
1/19

May 21, 2018

Decrypting APT33’s Dropshot Malware with Radare2 and
Cutter – Part 1

megabeets.net/decrypting-dropshot-with-radare2-and-cutter-part-1/

Prologue

As a reverse engineer and malware researcher, the tools I use are super important for me. I
have invested hours and hours in creating the best malware analysis environment for myself
and chose the best tools for me and my needs. For the last two years, radare2 is my go-to
tool for a lot of reverse-engineering tasks such as automating RE related work, scripting,
CTFing, exploitation and more. That said, I almost never used radare2 for malware analysis,
or more accurately, for analysis of malware for Windows. The main reason was that radare2
command-line interface felt too clumsy, complicated and an over-kill. IDA Pro was simply
better for these tasks, a quick inspection of functions, data structures, renaming,
commenting, et cetera. It felt more intuitive for me and that what I was searching for while
doing malware analysis. And then came Cutter.

Cutter

Along the years, the radare2 community had tried to develop many different graphic-
interfaces for radare2. None of them came even close to Cutter. Cutter is a QT C++ based
GUI for radare2. In my opinion, it is the GUI that radare2 deserves. To quote from Cutter’s
Github page:

Cutter is not aimed at existing radare2 users. It instead focuses on those whose are
not yet radare2 users because of the learning curve, because they don’t like CLI
applications or because of the difficulty…

https://www.megabeets.net/decrypting-dropshot-with-radare2-and-cutter-part-1/
https://www.megabeets.net/uploads/cutter_logo_smaller.png
https://github.com/radareorg/cutter

2/19

Cutter is a young project, only one-year-old, and it is the official GUI of radare2 (the first and
only GUI to be announced “official”). Cutter is a cross-platform GUI that aims to export
radare2’s plenty of functionality into a user-friendly and modern GUI. In this post, I’ll show
you some of Cutter’s features and how I work with it. To be honest, Cutter is intuitive so you
probably won’t need me to show you around, but just in case.

Downloading and installing Cutter

Cutter is available for all platforms (Linux, OS X, Windows). You can download the latest
release here. If you are using Linux, the fastest way to use Cutter is to use the AppImage
file.

If you want to use the newest version available, with new features and bug fixes, you should
build Cutter from source by yourself. It isn’t a complicated task and it is the version I use.

First, you must clone the repository:

git clone --recurse-submodules https://github.com/radareorg/cutter
cd cutter

Building on Linux:

./build.sh

Building on Windows:

prepare_r2.bat
build.bat

If any of those do not work, check the more detailed instruction page here.

Dropshot \ StoneDrill

Dropshot, also known as StoneDrill, is a wiper malware associated with the APT33 group
which targeted mostly organizations in Saudi Arabia. Dropshot is a sophisticated malware
sample, that employed advanced anti-emulation techniques and has a lot of interesting
functionalities. The malware is most likely related to the infamous Shamoon malware.
Dropshot was analyzed thoroughly by Kaspersky and later on by FireEye. In this article, we’ll
focus on analyzing how Dropshot decrypted the strings inside it in order to evade analysis. In
part 2 of this article, which will be published soon, we’ll focus on decrypting the encrypted
resource of Dropshot which contains the actual payload of the malware.

The Dropshot sample can be downloaded from here (password: infected). I suggest you star
(★) the repository to get updates on more radare2 tutorials 🙂

Please, be careful when using this sample. It is a real malware, and more than that, a
wiper! Use with caution!

https://github.com/radareorg/cutter/releases
https://github.com/radareorg/cutter/blob/master/docs/Compiling.md
https://en.wikipedia.org/wiki/Shamoon
https://app.box.com/s/olc867zxc9nkjzm3wkjwi0b0e2awahtn
https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html
https://github.com/ITAYC0HEN/A-journey-into-Radare2/blob/master/Part%203%20-%20Malware%20analysis/dropshot.exe.zip
https://github.com/ITAYC0HEN/A-journey-into-Radare2/

3/19

Since we’ll analyze Dropshot statically, you can use a Linux machine, as I did.

Who said radare2 doesn’t have a decent GUI? | Decrypting the encrypted strings of
APT33’s Dropshot malware using Cutter (@r2gui) and @radareorg‘s Python API.
Check it out @ https://t.co/u50oaVYsOU pic.twitter.com/8loEAG07IW

— Itay Cohen (@megabeets_) May 21, 2018

Getting Started

Now that we have Cutter installed, we are set to go and start our analysis. Open Cutter by
double-clicking on its Icon or typing ./Cutter in the command line. Under the “Open File”
tab select a new file and press “open”. After opening the file, we landed on the “Load
Options” window of Cutter. This is an intuitive dialog where we can tell radare2 how to
analyze the file. By expanding the “Advanced options”, we can set a specific Architecture, a
CPU, choose a file format and many more.

https://twitter.com/r2gui?ref_src=twsrc%5Etfw
https://twitter.com/radareorg?ref_src=twsrc%5Etfw
https://t.co/u50oaVYsOU
https://t.co/8loEAG07IW
https://twitter.com/megabeets_/status/998589232259137536?ref_src=twsrc%5Etfw

4/19

In order to analyze this sample more accurately, I chose to modify a more advanced option.
By moving the Analysis slider we can modify the level of Analysis. We’ll move it to the right in
order to choose the Advanced analysis mode. Then, disable the auto-renaming of functions
by removing the check from “Autorename functions based on context (aan)”. I chose to
disable aan since in this sample, the algorithm behind aan is renaming some functions
with confusing names.

https://www.megabeets.net/uploads/cutter_Load_Screen_ux.png

5/19

After clicking “OK” we’ll see the main window of Cutter, the dashboard. In your case, it might
look different than mine but it can be easily configured. For example, by clicking “View ->
Preferences” you will be able to change the theme colors and to configure the disassembly.
The widgets are very flexible and can be located almost anywhere on the screen. You can
also add more widgets to the screen by choosing the desired widget from the “Window”
menu item. Take a few minutes to play with the environment since we’ll not dive deep into
the interface.

Click to enlarge

Basic static analysis

When analyzing a malware sample, I usually start by statically examining the binary. A basic
static analysis can sometimes confirm whether a file is malicious, provide information about
its functionality, and help us understand what we are facing. Although the basic static
analysis is straightforward and can be quick, it’s largely ineffective against sophisticated
malware. So before reading any assembly, let’s have a look around on some widgets.

Strings

Starting with the Strings widget, we are not seeing anything too interesting. Some strings
might indicate names of files to be dropped – like “C-Dlt-C-Org-T.vbs” and “C-Dlt-C-Trsh-
T.tmp”, others look unique but not telling us much, for example, “Hello dear”. We can also
see some API functions and library strings we are familiar with, but there’s no “smoking gun”.

Entropy

https://www.megabeets.net/uploads/cutter_main_screen_graph.png

6/19

Another attribute that is worth checking is the file’s entropy. What is an entropy of a binary
file? I’ll use a nice quote which is originated from this page (in Russian, I have no idea what
is written here) but was taken by me from this great article about entropy.

Oh, what’s the way this word hasn’t been mocked in thermodynamics! The measure of
order in the system, the measure of energy dissipating and what’s not! Without any
doubt, a real physicist will be sick of our definition while a real mathematician is going
to be outraged. Nevertheless, as true dilettantes, let’s define the word “entropy” as a
measure of the efficiency of information storage.

Simply put, entropy (in our case) is the measurement of randomness in a given set of values
(data). The Entropy of a file (or data) is calculated similarly in different programs. Usually, it is
a number between 0.0 to 8.0. The value of entropy is a reliable sign that the file is packed,
compressed or contains packed or compressed data inside. A packed binary will probably
have high entropy value. How high? Well, it differs. Some would say that 6.0 is high enough,
some will say that 7.0 and above. I prefer to be somewhere in the middle and to treat 6.8 as
good indicator that the binary or some of its components are compressed or packed.

We can easily see the calculated entropy of Dropshot by looking at Cutter’s Dashboard
widget:

As you can see, our file has an entropy of 7.1 which is a very good indication of a
compressed\packed data. To be more specific, we can see in the Sections widget the
entropy of each section:

Look how high the entropy of .rsrc section is. Remember that the highest possible
entropy value is 8.0. No doubt, we have an interesting data in this section. We’ll get to that
later in the 2nd part of this series.

https://exelab.ru/art/wasm2.php#4
http://n10info.blogspot.co.il/2014/06/entropy-and-distinctive-signs-of-packed.html
https://www.megabeets.net/uploads/cutter_entropy_dashboard.png
https://www.megabeets.net/uploads/cutter_entropy_sections.png

7/19

Understanding the strings decryption process

While I was going through Dropshot code, I found that it is using a rather not-too-complicated
method to decrypt its embedded strings (well, most of them). This function stood up in my
analysis mainly because it was called many many times in the code and was used mainly
before LoadLibraryA and GetProcAddress . So it looked to me as a technique to load
libraries and functions dynamically in order to complicate analysis. A very popular approach
among malware authors. The aim of this article is not to understand every component of the
malware, but to get familiar with Cutter, scripting with radare2, and how both can be used by
malware researchers. Thus, (sadly) I won’t explain every step I took to find the decryption
function.

As said before, spotting the decryption function was done thanks to its popularity and its
cruciality to the program’s flow. If you want to give it a shot and try to find it by yourself — this
is the time.

Whether you found it or were too lazy to even search, here’s the answer — the decryption
function is located at 0x4012a0 and appears to take two parameters. In the next
screenshot, we’ll see a function which is using the decryption function.

Click to enlarge

The demonstrated function above (0x4017a0) is passing two parameters into our
decryption function (0x4012a0). The first argument is 0xb (Decimal: 11) and the second
argument is an address at 0x41b8cc . This is the time to rename our strings decryption
function in order to ease our analysis. It can be easily done by clicking on

https://www.megabeets.net/uploads/calling_function_17a0.png

8/19

fcn.004012a0 and pressing Shift + N or by right-clicking and choosing
“Rename fcn.004012a0 “. Enter the new name and press OK. I chose to call it
strings_decrypter .

Next, we can see that the output of strings_decrypter (eax) is being pushed to another
function at 0x4013b0 in addition to another argument, 1. Let’s have a look at this function:

Click to enlarge

The function is taking the right branch if the argument passed to it is 0 (i.e EAX == 0) and
the left branch if it is not. Either way, it will call LoadLibraryA with a string that would be
decrypted using our beloved decryption function. I’ll spoil it for you — the function would load
ntdll.dll on the right branch and kernel32.dll on the left. Simply put, the function is

loading the required library in order to use a function from it. I’ll rename this function to
load_ntdll_or_kernel32 . Now let’s get back to the previous function and continue to

examine it.

https://www.megabeets.net/uploads/cutter_rename_function.png
https://www.megabeets.net/uploads/cutter_graph_13b0.png

9/19

After choosing loading either ntdll.dll or kernel32.dll , the function
calls GetProcAddress with a handle to the loaded library and the string that it decrypted at
the beginning. We can be sure that this string is an exported API function of
kernel32.dll . A few instructions later we can see that the referenced API function is

being called.

We don’t have any idea which API function is being called. That’s why we need to
understand how strings_decrypter is working and what is each parameter that is being
passed to it.

Analyzing the decryption function

We talked about this function constantly but we didn’t see it yet. Here’s the graph of the
function as created by Cutter:

Click to enlarge

So, what do we have here? We obviously won’t go over it step by step, but we need to, and
will, understand the general idea. We already know that this function receives two
arguments. The first one is an address and the second is a number. The address argument
is held by a variable named arg_8h , the integer is stored at arg_ch . At the first block,
starting at 0x4012a0 , we can see that a buffer at the size of arg_ch+1 is allocated by

https://www.megabeets.net/uploads/cutter_strings_decrypter_man.png

10/19

VirtualAlloc . Then the address to the allocated buffer is assigned to local_8h . We
can rename it to buffer by clicking on its name and pressing Shift+N. This can also be
done using the right-click context menu.

After that, we can see that zero is assigned to local_4h . The next block is a starting of a
loop. We can see that the integer stored at arg_ch is assigned to edx which in turn is
compared with local_4h . We can understand now that arg_ch is some kind of length or
size and local_4h is a loop index. Let’s rename both to length and index . Now that
we know the purpose of one argument of the two and the purpose of the two local variables,
we need to understand what is in the address that is passed via arg_8h . In our example,
we saw the value 0x41b8cc being passed to our strings_decrypter function. Let’s go
to the Hexdump widget and seek to this address. Just type this address in the upper textbox
in order to seek a flag or an address. We can see that this is a half-word (2 bytes) array of
integers that starts from 0x41b8cc and ends at 0x0041b8e1 . Using another great feature
from Cutter (at the right side of the screen), we can generate a C array of half-words:

That’s a really great feature, right?! Cutter can generate different types of arrays to ease
scripting tasks. Here are some examples:

C half-words (Little Endian):

https://www.megabeets.net/uploads/cutter_rename-local_8h.png
https://www.megabeets.net/uploads/hexdump_c_half_words.png

11/19

#define _BUFFER_SIZE 11
const uint16_t buffer[11] = {
 0x0005, 0x0006, 0x000e, 0x0006, 0x001c, 0x0006, 0x0007, 0x000b,
 0x000e, 0x0006, 0x0022};

Python:

import struct
buf = struct.pack ("22B", *[
0x05,0x00,0x06,0x00,0x0e,0x00,0x06,0x00,0x1c,0x00,0x06,
0x00,0x07,0x00,0x0b,0x00,0x0e,0x00,0x06,0x00,0x22,0x00])

Javascript:

var buffer = new Buffer("BQAGAA4ABgAcAAYABwALAA4ABgAiAA==", 'base64');

This array will help us later to write the decryption script. For now, let’s continue to figure out
how strings_decrypter works. Entering the loop, we can see that eax will hold the
index and ecx will hold the aforementioned array. Then, a byte from [ecx + eax*2] is

moved to edx . Basically, edx now equals to half_word_array[index*2] . Next, our
buffer is moved to eax which in turn is being added with the value of index , setting
eax to a specific offset in the allocated buffer. Then, at 0x004012eb , we can see that a

byte is moved to cl . This byte is taken from index [edx] of a pre-defined string. Double-
clicking the string will reveal us the full string —
AaCcdDeFfGhiKLlMmnNoOpPrRsSTtUuVvwWxyZz32.\EbgjHI

_YQB:"/@\x0a\x0d\x1a . Immediately after that, the byte from cl is copied into the
specific index in our buffer . The loop continues length times.

After all this mess we can say that the array which is passed to this function, arg_8h , is
simply an array of offsets in this string and length is the length of the string to be built.
This is how Dropshot builds its strings, by passing the offsets array and the string’s length.
Let’s confirm this claim by testing it with Python.

This is where another great feature of Cutter is being used, an integrated Jupyter notebook.
We don’t need to open any external Python shell, we can use Cutter’s Jupyter widget.

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

12/19

Oh, I love this feature!

So let’s write a quick proof of concept to confirm that this is really how this decryption
function works. Here’s the quick POC in python:

The pre-defined decryption table (the string)
decryption_table = 'AaCcdDeFfGhiKLlMmnNoOpPrRsSTtUuVvwWxyZz32.\EbgjHI
_YQB:"/@\x0a\x0d\x1a'

The offsets array (0x41b8cc) which is passed to the function
offsets_array = [
0x05,0x00,0x06,0x00,0x0e,0x00,0x06,0x00,0x1c,0x00,0x06,
0x00,0x07,0x00,0x0b,0x00,0x0e,0x00,0x06,0x00,0x22,0x00]

The length which is passed to the function
length = 11

decrypted_string = ''

for i in range(length):
 decrypted_string += decryption_table[offsets_array[i*2]]

print ("Decrypted: %s" % (decrypted_string))

And let’s run it in Jupyter:

https://www.megabeets.net/uploads/Cutter_jupyter_hello_world.png

13/19

Great! We can see that we successfully decrypted the string and got “DeleteFileW” which is
an API function. So now we can feel confident to rename the last argument, arg_8h , to
“offsets_array”.

Now that we figured out how strings_decrypter is working, and even decrypted one
string, we can see where else this function is being called and decrypt all the other strings.
To see the cross-references to strings_decypter , click on its name and press X on the
keyboard. This will open the xrefs window. Cutter will also show us a preview of each
reference to this function which makes the task of inspecting xrefs much easier.

https://www.megabeets.net/uploads/Cutter_jupyter_poc.png

14/19

Click to enlarge

We can see dozens of calls to strings_decrypter , too much for a manual decryption.
That is where the power of radare2 and Cutter scripting will come handy!

Scripting time! Decrypting the strings

Scripting radare2 is really easy thanks to r2pipe. It is the best programming interface for
radare2.

The r2pipe APIs are based on a single r2 primitive found
behind r_core_cmd_str() which is a function that accepts a string parameter
describing the r2 command to run and returns a string with the result.

r2pipe supports many programming languages including Python, NodeJS, Rust, C, and
others.

Lucky us, Cutter is coming with the python bindings of r2pipe integrated into its Jupyter
component. We’ll write an r2pipe script that will do the following:

Declare constant variables for the addresses we already know (decryption function,
decryption table)
Dump the content of the decryption table to a variable
Iterate over all the references to the decryption table and save the arguments passed
to it
Manually decrypt the encrypted string
Print the decrypted function to the screen and add inline comments in the assembly

* Note that the following script requires an understanding of radare2 commands. Most of the
commands I’ll use here explained in my previous articles on my series of articles: “A journey
into Radare 2”. Make sure to check it out!

https://www.megabeets.net/uploads/cutter_xrefs.png
https://github.com/radare/radare2-r2pipe
https://github.com/radare/radare2-r2pipe/tree/master/python
https://github.com/radare/radare2-r2pipe/tree/master/nodejs/r2pipe
https://github.com/radare/radare2-r2pipe/tree/master/rust
https://github.com/radare/radare2-r2pipe/tree/master/c
https://www.megabeets.net/a-journey-into-radare-2-part-1/

15/19

The first item on our list is to define the addresses of the components we have already
detected: the decryption table and the decryption function.

import cutter

Declaration of decryption-table related variables
decryption_table = 0x41BA3C
decryption_table_end = 0x41BA77
decryption_table_len = decryption_table_end - decryption_table
decryption_function = 0x4012A0

Next, we need to analyze the binary so radare2 will detect the xrefs and functions. aa is a
basic analysis command of radare2. cutter.cmd is a function that receives a radare2
command and returns its output, if there’s any output at all.

cutter.cmd('aa')

Let’s move on and dump the content of the decryption_table to a variable. pxj is used
to print hexdump, the j suffix can be used in most of the radare2 commands to get a JSON
output. cutter.cmdj will parse the JSON output for us.

Dump the decryption table to a variable
decryption_table_content = cutter.cmdj(
 "pxj %d @ %d" % (decryption_table_len, decryption_table))

So basically in this piece of code, we are telling radare2 to take
decryption_table_len bytes from (@) the address of decryption_table . Now we

have all the data we need in order to start iterate over the references to the decryption
function.

Using a Python for loop, we will iterate over the output of axtj . This command stands
for analyze xrefs to and it is being used to list all the data and code references to a specific
address. In our case, this address will be our decryption function. The first thing that we will
do in each iteration is to parse the two arguments that are passed to the decryption function.
These will be the offset array and the length of the string to be decrypted. We’ll parse the
arguments using pdj -2 @ <some xref address> . pdj stands for print disassembly.
Passing -2 to pdj is telling radare2 to print 2 instructions before the given address. We
assume that these two arguments will be passed to the function right before it is being called
by the program.

16/19

Iterate x-refs to the decryption function
for xref in cutter.cmdj('axtj %d' % decryption_function):
 # Get the arguments passed to the decryption function: length and encrypted
string
 length_arg, offsets_arg = cutter.cmdj('pdj -2 @ %d' % (xref['from']))

 # String variable to store the decrypted string
 decrypted_string = ""

 # Guard rail to avoid exception
 if (not 'val' in length_arg):
 continue

Now for the fun part, decrypting the string. Since we already did a POC of it, we know how
the decryption works. This will be easy to implement using a for loop:

 # Manually decrypt the encrypted string
 for i in range(0, length_arg['val']):
 decrypted_string += chr(decryption_table_content[cutter.cmdj(
 'pxj 1 @ %d' % (offsets_arg['val'] + (i*2)))[0]])

Great! Now decypted_string is holding the, well, the decrypted string. All we left to do is
to print it to the console and add inline-comments in each call. The command CC will be
used to add the comments.

 # Print the decrypted and the address it was referenced to the console
 print(decrypted_string + " @ " + hex(xref['from']))

 # Add comments to each call of the decryption function
 cutter.cmd('CC Decrypted: %s @ %d' % (decrypted_string, xref['from']))

Now we can combine it all into one script:

17/19

import cutter

Declaration of decryption-table related variables
decryption_table = 0x41BA3C
decryption_table_end = 0x41BA77
decryption_table_len = decryption_table_end - decryption_table
decryption_function = 0x4012A0

cutter.cmd('aa')

Dump the decryption table to a variable
decryption_table_content = cutter.cmdj(
 "pxj %d @ %d" % (decryption_table_len, decryption_table))

Iterate x-refs to the decryption function
for xref in cutter.cmdj('axtj %d' % decryption_function):
 # Get the arguments passed to the decryption function: length and encrypted
string
 length_arg, offsets_arg = cutter.cmdj('pdj -2 @ %d' % (xref['from']))

 # String variable to store the decrypted string
 decrypted_string = ""

 # Guard rail to avoid exception
 if (not 'val' in length_arg):
 continue

 # Manually decrypt the encrypted string
 for i in range(0, length_arg['val']):
 decrypted_string += chr(decryption_table_content[cutter.cmdj(
 'pxj 1 @ %d' % (offsets_arg['val'] + (i*2)))[0]])

 # Print the decrypted and the address it was referenced to the console
 print(decrypted_string + " @ " + hex(xref['from']))

 # Add comments to each call of the decryption function
 cutter.cmd('CC Decrypted: %s @ %d' % (decrypted_string, xref['from']))

 # Refresh the interface
 cutter.refresh()

Now we can paste the script to the Jupyter notebook inside Cutter and execute it. A second
after, we can take a look at the Comments widget and see that our script worked and
updated the comments:

18/19

We can also see these comments inline in the disassembly:

Click to enlarge

Awesome! We did it, we decrypted the encrypted strings and added inline comments to ease
the analysis process. The final script can be found here.

Epilogue

Here comes to an end the first part of this article about decrypting Dropshot with Cutter and
r2pipe. We got familiar with Cutter, radare2 GUI, and wrote a decryption script in r2pipe’s
Python binding. We also analyzed some components of APT33’s Dropshot, an advanced
malware.

The next part will be shorter and in it, we’ll see how to decrypt an encrypted resource inside
Dropshot. This resource is the actual payload of Dropshot. So stay tuned!

https://www.megabeets.net/uploads/cutter_comments_widget.png
https://www.megabeets.net/uploads/cutter_inlinecomments.png
https://github.com/ITAYC0HEN/A-journey-into-Radare2/blob/master/Part%203%20-%20Malware%20analysis/decrypt_dropshot.py

19/19

As always, please post comments to this post or message me privately if something is
wrong, not accurate, needs further explanation or you simply don’t get it. Don’t hesitate to
share your thoughts with me.

Subscribe on the left if you want to get the next articles straight in your inbox.

Eat Veggies

https://www.megabeets.net/about.html#contact
https://www.megabeets.net/about.html#vegan

