en/2018/08/volatility-plugin-for-detecting-cobalt-strike-beacon.html

August 3, 2018

Python

- •
- Email

JPCERT/CC has observed some Japanese organisations being affected by cyber attacks leveraging "Cobalt Strike" since around July 2017. It is a commercial product that simulates targeted attacks [1], often used for incident handling exercises, and likewise it is an easy-to-use tool for attackers. Reports from LAC [2] and FireEye [3] describe details on Cobalt Strike and actors who conduct attacks using this tool.

Cobalt Strike is delivered via a decoy MS Word document embedding a downloader. This will download a payload (Cobalt Strike Beacon), which will be executed within the memory. Since Cobalt Strike Beacon is not saved on the filesystem, whether a device is infected cannot be confirmed just by looking for the file itself. There is a need to look into memory dump or network device logs.

This article is to introduce a tool that we developed to detect Cobalt Strike Beacon from the memory. It is available on GitHub - Feel free to try from the following webpage:

JPCERTCC/aa-tools · GitHub

https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py

Tool details

This tool works as a *plugin* for The Volatility Framework (hereafter "Volatility"), a memory forensic tool. Here are the functions of cobaltstrikescan.py:

- cobaltstrikescan: Detect Cobalt Strike Beacon from memory image
- cobaltstrikeconfig: Detect Cobalt Strike Beacon from memory image and extract configuration

To run the tool, save cobaltstrikescan.py in "contrib/plugins/malware" folder in Volatility, and execute the following command:

Figure 1 shows an example output of cobaltstrikescan. You can see the detected process name (Name) and process ID (PID) indicating where the malware is injected to.

Figure 1: Execution results of cobaltstrikescan

Figure 2 shows an example output of cobalrstrikeconfig. Please refer to Appendix A for configuration details for Cobalt Strike Beacon.

Figure 2: Execution results of cobaltstrikeconfig

```
[root@localhost vm]# python vol.py cobaltstrikeconfig -f mem.image
Volatility Foundation Volatility Framework 2.5
config addr: 0002F35C
Process: powershell.exe (2508)
[CobaltStrike Config Info]
                  1 (Hybrid HTTP and DNS)
BeaconType
Port
Polling(ms)
                  80
                 60000
Unknown1
                  '\x00\x10\x00('
Jitter
Maxdns
                 : 255
                  '0\x81\x9f0\r\x06\t*\x86\\x67\r\x01\x01\x01\\x05\x00\x03\x81\x8d\x000\x81\x89\x02\x81\x81\x80\xb3
Unknown2
\x8cK\xdeH.\xc4W$HnCn\xb2\xf0\xf2\x92\x0f\xfe\x9f\x05\x85\x14\x1e\xe7x\x15\x9d\x96\xe7v[i\xb8_d\xa8*\x8el!\xed\x8c\xe8\xe5\xe
: nl01.misaupdate.com,/__utm.gif,nl02.misaupdate.com,/__utm.gif,nl03.misaupdate.com,/__utm.gif
: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0; MATBJS)
C2Server
UserAgent
Unknown3
: utmac=UA-2202604-2
                  utmcn=1
                 : utmcs=ISO-8859-1
                  utmsr=1280x1024
                  utmsc=32-bit
                  utmul=en-US
                  __utma
                  utmcc
Header2
                  Content-Type: application/octet-stream
                  UA-220
                  utmac
                  utmcn=1
                  utmcs=ISO-8859-1
                  utmsr=1280x1024
                  utmsc=32-bit
                  utmul=en-US
Injection_Process
PipeName
                  \\%s\pipe\msagent_%x
Year
Month
Day
DNS_idle
DNS_sleep(ms)
                  0.0.0.0
                  GET
Method1
1ethod2
                  POST
                  '\x00\x00\x00\x00'
Unknown4
Spawnto_x86
                  %windir%\syswow64\rundll32.exe
Spawnto_x64
                  %windir%\sysnative\rundll32.exe
Unknown5
                  '\x00\x01'
Proxy_HostName
Proxy_UserName
Proxy_Password
                  2 (use IE settings)
roxy_AccessType
create remote thread
```

In closing

Actors using Cobalt Strike continue attacks against Japanese organisations. We hope this tool helps detecting the attack in an early stage.

- Takuya Endo

(Translated by Yukako Uchida)

Reference

[1] Strategic Cyber LLC:COBALT STRIKE ADVANCED THREAT TACTICS FOR PANETRATION TESTERS

https://www.cobaltstrike.com/

[2] LAC: New attacks by APT actors menuPass (APT10) observed (Japanese)

https://www.lac.co.jp/lacwatch/people/20180521 001638.html

[3] FireEye: Privileges and Credentials: Phished at the Request of Counsel

https://www.fireeye.com/blog/threat-research/2017/06/phished-at-the-request-of-counsel.html

[4] Cybereason: Operation Cobalt Kitty: A large-scale APT in Asia carried out by the OceanLotus Group

https://www.cybereason.com/blog/operation-cobalt-kitty-apt

Appendix A

Table A: Configuration format

Offset	Length	Description
0x00	2	index (Refer to Table B)
0x02	2	Data length
		1 = 2 byte, $2 = 4$ byte, $3 = $ as specified in $0x04$
0x04	2	Data length
0x06	As specified in 0x04	Data

Table B: Configuration

Offset	Description	Remarks
0x01	BeaconType	0=HTTP, 1=Hybrid HTTP and DNS, 8=HTTPS
0x02	Port number	
0x03	Polling time	
0x04	Unknown	
0x05	Jitter	Ratio of jitter in polling time (0-99%)
0x06	Maxdns	Maximum length of host name when using DNS (0-255)
0x07	Unknown	

Offset	Description	Remarks
0x08	Destination host	
0x09	User agent	
0x0a	Path when communicating HTTP_Header2	
0x0b	Unknown	
0x0c	HTTP_Header1	
0x0d	HTTP_Header2	
0x0e	Injection process	
0x0f	Pipe name	
0x10	Year	Stops operating after the specified date by Year, Month, Day
0x11	Month	
0x12	Day	
0x13	DNS_idle	
0x14	DNS_Sleep	
0x1a	HTTP_Method1	
0x1b	HTTP_Method2	
0x1c	Unknown	
0x1d	Process to inject arbitrary shellcode (32bit)	
0x1e	Process to inject arbitrary shellcode (64bit)	
0x1f	Unknown	
0x20	Proxy server name	
0x21	Proxy user name	
0x22	Proxy password	

Offset	Description	Remarks
0x23	AccessType	1 = Do not use proxy server
		2 = Use IE configuration in the registry
		4 = Connect via proxy server
0x24	create_remote_thread	Flag whether to allow creating threads in other processes

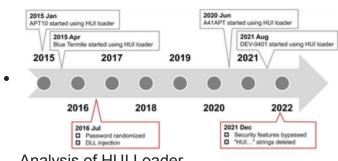
0x25 Not in use

- •
- Email

Author

Please use the below contact form for any inquiries about the article.

Was this page helpful?

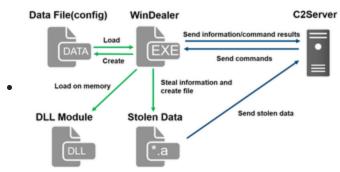

0 people found this content helpful.

If you wish to make comments or ask questions, please use this form.

This form is for comments and inquiries. For any questions regarding specific commercial products, please contact the vendor.

please change the setting of your browser to set JavaScript valid. Thank you!

Related articles


Analysis of HUI Loader

Anti-UPX Unpacking Technique

FAQ: Malware that Targets Mobile Devices and How to Protect Them

Malware WinDealer used by LuoYu Attack Group

Malware Gh0stTimes Used by BlackTech

Back

<u>Top</u>

Next