
1/21

Dissecting Smoke Loader | CERT Polska
cert.pl/en/news/single/dissecting-smoke-loader/

Smoke Loader (also known as Dofoil) is a relatively small,
modular bot that is mainly used to drop various malware
families.

Even though it’s designed to drop other malware, it has some
pretty hefty malware-like capabilities on its own.

Despite being quite old, it’s still going strong, recently being
dropped from RigEK and MalSpam campaigns.

In this article we’ll see how Smoke Loader unpacks itself and interacts with the C2 server.

Smoke Loader first surfaced in June 2011 when it was advertiesed for sale on grabberz.com
and xaker.name by a user called SmokeLdr.

Smoke Loader being sold on grabberz.com

What’s interesting is that Smoke Loader is sold only to Russian-language speakers .

Since all functionalities are clearly described in the mentioned forum posts up to 2016 there
is no point in listing them all here.

1

2

3

https://www.cert.pl/en/news/single/dissecting-smoke-loader/
https://www.cert.pl/uploads/2018/07/smoke-24.jpg
https://www.cert.pl/uploads/2018/07/forum.png

2/21

The sample we’ll be analysing is d32834d4b087ead2e7a2817db67ba8ca.

Diagram presenting the unpacking timeline

If you’re only interested in the final payload you can take a quick glance at the diagram
above and skip to the final layer.

Table of contents

Layer I

The first thing Smoke Loader hits us with is a simple PECompact2 or UPX compression.

As with many executable compressions, both are pretty easy do decompress using publicly-
accessible software:

PECompact being used to decompress the first layer

Decompressing UPX-packed sample

That wasn’t hard, let’s move on.

https://www.virustotal.com/en/file/20dce650c10545ae85005b3fe159df250c4f1275edfe4439e2d5a2d0515029de/analysis/1524764893/
https://www.cert.pl/uploads/2018/07/layers.png
https://www.cert.pl/uploads/2018/07/pecompact.png

3/21

Layer II

Entry function, which handles the debugging check and performs some useless api calls as a
disguise

Debugger checks

The PEB structure is checked against some debugging challenges:

Lots of garbage code

Almost every function is injected with pointless instructions in order to make the disassembly
more complicated than it really is.

https://www.cert.pl/uploads/2018/07/function_first.png

4/21

A part of RC4 function, which contains a lot of useless code

RC4-encrypted imports

In this stage, almost all imports and library names are encrypted with RC4 before being
passed to LoadLibraryA and then to GetProcAddress.

The encrypted imports are first placed on stack:

https://www.cert.pl/uploads/2018/07/trash.png

5/21

Then they are decrypted using RC4 with the hardcoded key:

Finally, the library name is passed to LoadLibrary and the function name to GetProcAddress:

A custom import table is populated this way and used further in execution.

Unpacking

Finally, a new process is created and two calls to WriteProcessMemory are performed:

The writes are pretty characteristic and can be easily noticed in the Cuckoo report

One of them writes the MZ header and the other rest of the binary. If we concatenate these
two writes we’ll get the next layer.

Layer III

We’re welcomed with:

The exported start address

https://www.cert.pl/uploads/2018/07/woops.png

6/21

Well, that’s not good.

What we see is a result of several obfuscation methods and tricks, We’ll look at each one
and try to understand how it works.

Jump chains

Almost all early-executed functions adapt a chained jumps obfuscation technique.

Instead of placing the instructions in a normal, linear manner, instructions are mixed within
the functions with jump instructions connecting consecutive instructions.

The control flow is all over the place

https://thisissecurity.stormshield.com/2018/03/20/de-obfuscating-jump-chains-with-binary-ninja/
https://www.cert.pl/uploads/2018/07/arrows.png

7/21

If we were to write a script to follow the program’s flow and graph instructions we’d probably
get something like this:

8/21

https://www.cert.pl/uploads/2018/07/jumps.png

9/21

Partially deobufscated start function

One can almost immediately see that a vast majority of instructions are used only to divert
the natural program flow.

Defeating

Attempt I

We tried creating an idaapi script that looks through all instruction blocks within a function
and tries to concat blocks that are connected with each other via a 1:1 jump (jump from one
possible address to one possible location).

The author had probably thought about that and implemented jmp instructions using
consecutive jnz and jz instructions. This doesn’t complicate our solution too much though.

A very naive Python script implementing the mentioned approach

If we run it on the start function and strip the jumps we get:

A lot better! But we can actually do even better by letting IDA do most of the work for us.

Attempt II

The only thing we need to do in order to make IDA recognize these blocks as a valid function
is to make sure that all of the jumps are marked as a definitive change of flow control.

While jmp instructions are marked as such by default, the jz/jnz instructions need to by
patched to jmp instructions:

https://www.cert.pl/uploads/2018/07/jumps.png
https://www.cert.pl/uploads/2018/07/patched_jump.png

10/21

Notice the newly-created dotted line that denotes an end of function code

This trick allows IDA to recognize function bodies and even attempt to decompile them:

Decompiled start function after patching all jn/jnz instructions

While (as almost always) the decompilation isn’t 100% correct, it gives us a good basic idea
what the function does.

This function, for example, loads the PEB structure and then accessess the OSMajorVersion
and BeingDebugged fields.

Debugging checks

In this layer, we’ve noticed 2 debugging checks, conveniently located right at the beginning
of execution. While they are the same as in the previous stage the approach differs slightly.

What is interesting is that the debugging checks values are used in calculating the next
functions addresses:

Reading the BeingDebugged field from PEB

Reading the NtGlobalFlag field from PEB

The code calculates the next jump address based on the values of BeingDebugged and
NtGlobalFlag fields, if either one is not equal to 0 the execution jumps to a random invalid
place in memory, harsh.

Normally patching the binary or changing the values mid-debugging works though.

Virtualization checks

Binary tries to get the module handle of “sbiedll” (a library that is used in sandboxing
processes in Sandboxie) using GetModuleHandleA, if it succeds and thus Sandboxie is
installed on the system, the program exits.

A registry key System\CurrentControlSet\Services\Disk\Enum is checked and if any of the
following values are found within the string, the program exits.

qemu
virtio
vmware
vbox
xen

Function body encryption

11/21

A vast majority of functions are encrypted:

A function that is partially encrypted

After deobufscation the encryption function turns out to be pretty simple:

Decompiled code decryption method

It accepts an address and number of bytes in eax and ecx registers respectively and xors all
bytes in that range with a hardcoded byte.

What’s also interesting is that the binary tries to keep as little code unencrypted at a time as
possible:

Example of keeping the code encrypted

We’re able to decrypt the chunks using an idaapi patching script:

Simple idaapi script that xors a given region with a byte

Assembly tricks

This layer employs a few neat position-independent-code assembly tricks.

Assembly Trick I

call loc_4024A7 puts the next instructions (in this case string “kernel32”) address
onto stack and jumps over the data to the code
pop esi puts the string’s address into esi register
cmp byte ptr [esi], 0 the pointer can be now used as a normal rdata string

https://www.cert.pl/uploads/2018/07/string_call.png

12/21

Assembly Trick II

Instead of executing jmp eax, eax is firstly pushed onto stack and then retn is executed.

Assembly Trick III

call $+5 jumps to the next instruction (as call $+5 instruction lengths is 5) but because it’s a
call it also pushes the address onto stack.

In this case this is used to calculate the program’s base address (0x004023AA – 0x23AA)

Custom imports

This stage uses a custom import table using a djb2 hash lookup.

It first iterates over 4 hardcoded library names, loads each one using LdrLoadDll and stores
the handle.

https://www.cert.pl/uploads/2018/07/jump_return.png
https://www.cert.pl/uploads/2018/07/call_next.png
https://gist.github.com/lmas/664afa94f922c1e58d5c3d73aed98f3f

13/21

Next, it iterates over 4 corresponding import hashes arrays and looks for matching values.

When a match is found, it grabs the functions address from the library thunk and stores it in
an api table that is stored on the stack.

https://www.cert.pl/uploads/2018/07/load_libraries.png

14/21

Hashes of functions to be imported

https://www.cert.pl/uploads/2018/07/home_imports.png

15/21

Constructed api function table

Unpacking

Finally, the program uses RtlDecompressBuffer with COMPRESSION_FORMAT_LZNT1 to
decompress the buffer and execute the final payload using PROPagate injection .

Layer IV (final)

String encryption

All strings are encrypted using RC4 with a hardcoded key:

4

https://www.cert.pl/uploads/2018/07/api_table.png

16/21

Function used to get a decrypted string from a specific index in the encrypted blob

Structure of encrypted strings blob

In this sample, the buffer decrypts to:

Decrypted strings

C2 URLs

C2 URLs are stored encrypted in the data section:

Part of data section that contains the encrypted URLs

The encrypted URL structure can be represented as:

Encrypted C2 URL structure

The encryption method is a simple xor routine with the byte key being derived from the
dword key:

Decompiled function used to decrypt C2 URLs

Which can be rewritten to Python as:

Output example

https://www.cert.pl/uploads/2018/07/string_packet.png
https://www.cert.pl/uploads/2018/07/cncs.png
https://www.cert.pl/uploads/2018/07/c2_packet.png

17/21

Packet structure

Decompiled function used to pack and send command packets

Which can be represented as a C structure:

A struct representing the structure of command packet

Packet encryption is done using RC4 yet again. It’s worth nothing, however, that different
keys are used for encrypting the outbound packets and decrypting the inbound ones:

A part of decompiled function responsible for encrypting packets before sending them to the
C2

https://www.cert.pl/uploads/2018/07/encrypt_packet.png

18/21

A part of decompiled function responsible for decrypting packets before parsing them

Program routine

The binary starts by obtaining a User Agent for IE version acquired by querying
registry key Software\Microsoft\Internet Explorer and values svcVersion and
Version. The obtained User Agent is used in later HTTP requests.
Next, it tries to connect continuously to http://www.msftncsi.com/ncsi.txt until it
gets a response, this way it makes sure that the machine is connected to the
internet.
Finallly, Smoke Loader begins its communication routine by sending a 10001
packet to the C&C. It gets a response with a list of plugins to be installed and a
number of tasks to be fetched.
The bot iterates over the task range and tries to get each task by sending a
10002 packet with the task number as an argument.
The tasks payload is often not hosted on the C&C server but on a different host
and a Location header with the real binary URL is returned instead.
Upon execution of the task, a 10003 packet is sent back with arg_1 equal to task
number and arg_2 equal to 1 if the task executed succesfully.

https://www.cert.pl/uploads/2018/07/decrypt_packet.png

19/21

Graph representation of the communication between bot and C2

General IOCs

Program dumps itself to %APPDATA%\Microsoft\Windows\[a-z]{8}\[a-z]{8}.exe
Program creates a shortcut to itself in %APPDATA%\Microsoft\Windows\Start
Menu\Programs\Startup\[a-z]{8}.lnk
Performs a System\CurrentControlSet\Services\Disk\Enum\0 registry query
GET requests to http://www.msftncsi.com/ncsi.txt
POST requests with HTTP 404 responses that include data

Example request and response:

https://www.cert.pl/uploads/2018/07/communication.png

20/21

Yara rule:

Collected IOCs

Malware configs:

Hashes:

References

 https://grabberz.com/showthread.php?t=29680

 https://web.archive.org/web/20160419010008/http://xaker.name/threads/22008/

 http://stopmalvertising.com/rootkits/analysis-of-smoke-loader.html

 http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/

1

2

3

4

https://www.cert.pl/uploads/2018/07/packet_sample.png
https://grabberz.com/showthread.php?t=29680
https://web.archive.org/web/20160419010008/http://xaker.name/threads/22008/
http://stopmalvertising.com/rootkits/analysis-of-smoke-loader.html
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/

21/21

https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-
smokescreen-still-alive/

https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

