Meet MyloBot - A New Highly Sophisticated Never-Seen-Before Botnet That's Out In The Wild

deepinstinct.com/2018/06/20/meet-mylobot-a-new-highly-sophisticated-never-seen-before-botnet-thats-out-in-the-wild/

June 20, 2018

Learn more

June 20, 2018 | Dalya Guttman

Over the past few years, we have seen various ways of spreading malicious code, one main infrastructure of spreading malware being the dark web.

Lately, we have noticed a highly complicated botnet (number of internet-connected devices, where the owner can control them using command and control servers), which was detected and prevented in one of our client's live environment and devices - by our deep learning cybersecurity solution. This botnet presents three different layers of evasion techniques, including usage of command and control servers to download the final payload. the combination and complexity of these techniques were never seen in the wild before.

Botnets can theoretically perform anything – depending on the payload. The payload can vary from DDoS attacks, steal data, and even installation ransomware which can cause tremendous damage.

What it does

This highly sophisticated botnet incorporates different malicious techniques:

- Anti VM techniques
- Anti-sandbox techniques
- Anti-debugging techniques
- Wrapping internal parts with an encrypted resource file
- Code injection
- Process hollowing a technique where an attacker creates a new process in a suspended state, and replaces its image with the one that is to be hidden
- <u>Reflective EXE</u> executing EXE files directly from memory, without having them on disk. This kind of reflection is not very common and was <u>first published</u> by Deep Instinct in Blackhat USA 2016
- It also has a delaying mechanism of 14 days before accessing its command and control servers.

The fact that everything takes place in memory (while executing the main business logic of the botnet in an external process using code injection) makes it even harder to detect and trace.

When we traced the command and control server we revealed that it was used by other malware campaigns as well which originated from the dark web.

The dark web plays a critical part in the spread of malware: Its rather simple accessibility of services and knowledge has made it easy for any attacker to gain much more abilities in minimum effort. The first example for this, is the shared knowledge in forums: in the dark web, attackers trade methods and techniques in underground forums, thus exposing knowledge to additional malware developers.

Another example, which has increased in the past couple of years, is the amount of malware for sale on dark web markets. By using the dark web, anyone today can access an online market and purchase a malware. Prices vary, from simple malware that costs several dollars to malware sold at hundreds of dollars as "fully undetectable". Other than the malware itself, malware developers can purchase services that assist in the infection process. An attacker can purchase access to exploit kits, buy traffic of tens of thousands of users to a web page, or even buy a full ransomware-as-a-service for his own use.

Malware vs. Malware

Part of this malware process is terminating and deleting instances of other malware. It checks for known folders that malware "lives" in ("Application Data" folder), and if a certain file is running – it immediately terminates it and deletes its file. It even aims for specific folders of other botnets such as DorkBot.

We estimate this rare and unique behavior is because of money purposes within the Dark web. Attackers compete against each other to have as many "zombie computers" as possible in order to increase their value when proposing services to other attackers, especially when it comes to spreading infrastructures. The more computers – the more money an attacker can make. This is something we're seeing here as well.

004044E8 E			
004044L0 V L	.B 25 JI	MP SHORT 0040450F	
004044EA F	FB424 3401000 PI	USH DWORD PTR SS:[ESP+134]	
004044F1 8	D4424 30 LI	EA EAX,[ESP+30]	

Comparing current running process on the list to a file located in %APPDATA% ("LoadOrd.exe" in this case)

004044EA	FFB424 3401000	PUSH DWORD PTR SS:[ESP+134]	PROCESSENTRY32.szExeFile
004044F1	8D4424 30	LEA EAX,[ESP+30]	
004044F5	50	PUSH EAX	ASCII "smss.exe"
004044F6	E8 ADCBFFFF	CALL CompareStrings	
004044FB	59	POP ECX	
004044FC	59	POP ECX	
004044FD	85C0	TEST EAX,EAX	
004044FF 🗸	, 74 14	JE SHORT 00404515	
00404501	8D4424 08	LEA EAX,[ESP+8]	
00404505	50	PUSH EAX	
00404506	A1 C83C4100	MOV EAX, DWORD PTR DS: [413CC8]	ASCII "@6A"
0040450B	55	PUSH EBP	
0040450C	FF50 18	CALL DWORD PTR DS:[EAX+18]	KERNEL32.Process32Next
0040450F	85C0	TEST EAX,EAX	
Stack [0348F4D0]=0040450F (current registers)			
EAX=0348F508, ASCII "smss.exe" (current registers)			

Address	Value	Comments
0348F4D4	0348F508	ASCII "smss.exe"
0348F4D8	0348F74C	ASCII "LoadOrd.exe"

In case there is a match, terminate the process and delete it

0040452B FF90 A000000	CALL DWORD PTR DS:[EAX+0A0]	KERNEL32.OpenProcess
00404531 8BF8	MOV EDI,EAX	
00404533 85FF	TEST EDI,EDI	
00404535 🗸 74 37	JE SHORT 0040456E	
00404537 56	PUSH ESI	
00404538 57	PUSH EDI	
00404539 FF15 14704000	CALL DWORD PTR DS:[407014]	KERNEL32.GetProcessId
0040453F 8BF0	MOV ESI,EAX	
00404541 FF15 0C704000	CALL DWORD PTR DS:[40700C]	KERNEL32.GetCurrentProcessId
00404547 3BF0	CMP ESI,EAX	
00404549 5E	POP ESI	
0040454A 🗸 74 22	JE SHORT 0040456E	
0040454C 6A 09	PUSH 9	
0040454E 57	PUSH EDI	
0040454F FF15 10704000	CALL DWORD PTR DS:[407010]	KERNEL32.TerminateProcess
00404555 8B0D C83C4100	MOV ECX, DWORD PTR DS: [413CC8]	ASCII "@6A"

004048D5	FF15 34704000	CALL DWORD PTR DS:[407034]	KERNEL32.MoveFileA	
004048DB	8D85 B8FCFFFF	LEA EAX,[EBP-348]		
004048E1	50	PUSH EAX		
[00407034]=754F568A (KERNEL32.MoveFileA)				
1				

Address		Comments
0348F60C	F 0348F860	<pre>Existing = "C:\Users\Generic\AppData\Roaming\LoadOrd.exe"</pre>
0348F610	0348F61C	LNew = "C:\Users\Generic\AppData\Roaming\LoadOrd.exe.local.backup"

004048E2	FF15 287	04000 CALL DWORD PTR DS:[407028]	KERNEL32.DeleteFileA	
004048E8	8D85 BCF	DFFFF LEA EAX, [EBP-244]		
[00407028]=754F7434 (KERNEL32.DeleteFileA) - jumps to KERNELBASE.DeleteFileA				
Address	Value	Comments		
0348F610	0348F61C	ASCII "C:\Users\Generic\AppData\Roaming\LoadOrd.exe.local.backup"		

The Expected Damage

Once installed, the botnet shuts down Windows Defender and Windows Update while blocking additional ports on the Firewall. It also shuts down and deletes any EXE file running from %APPDATA% folder, which can cause loss of data. The main functionality of the botnet enables an attacker to take complete control of the user's system - it behaves as a gate to download additional payloads from the command and control servers. The expected damage here depends on the payload the attacker decides to distribute. It can vary from downloading and executing ransomware and banking trojans, among others. This can result in loss of tremendous amount of data, the need to shut down computers for recovery purposes, which can lead to disasters in enterprises. The fact that the botnet behaves as a gate for additional payloads, puts the enterprise in risk for leak of sensitive data as well, following the risk of keyloggers / banking trojans installations. Although this kind of complexity in the malware's structure is extremely rare, Deep Instinct detected and prevented it on a client's production environment. Once again, this is a true testament for the superiority of deep learning based solutions in the cybersecurity warfare.

For a full detailed analysis of Mylobot, download our free research paper on botnets>>

