Dissecting Smoke Loader | CERT Polska

C cert.pl/en/news/single/dissecting-smoke-loader/

Smoke Loader (also known as Dofoil) is a relatively small, modular bot that is mainly used to drop various malware families.

Even though it's designed to drop other malware, it has some pretty hefty malware-like capabilities on its own.

Despite being quite old, it's still going strong, recently being dropped from RigEK and MalSpam campaigns.

In this article we'll see how Smoke Loader unpacks itself and interacts with the C2 server.

Smoke Loader first surfaced in June 2011 when it was advertiesed for sale on grabberz.com¹ and xaker.name² by a user called SmokeLdr.

	Smoke Bot - a new modular bot
27.06.2011, 21:50	
	<u> </u>
4	
0 posts	
Respects: 0	
	Entrollion The operation of plog ins that setsion the functionality of the lock, while net allecting the size of the lock Model in the operation of plog ins that setsion of the instruction. Model instruction of the lock o
	FTP domts Coar 32bit FTP, BitKinex, BulletProof FTP Client, Classic FTP, CoffeeCup FTP, Curt
	Apple Safari, Flock, Google Chrome, Internet Explorer, Mozilla Browser, Mozilla Firefo
	6 RQ, AIM Pro, Digsby, Excite Private Messenger, Faim, GAIM, Gizmo Project, Google Tal

Smoke Loader being sold on grabberz.com

What's interesting is that Smoke Loader is sold only to Russian-language speakers $\frac{3}{2}$.

Since all functionalities are clearly described in the mentioned forum posts up to 2016 there is no point in listing them all here.

The sample we'll be analysing is <u>d32834d4b087ead2e7a2817db67ba8ca</u>.

Diagram presenting the unpacking timeline

If you're only interested in the final payload you can take a quick glance at the diagram above and skip to the final layer.

Table of contents

Layer I

The first thing Smoke Loader hits us with is a simple PECompact2 or UPX compression.

As with many executable compressions, both are pretty easy do decompress using publiclyaccessible software:

PECompact being used to decompress the first layer

Decompressing UPX-packed sample

That wasn't hard, let's move on.

Entry function, which handles the debugging check and performs some useless api calls as a disguise

Debugger checks

The PEB structure is checked against some debugging challenges:

Lots of garbage code

Almost every function is injected with pointless instructions in order to make the disassembly more complicated than it really is.

```
HIDWORD(v65) = length_2;
  EAX = v65 >> key;
  LOBYTE (_EAX) = BYTE1 (length_1);
 LOWORD (_EAX) = _byteswap_ulong (_EAX);
   asm { xadd
                   ah, al }
  LODWORD (v65) = SBYTE1 (length_1);
 HIDWORD (v65) = length 2;
 LOWORD (_EAX) = (v65 >> key) - 1;
   _asm { xadd
                   ah, al }
 _BitScanReverse(&_EAX, length_2);
   EAX = (__PAIR__(length_2, _byteswap_ulong(_EAX)) >> key) - 1;
 LOBYTE (EAX) = 0;
                   ah, al }
   _asm { xadd
  v71 = length_2 * length_2 * _byteswap_ulong(_EAX);
 LOBYTE (v71) = v71 \gg key;
 _EAX = _byteswap_ulong(v71);
LOBYTE(_EAX) = BYTE1(length_1);
 LOWORD (_EAX) = __PAIR__(length_2, _EAX) >> key;
LOBYTE (_EAX) = _EAX >> key;
 LOWORD(EAX) = EAX - 1;
 v73 = BYTE1(EAX);
 BYTE1 (_EAX) = _EAX;
 LOBYTE(EAX) = -v73;
  _asm { xadd
                  ah, al }
  j = 0;
 v76 = 0;
 v77 = key;
 do
  {
    v78 = v84[j];
   v76 = (v78 + v77[j % key_length] + v76) % 256;
   v84[j++] = v84[v76];
    v84[v76] = v78;
  }
 while ( j < 256 );
  i = 0;
 v80 = 0;
 v81 = 0;
  if ( data_length )
  {
    do
    {
      v81 = (v81 + 1)  % 256;
      v82 = v84[v81];
      v80 = (v82 + v80)  % 256;
      v84[v81] = v84[v80];
      v84[v80] = v82;
      data[i] ^= v84[(v82 + v84[v81]) % 256];
      ++i;
    }
    while ( i < data_length );</pre>
  }
 return data;
}
```

A part of RC4 function, which contains a lot of useless code

RC4-encrypted imports

In this stage, almost all imports and library names are encrypted with RC4 before being passed to LoadLibraryA and then to GetProcAddress.

The encrypted imports are first placed on stack:

Then they are decrypted using RC4 with the hardcoded key:

Finally, the library name is passed to LoadLibrary and the function name to GetProcAddress:

A custom import table is populated this way and used further in execution.

Unpacking

Finally, a new process is created and two calls to WriteProcessMemory are performed:

The writes are pretty characteristic and can be easily noticed in the Cuckoo report

One of them writes the MZ header and the other rest of the binary. If we concatenate these two writes we'll get the next layer.

Layer III

We're welcomed with:

.text:0040293D	loc_40293D:	; CODE XREF: .text:0040293Atj
.text:0040293D	_	jmp ecx
.text:0040293D	;	
.text:0040293F		db 6Bh
.text:00402940		dd 0F76F970Dh, 0C93A4ACAh, 0C7B870A4h, 0F906EBCFh, 0C8DE9646h
.text:00402940		dd 46B60FA8h, 0E801EB68h, 75077440h, 9646CA05h, 0EA68C8DEh
.text:00402940		dd 75000028h, 0BD037405h, 0EB5954DDh, 0E1F74A01h, 0D3C005EBh
.text:00402940		dd 1DE9646h, 0E403EBD8h, 0E0FFE3C4h, 612EDD75h, 7F037859h
.text:00402990	;	
.text:00402990		jmp short loc_402933
.text: <mark>00402992</mark>	;	
.text: <mark>00402992</mark>		
.text: <mark>00402992</mark>		public start
.text: <mark>00402992</mark>	start:	
.text:00402992		call \$+5
.text:00402997		jnz short near ptr loc_40299D+2
.text:00402999		jz short near ptr loc_40299D+2
.text:0040299B		xor [esi], ecx
.text:0040299D		
.text:0040299D	loc_40299D:	; CODE XREF: .text:00402997†j
.text:0040299D		; .text:00402999↑j
.text:0040299D		lea edi, [ebx+0AEB5Bh]
.text:004029A3		
.text:004029A3	loc_4029A3:	; CODE XREF: .text:004029AC+j
.text:004029A3		sub ebx, 2997h
.text:004029A9		jmp short loc_4029B0
.text:004029A9	;	
.text:004029AB		align 4
.text:004029AC		jmp short loc_4029A3
.text:004029AC	;	
.text:004029AE		align 10h
.text:004029B0		
.text:004029B0	loc_4029B0:	; CODE XREF: .text:004029A9†j
.text:004029B0		jz short loc_4029B9
.text:004029B2		jnz short loc_4029B9
.text:004029B4		adc eax, 4DE9646h

Well, that's not good.

What we see is a result of several obfuscation methods and tricks, We'll look at each one and try to understand how it works.

Jump chains

Almost all early-executed functions adapt a chained jumps obfuscation technique.

Instead of placing the instructions in a normal, linear manner, instructions are mixed within the functions with jump instructions connecting consecutive instructions.

The control flow is all over the place

If we were to write a script to follow the program's flow and graph instructions we'd probably get something like this:

Partially deobufscated start function

One can almost immediately see that a vast majority of instructions are used only to divert the natural program flow.

Defeating

Attempt I

We tried creating an idaapi script that looks through all instruction blocks within a function and tries to concat blocks that are connected with each other via a 1:1 jump (jump from one possible address to one possible location).

The author had probably thought about that and implemented jmp instructions using consecutive jnz and jz instructions. This doesn't complicate our solution too much though.

A very naive Python script implementing the mentioned approach

If we run it on the start function and strip the jumps we get:

A lot better! But we can actually do even better by letting IDA do most of the work for us.

Attempt II

The only thing we need to do in order to make IDA recognize these blocks as a valid function is to make sure that all of the jumps are marked as a definitive change of flow control.

While jmp instructions are marked as such by default, the jz/jnz instructions need to by patched to jmp instructions:

Notice the newly-created dotted line that denotes an end of function code

This trick allows IDA to recognize function bodies and even attempt to decompile them:

Decompiled start function after patching all jn/jnz instructions

While (as almost always) the decompilation isn't 100% correct, it gives us a good basic idea what the function does.

This function, for example, loads the PEB structure and then accessess the OSMajorVersion and BeingDebugged fields.

Debugging checks

In this layer, we've noticed 2 debugging checks, conveniently located right at the beginning of execution. While they are the same as in the previous stage the approach differs slightly.

What is interesting is that the debugging checks values are used in calculating the next functions addresses:

Reading the BeingDebugged field from PEB

Reading the NtGlobalFlag field from PEB

The code calculates the next jump address based on the values of BeingDebugged and NtGlobalFlag fields, if either one is not equal to 0 the execution jumps to a random invalid place in memory, **harsh**.

Normally patching the binary or changing the values mid-debugging works though.

Virtualization checks

Binary tries to get the module handle of "sbiedll" (a library that is used in sandboxing processes in Sandboxie) using GetModuleHandleA, if it succeds and thus Sandboxie is installed on the system, the program exits.

A registry key System\CurrentControlSet\Services\Disk\Enum is checked and if any of the following values are found within the string, the program exits.

- qemu
- virtio
- vmware
- vbox
- xen

Function body encryption

A vast majority of functions are encrypted:

A function that is partially encrypted

After deobufscation the encryption function turns out to be pretty simple:

Decompiled code decryption method

It accepts an address and number of bytes in eax and ecx registers respectively and xors all bytes in that range with a hardcoded byte.

What's also interesting is that the binary tries to keep as little code unencrypted at a time as possible:

Example of keeping the code encrypted

We're able to decrypt the chunks using an idaapi patching script:

Simple idaapi script that xors a given region with a byte

Assembly tricks

This layer employs a few neat position-independent-code assembly tricks.

Assembly Trick I

.text:00402454										
.text:00402454								loc_402454:		; CODE XREF: fourth_start+DC†j
.text:00402454	0CC	E8	7D	ED	FF	FF			call	dexor_buffer
.text:00402459	0CC	E8	49	00	00	00			call	loc_4024A7
.text:00402459								;		
.text:0040245E								aKernel32:		
.text:0040245E	0CC	6B	00	65	00	72	00	6E+	text	"UTF-16LE", 'kernel32',0
.text:00402470								aUser32:		
.text:00402470	0CC	75	00	73	00	65	00	72+	text	"UTF-16LE", 'user32',0,0,0
.text:00402482								aAdvapi32:		
.text:00402482	0CC	61	00	64	00	76	00	61+	text	"UTF-16LE", 'advapi32',0
.text:00402494								aShell32:		···· ····· , ······
.text:00402494	0CC	73	00	68	00	65	00	6C+	text	"UTF-16LE", 'shell32',0,0
.text:004024A6	0CC	00							db 0	/ / -/ -
.text:004024A7								:		
.text:004024A7								,		
.text:004024A7								loc 4024A7:		: CODE XREF: fourth start+EAtp
text:004024A7	0CC	5E							DOD	esi
.text:004024A8	0C8	8D	BD	3C	FF	FF	FF		lea	edi. [ebp+var C4]
text:004024AE									204	
.text:004024AE								loc 4024AE:		: CODE XREF: fourth start+15D↓j
text:004024AE	0C8	80	3E	00					CMD	byte ptr [esi]. 0
text:004024R1	008	74	18	~~					17	short loc 4024CE
	000		- 0							BH010 100_102102

- call loc_4024A7 puts the next instructions (in this case string "kernel32") address onto stack and jumps over the data to the code
- pop esi puts the string's address into esi register
- cmp byte ptr [esi], 0 the pointer can be now used as a normal rdata string

.text:00402A23 .text:00402A23 000 01 D8 .text:00402A25 000 EB 07 text:00402A27	loc_402A23: add jmp	; CODE XREF: start+8A†j eax, ebx short loc_402A2E
.text:00402A27 000 75 05 .text:00402A29 000 82 45 96 DE	, jnz add	short loc_402A2E byte ptr [ebp-6Ah], 0DEh
.text:00402A29 .text:00402A2D 000 80	;	h
.text:00402A2E .text:00402A2E	;	
.text:00402A2E .text:00402A2E	loc_402A2E:	; CODE XREF: start+93†j ; start+95†j
.text:00402A2E 000 50 .text:00402A2F	push	eax
.text:00402A2F .text:00402A2F 004 C3	locret_402A2F: retn	; CODE XREF: start+4D†j ; probs 0x40294d
.text:00402A2F	start endp	; sp-analysis failed

Instead of executing jmp eax, eax is firstly pushed onto stack and then retn is executed.

Assembly Trick III

.text:004023A0							10	c_4023A0:				;	CODE	XREF :	fo	urth_s	start+	28†j
.text:004023A0	0CC	E8	31	БB	FF	FF			call	dexor	_buffer							-
.text:004023A5	0CC	E8	00	00	00	00			call	\$+5								
.text:004023AA	0D0	5B							pop	ebx								
.text:004023AB	0CC	81	EB	AA	23	00	0		sub	ebx,	23AAh							
.text:004023B1	0CC	89	FO						mov	eax,	esi							
.text:004023B3	0CC	8B	40	0C					mov	eax,	[eax+0Ch]							

call \$+5 jumps to the next instruction (as call \$+5 instruction lengths is 5) but because it's a call it also pushes the address onto stack.

In this case this is used to calculate the program's base address (0x004023AA – 0x23AA)

Custom imports

This stage uses a custom import table using a <u>djb2</u> hash lookup.

It first iterates over 4 hardcoded library names, loads each one using LdrLoadDll and stores the handle.

.text:00402454	0CC	E8	7D	ED	FF	FF		_	call	dexor_buffer
.text:00402459	0CC	E8	49	00	00	00			call	<pre>loc_4024A7 ; push imports addresses onto stack</pre>
.text:00402459								;		
.text:0040245E								aKernel32:		
.text:0040245E	0CC	6B	00	65	00	72	00	6E+	text	"UTF-16LE", 'kernel32',0
.text:00402470								aUser32:		
.text:00402470	0CC	75	00	73	00	65	00	72+	text	"UTF-16LE", 'user32',0,0,0
.text:00402482								aAdvapi32:		
.text:00402482	0CC	61	00	64	00	76	00	61+	text	"UTF-16LE", 'advapi32',0
.text:00402494								aShell32:		
.text:00402494	0CC	73	00	68	00	65	00	6C+	text	"UTF-16LE", 'shell32',0,0
.text:004024A6	0CC	00							db 0	
.text:004024A7								;		
.text:004024A7										
.text:004024A7								loc_4024A7:		; CODE XREF: fourth_start+EAtp
.text:004024A7	0CC	5E							pop	esi ; get strings from stack
.text:004024A8	0C8	8D	BD	3C	FF	FF	FF		lea	edi, [ebp+var_C4]
.text:004024AE										
.text:004024AE								loc_4024AE:		; CODE XREF: fourth_start+15D+j
.text:004024AE	0C8	80	ЗE	00					cmp	byte ptr [esi], 0 ; check if end of imports
.text:004024B1	0C8	74	1B						jz	short loc_4024CE
.text:004024B3	0C8	8D	85	4C	FF	FF	FF		lea	eax, [ebp+a3]
.text:004024B9	0C8	56							push	esi ; a2
.text:004024BA	0CC	50							push	eax ; al
.text:004024BB	0D0	E8	BD	FC	FF	FF			call	decode_unicode_and_load_library
.text:004024C0	0C8	85	C0						test	eax, eax
.text:004024C2	0C8	OF	84	C1	01	00	00		jz	leave_ret
.text:004024C8	0C8	AB							stose	i ; store library handle inder edi and move along
.text:004024C9	0C8	83	C6	12					add	esi, 12h
.text:004024CC	0C8	EB	EO						jmp	<pre>short loc_4024AE ; check if end of imports</pre>
.text:004024CE								;		
.text:004024CE										
.text:004024CE								loc_4024CE:		; CODE XREF: fourth_start+142+j
.text:004024CE	0C8	EB	OF						jmp	short loc_4024DF
.text:004024CE								;		
.text:004024D0	0C8	73	4B	96	DE				dd 01	DE964B73h

Next, it iterates over 4 corresponding import hashes arrays and looks for matching values.

When a match is found, it grabs the functions address from the library thunk and stores it in an api table that is stored on the stack.

.text:00402A30	58	CB	7B	50	ntdll_imports	dd	507BCB58h	- 7	DATA	XREF :	fourth_start+5B†o
.text:00402A34	0F	11	79	F7		dd	0F779110Fh				
.text:00402A38	DO	ЗA	F2	D5		dd	0D5F23AD0h				
.text:00402A3C	AA	46	02	87		dd	870246AAh				
.text:00402A40	4D	AA	52	83		dd	8352AA4Dh				
.text:00402A44	DD	7A	50	FD		dd	0FD507ADDh				
.text:00402A48	CC	2C	0C	5A		dd	5A0C2CCCh				
.text:00402A4C	09	A5	6F	2 A		dd	2A6FA509h				
.text:00402A50	D2	99	68	54		dd	546899D2h				
.text:00402A54	83	3F	03	64		dd	64033F83h				
.text:00402A58	Α9	50	A3	60		dd	60A350A9h				
.text:00402A5C	06	66	B 3	DE		dd	0DEB36606h				
.text:00402A60	E7	36	51	84		dd	845136E7h				
.text:00402A64	BO	4C	3D	8 A		dd	8A3D4CB0h				
.text:00402A68	37	46	OF	AF		dd	0AF0F4637h				
.text:00402A6C	F1	D8	10	EE		dd	0EE10D8F1h				
.text:00402A70	00	00	00	00		dd	0				
.text:00402A74	60	50	BC	AE	kernel32 import	s do	0AEBC5060h	:	DATA	XREF :	fourth start+1B9+0
.text:00402A78	ED	CA	CC	8 A		dd	8ACCCAEDh				—
.text:00402A7C	58	2A	BD	9C		dd	9CBD2A58h				
.text:00402A80	A4	E6	5C	F2		dd	0F25CE6A4h				
.text:00402A84	BE	A5	56	D1		dd	0D156A5BEh				
.text:00402A88	C3	CD	CC	8 A		dd	8ACCCDC3h				
.text:00402A8C	BB	74	70	05		dd	57074BBh				
.text:00402A90	4B	9B	BB	2 A		dd	2ABB9B4Bh				
.text:00402A94	99	1 A	B5	2 A		dd	2AB51A99h				
.text:00402A98	1C	90	ЗF	5B		dd	5B3F901Ch				
.text:00402A9C	13	C7	B4	4D		dd	4DB4C713h				
.text:00402AA0	F2	27	40	FD		dd	0FD4027F2h				
.text:00402AA4	FA	D8	81	86		dd	8681D8FAh				
.text:00402AA8	71	7E	27	60		dd	60277E71h				
.text:00402AAC	00					db	0				
.text:00402AAD	00					db	0				
.text:00402AAE	00					db	0				
.text:00402AAF	00					db	0				
.text:00402AB0	78	98	6C	5A	user32_impors	dd	5A6C9878h	;	DATA	XREF :	fourth_start+1D7†o
.text:00402AB4	95	E8	54	D4		dd	0D454E895h				
.text:00402AB8	01	58	6A	57		dd	576A5801h				
.text:00402ABC	15	D3	EC	41		dd	41ECD315h				
.text:00402AC0	AE	3B	12	C6		dd	0C6123BAEh				
.text:00402AC4	D3	10	BC	90		dd	90BC10D3h				
.text:00402AC8	CF	57	OF	8F		dd	8F0F57CFh				
.text:00402ACC	C9	97	88	9A		dd	9A8897C9h				
.text:00402AD0	F9	D3	AF	OB		dd	0BAFD3F9h				
.text:00402AD4	00	00	00	00		dd	0				
.text:00402AD8	DC	82	9D	FO	advapi32_import	s do	0F09D82DCh	;	DATA	XREF :	fourth_start+1FB†o

Hashes of functions to be imported

```
00000000
00000000 api_table
                          struc ; (sizeof=0xB4, mappedto_49)
                          db 4 dup(?)
00000000 NtOpenProcess
00000004 NtTerminateProcess db 4 dup(?)
00000008 NtCreateSection db 4 dup(?)
0000000C NtMapViewOfSection db 4 dup(?)
00000010 NtUnmapViewOfSection db 4 dup(?)
00000014 NtClose
                         db 4 dup(?)
00000018 NtAllocateVirtualMemory db 4 dup(?)
0000001C NtFreeVirtualMemory db 4 dup(?)
00000020 NtWriteVirtualMemory db 4 dup(?)
                          db 4 dup(?)
00000024 LdrLoadD11
00000028 RtlInitUnicodeString db 4 dup(?)
0000002C RtlDecompressBuffer db 4 dup(?)
00000030 RtlMoveMemory
                         db 4 dup(?)
00000034 RtlZeroMemory
                         db 4 dup(?)
00000038 strstr
                          db 4 dup(?)
0000003C tolower
                         db 4 dup(?)
00000040 GetSystemDirectoryA db 4 dup(?)
00000044 GetModuleFileNameA db 4 dup(?)
00000048 GetModuleHandleA db 4 dup(?)
0000004C GetVolumeInformationA db 4 dup(?)
00000050 Sleep
                         db 4 dup(?)
00000054 GetModuleFileNameW db 4 dup(?)
00000058 ExpandEnvironmentStringsW db 4 dup(?)
0000005C lstrcmpA
                         db 4 dup(?)
00000060 lstrcatW
                         db 4 dup(?)
00000064 CreateFileMappingW db 4 dup(?)
00000068 MapViewOfFile db 4 dup(?)
0000006C CreateEventW
                        db 4 dup(?)
00000070 WaitForSingleObject db 4 dup(?)
00000074 CreateThread db 4 dup(?)
00000078 GetForegroundWindow db 4 dup(?)
0000007C GetShellWindow db 4 dup(?)
00000080 GetWindowThreadProcessId db 4 dup(?)
00000084 SendMessageA db 4 dup(?)
00000088 SendNotifyMessageA db 4 dup(?)
0000008C SetPropA db 4 dup(?)
00000090 EnumPropsA db 4 dup(?)
00000094 EnumChildWindows db 4 dup(?)
00000098 wsprintfW db 4 dup(?)
0000009C RegOpenKeyExA db 4 dup(?)
000000A0 RegQueryValueExA db 4 dup(?)
000000A4 RegCloseKey
                         db 4 dup(?)
000000A8 OpenProcessToken db 4 dup (?)
000000AC GetTokenInformation db 4 dup(?)
000000B0 ShellExecuteExW db 4 dup(?)
000000B4 api_table
                         ends
                                                               L
000000B4
```

Constructed api function table

Unpacking

Finally, the program uses RtIDecompressBuffer with COMPRESSION_FORMAT_LZNT1 to decompress the buffer and execute the final payload using PROPagate injection⁴.

Layer IV (final)

String encryption

All strings are encrypted using RC4 with a hardcoded key:

BYTE size	Encrypted string	BYTE size	Encrypted string	BYTE size	
--------------	------------------	--------------	------------------	--------------	--

Structure of encrypted strings blob

In this sample, the buffer decrypts to:

Decrypted strings

C2 URLs

C2 URLs are stored encrypted in the data section:

Part of data section that contains the encrypted URLs

The encrypted URL structure can be represented as:

Encrypted C2 URL structure

The encryption method is a simple xor routine with the byte key being derived from the dword key:

Decompiled function used to decrypt C2 URLs

Which can be rewritten to Python as:

Output example

Packet structure

Decompiled function used to pack and send command packets

Which can be represented as a C structure:

A struct representing the structure of command packet

Packet encryption is done using RC4 yet again. It's worth nothing, however, that different keys are used for encrypting the outbound packets and decrypting the inbound ones:

```
}
v_{36} = 0;
if ( (_BYTE) method_post )
{
  if ( (unsigned __int8)method_post == 1 )
  {
    v13 = get_decrypted_string(29);
                                           // POST
    v32 = (int)v13;
    v14 = *a3;
    v36 = *a3;
    if ( (_BYTE)encrypt_data == 1 )
    {
      encrypt_data = 0x668CAA56;
rc4(v7, (char *)&encrypt_data, v14, 4u);
    }
    v15 = get_decrypted_string(30);
                                           // Content-Type: application/x-www-form-urlencoded
    goto LABEL_22;
  }
  v13 = (char *)encrypt_data;
v15 = (char *)encrypt_data;
}
else
{
  v15 = 0;
  v13 = 0;
}
```

A part of decompiled function responsible for encrypting packets before sending them to the C2

```
v^2 = 0;
C2 = (char *)a1;
v3 = (char *)send_command((char *)a1, 10001, 0, 0, a2, &data_length);
if ( !v3 || data_length <= 0 )</pre>
  goto LABEL_46;
v4 = *( DWORD *)v3;
v30 = v4:
if ( (_BYTE)v4 != '<' && v4 < data_length || v4 < data_length )</pre>
  v31 = 0x55CAFF7D;
  rc4(v3 + 4, (char *)&v31, v4, 4u);
v31 = lstrlenA(v3 + 4) + 5;
                                                       // eg: e207317c3a7c706c7567696e5f73697a653d3134333730
  if ( *((_WORD *)v3 + 2) == 0x7E2 )
  {
    LOBYTE(plugin_data) = 0;
    v5 = v3 + 6;
byte_2FE3FE8 = 1;
     v29 = v3 + 6;
    v6 = get_decrypted_string(5);  //
v7 = find_index((int)(v3 + 6), (int)v6, 5);
                                                       // plugin_size
     if ( v7 != -1 )
     {
       v9 = maybe_atoi(&v5[v7 + 11]);
       v8 = v9;
                                                       // get plugin size
       plugin_size = v9;
       if ( plugin_size )
       {
        v8 = (unsigned __int8)plugin_data;
if ( v9 + v31 == data_length )
            v\dot{8} = 1;
         plugin_data = v8;
      }
    }
    v28 = '|:|'; // |:|
v10 = find_index((int)v5, (int)&v28, v8);
     if ( v10 != -1 )
     1
```

A part of decompiled function responsible for decrypting packets before parsing them

Program routine

- The binary starts by obtaining a User Agent for IE version acquired by querying registry key Software\Microsoft\Internet Explorer and values svcVersion and Version. The obtained User Agent is used in later HTTP requests.
- Next, it tries to connect continuously to http://www.msftncsi.com/ncsi.txt until it gets a response, this way it makes sure that the machine is connected to the internet.
- Finally, Smoke Loader begins its communication routine by sending a 10001 packet to the C&C. It gets a response with a list of plugins to be installed and a number of tasks to be fetched.
- The bot iterates over the task range and tries to get each task by sending a 10002 packet with the task number as an argument.
- The tasks payload is often not hosted on the C&C server but on a different host and a Location header with the real binary URL is returned instead.
- Upon execution of the task, a 10003 packet is sent back with arg_1 equal to task number and arg_2 equal to 1 if the task executed succesfully.

Graph representation of the communication between bot and C2

General IOCs

- Program dumps itself to %APPDATA%\Microsoft\Windows\[a-z]{8}\[a-z]{8}.exe
- Program creates a shortcut to itself in %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\[a-z]{8}.lnk
- Performs a System\CurrentControlSet\Services\Disk\Enum\0 registry query
- GET requests to http://www.msftncsi.com/ncsi.txt
- POST requests with HTTP 404 responses that include data

Example request and response:

Set - Control in: Kee - Normal - Control - Con

Yara rule:

Collected IOCs

Malware configs:

Hashes:

References

¹ <u>https://grabberz.com/showthread.php?t=29680</u>

² https://web.archive.org/web/20160419010008/http://xaker.name/threads/22008/

³ http://stopmalvertising.com/rootkits/analysis-of-smoke-loader.html

⁴ <u>http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/</u>

https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/