
1/8

A Deep Dive Into RIG Exploit Kit Delivering Grobios Trojan
fireeye.com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-grobios-trojan.html

Threat Research

Irshad Muhammad, Shahzad Ahmed, Hassan Faizan, Zain Gardezi

May 14, 2018

7 mins read

Malware

As discussed in previous blogs, exploit kit activity has been on the decline since the latter half of 2016. However,
we do still periodically observe significant developments in this space, and we have been observing interesting
ongoing activity involving RIG Exploit Kit (EK). Although the volume of its traffic observed in-the-wild has been on
the decline, RIG EK remains active, with a wide range of associated crimeware payloads.

In this recent finding, RIG EK was observed delivering a Trojan named Grobios. This blog post will discuss this
Trojan in depth with a focus on its evasion and anti-sandbox techniques, but first let’s take a quick look at the
attack flow. Figure 1 shows the entire infection chain for the activity we observed.

Infection chain

Figure 1: Infection chain

We first observed redirects to RIG EK on Mar. 10, 2018, from the compromised domain, latorre[.]com[.]au, which
had a malicious iframe injected to it (Figure 2).

https://www.fireeye.com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-grobios-trojan.html
https://www.fireeye.com/blog/threat-research/2017/10/magniber-ransomware-infects-only-the-right-people.html

2/8

Malicious Iframe injected in latorre[.]com

Figure 2: Malicious Iframe injected in latorre[.]com

The iframe loads a malvertisement domain, which communicates over SSL (certificate shown in Figure 3) and
leads to the RIG EK landing page that loads the malicious Flash file (Figure 4).

Malicious SSL flow

Figure 3: Malicious SSL flow

RIG EK SWF download request

Figure 4: RIG EK SWF download request

When opened, the Flash file drops the Grobios Trojan. Figure 5 shows the callback traffic from the Grobios
Trojan.

Grobios callback

Figure 5: Grobios callback

Analysis of the Dropped Malware

Grobios uses various techniques to evade detection and gain persistence on the machine, which makes it hard
for it to be uninstalled or to go inactive on the victim machine. It also uses multiple anti-debugging, anti-analysis
and anti-VM techniques to hide its behavior. After successful installation on the victim machine, it connects to its
command and control (C2) server, which responds with commands.

In an effort to evade static detection, the authors have packed the sample with PECompact 2.xx. The unpacked
sample has no function entries in the import table. It uses API hashing to obfuscate the names of API functions it
calls and parses the PE header of the DLL files to match the name of a function to its hash. The malware also
uses stack strings. Figure 6 shows an example of the malware calling WinApi using the hashes.

An example of calling WinAPI using their hashes.

Figure 6: An example of calling WinAPI using their hashes.

Loading

The malware sample starts a copy of itself, which further injects its code
into svchost.exe or IEXPLORE.EXE depending on the user privilege level. Both parent and child quit after
injection is complete. Only svchost.exe/IEXPLORE.EXE keeps running. Figure 7 shows the process tree.

Process tree of the malware

Figure 7: Process tree of the malware

Persistence

The malware has an aggressive approach to persistence. It employs the following techniques:

It drops a copy of itself into the %APPDATA% folder, masquerading as a version of legitimate software
installed on the victim machine. It creates an Autorun registry key and a shortcut in the
Windows Startup folder. During our analysis, it dropped itself to the following path:

3/8

%APPDATA%\Google\v2.1.13554\<RandomName>.exe.

The path can vary depending on the folders the malware finds in %APPDATA%.

It drops multiple copies of itself in subfolders of a program at the path
%ProgramFiles%/%PROGRAMFILES(X86)%, again masquerading as a different version of the installed
program, and sets an Autorun registry key or creates a scheduled task.
It drops a copy itself in the %Temp% folder, and creates a scheduled task to run it.

On an infected system, the malware creates two scheduled tasks, as shown in Figure 8.

Scheduled tasks created by the malware

Figure 8: Scheduled tasks created by the malware

The malware changes the file Created, Modified, and Accessed times of all of its dropped copies to the Last
Modified time of ntdll.dll. To bypass the “File Downloaded from the Internet” warning, the malware
removes the :Zone.Identifier flag using DeleteFile API, as shown in Figure 9.

Call to DeleteFileW to remove the :Zone.Identifier Flag from the dropped copy

Figure 9: Call to DeleteFileW to remove the :Zone.Identifier Flag from the dropped copy

An interesting behavior of this malware is that it protects its copy in the %TEMP% folder using EFS (Windows
Encrypted File System), as seen in Figure 10.

Cipher Command Shows the Malware Copy Protected by EFS

Figure 10: Cipher Command Shows the Malware Copy Protected by EFS

Detecting VM and Malware Analysis Tools

Just before connecting to the C2, the malware does a series of checks to detect the VM and malware analysis
environment. It can detect almost all well-known VM software, including Xen, QEMU, VMWare, Virtualbox,
Hyper-V, and so on. The following is the list of checks it performs on the victim system:

Using the FindWindowEx API, it checks whether any of the analysis tools in Table 1 are running on the
system.

Analysis Tools

PacketSniffer

FileMon

WinDbg

Process Explorer

OllyDbg

4/8

SmartSniff

cwmonitor

Sniffer

Wireshark

Table 1: Analysis tools detected by malware

The malware contains a list of hashes of blacklisted process names. It checks whether the hash of any of
running process matches a hash on the blacklist, as shown in Figure 11.

Check for blacklisted processes

Figure 11: Check for blacklisted processes

We were able to crack the hashes of the blacklisted processes shown in Table 2.

Hash Process

283ADE38h vmware.exe

8A64214Bh vmount2.exe

13A5F93h vmusrvc.exe

5/8

0F00A9026h vmsrvc.exe

0C96B0F73h vboxservice.exe

0A1308D40h vboxtray.exe

0E7A01D35h xenservice.exe

205FAB41h joeboxserver.exe

6F651D58h joeboxcontrol.exe

8A703DD9h wireshark.exe

1F758DBh Sniffhit.exe

0CEF3A27Ch sysAnalyzer.exe

6FDE1C18h Filemon.exe

54A04220h procexp.exe

0A17C90B4h Procmon.exe

7215026Ah Regmon.exe

788FCF87h autoruns.exe

0A2BF507Ch

0A9046A7Dh

Table 2: Blacklisted processes

The malware enumerates registry keys in the following paths to see if they contain the words xen or VBOX:
HKLM\HARDWARE\ACPI\DSDT
HKLM\HARDWARE\ACPI\FADT
HKLM\HARDWARE\ACPI\RSDT

It checks whether services installed on the system contain any of the keywords in Table 3:

vmmouse vmdebug vmicexchange vmicshutdown vmicvss

vmicheartbeat msvmmouf VBoxMouse vpcuhub vpc-s3

6/8

vpcbus vmx86 vmware VMMEMCTL VMTools

XenVMM xenvdb xensvc xennet6 xennet

xenevtchn VBoxSF VBoxGuest

Table 3: Blacklisted service names

It checks whether the username contains any of these words: MALWARE, VIRUS, SANDBOX, MALTEST
It has a list of hashes of blacklisted driver names. It traverses the windows
driver directory %WINDIR%\system32\drivers\ using FindFirstFile/FindNextFile APIs to check if the hash of
the name of any drivers matches with that of any blacklisted driver's name, as shown in Table 4.

Hash Driver

0E687412Fh hgfs.sys

5A6850A1h vmhgfs.sys

0CA5B452h prleth.sys

0F9E3EE20h prlfs.sys

0E79628D7h prlmouse.sys

68C96B8Ah prlvideo.sys

0EEA0F1C2h prl_pv32.sys

443458C9h vpcs3.sys

2F337B97h vmsrvc.sys

4D95FD80h vmx86.sys

0EB7E0625h vmnet.sys

Table 4: Hashes of blacklisted driver names

It calculates the hash of ProductId and matches it with three blacklisted hashes to detect public sandboxes,
shown in Table 5.

Hash Product Id Sandbox Name

7/8

4D8711F4h 76487-337-8429955-22614 Anubis Sanbox

7EBAB69Ch 76487-644-3177037-23510 CWSandbox

D573F44D 55274-640-2673064-23950 Joe Sandbox

Table 5: Blacklisted product IDs

The malware calculates the hash of loaded module (DLL) names and compares them with the list of
hashes of blacklisted module names shown in Table 6. These are the DLLs commonly loaded into the
process being debugged, such as dbhelp.dll and api_log.dll.

6FEC47C1h 6C8B2973h 0AF6D9F74h 49A4A30h 3FA86C7Dh

Table 6: Blacklisted module names hashes

Figure 12 shows the flow of code that checks for blacklisted module hashes.

Code checks for blacklisted module hashes

Figure 12: Code checks for blacklisted module hashes

It checks whether Registry keys present at
the path HKLM\SYSTEM\CurrentControlSet\Services\Disk\Enum and
HKLM\SYSTEM\ControlSet001\Services\Disk\Enum contain any of these words: QEMU, VBOX, VMWARE,
VIRTUAL
It checks whether registry keys at the path HKLM\SOFTWARE\Microsoft, HKLM\SOFTWARE contain
these words: VirtualMachine, vmware, Hyber-V
It checks whether the system bios version present at registry
path HKLM\HARDWARE\DESCRIPTION\System\SystemBiosVersion contains these words: QEMU,
BOCHS, VBOX
It checks whether the video bios version present at
registry path HKLM\HARDWARE\DESCRIPTION\System\VideoBiosVersion contains VIRTUALBOX substring.
It checks whether the registry key at path HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus
0\Target Id 0\Logical Unit Id 0\Identifier contains any of these words: QEMU,vbox, vmware
It checks whether the registry key HKLM\SOFTWARE\Oracle\VirtualBox Guest Additions exists on the
system.

Network Communication

The malware contains two hardcoded obfuscated C2s. After de-obfuscating the C2 URLs, it generates a random
string of 20 characters, appends it to the end of URL, and sends the request for commands. Before it executes
the commands, the malware verifies the identity of the C2. It calculates the hash of 4 bytes of data using the
CALG_MD5 algorithm. It then uses the Base64 data from the CERT command as a Public
Key in CryptVerifySignature to verify the hash signature (Figure 13). If the signature is verified, the malware
executes the commands.

Malware verifies the C2 hash

Figure 13: Malware verifies the C2 hash

8/8

During our initial analysis, we found that the malware supports the commands shown in Table 7.

Command Description

CERT <Base64 data> Contains the data used to verify the identity of the C2

CONNECT <IP:Port> Connect to given host for further commands

DISCONNECT Close all the connections

WAIT <Number of seconds> Wait for the number of seconds before executing the next commands

REJECT Kind of NOP. Move on to next command after waiting for 5 second

Table 7: Commands supported by malware

Figure 14 shows commands being issued by the C2 server.

Commands issued by the C2 server

Figure 14: Commands issued by the C2 server

Conclusion

Despite the decline in activity, exploit kits still continue to put users at risk – especially those running older
versions of software. Enterprises need to make sure their network nodes are fully patched.

All FireEye products detect the malware in our MVX engine. Additionally, FireEye Network Security blocks
delivery at the infection point.

Indicators of Compromise (IOCs)

30f03b09d2073e415a843a4a1d8341af
99787d194cbd629d12ef172874e82738
169.239.129[.]17
grobiosgueng[.]su

Acknowledgments

We acknowledge Mariam Muntaha for her contribution to the blog regarding malicious traffic analysis.

https://www.fireeye.com/solutions/nx-network-security-products.html

