
1/14

SynAck targeted ransomware uses the Doppelgänging
technique

securelist.com/synack-targeted-ransomware-uses-the-doppelganging-technique/85431/

Authors

 Anton Ivanov

 Fedor Sinitsyn

 Orkhan Mamedov

The Process Doppelgänging technique was first presented in December 2017 at the
BlackHat conference. Since the presentation several threat actors have started using this
sophisticated technique in an attempt to bypass modern security solutions.

https://securelist.com/synack-targeted-ransomware-uses-the-doppelganging-technique/85431/
https://securelist.com/author/anton/
https://securelist.com/author/fedors/
https://securelist.com/author/orkhanmamedov/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf


2/14

In April 2018, we spotted the first ransomware employing this bypass technique – SynAck
ransomware. It should be noted that SynAck is not new – it has been known since at least
September 2017 – but a recently discovered sample caught our attention after it was found
to be using Process Doppelgänging. Here we present the results of our investigation of this
new SynAck variant.

Anti-analysis and anti-detection techniques

Process Doppelgänging

SynAck ransomware uses this technique in an attempt to bypass modern security solutions.
The main purpose of the technique is to use NTFS transactions to launch a malicious
process from the transacted file so that the malicious process looks like a legitimate one.

Binary obfuscation

To complicate the malware analysts’ task, malware developers often use custom PE packers
to protect the original code of the Trojan executable. Most packers of this type, however, are
effortlessly unpacked to reveal the original unchanged Trojan PE file that’s suitable for
analysis.

This, however, is not the case with SynAck. The Trojan executable is not packed; instead, it
is thoroughly obfuscated prior to compilation. As a result, the task of reverse engineering is
considerably more complicated with SynAck than it is with other recent ransomware strains.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152740/180504-SynAck-ransomware-1.png


3/14

The control flow of the Trojan executable is convoluted. Most of the CALLs are indirect, and
the destination address is calculated by arithmetic operation from two DWORD constants.

All of the WinAPI function addresses are imported dynamically by parsing the exports of
system DLLs and calculating a CRC32-based hash of the function name. This in itself is
neither new nor particularly difficult to analyze. However, the developers of SynAck further
complicated this approach by obscuring both the address of the procedure that retrieves the
API function address, and the target hash value.

Let’s illustrate in detail how SynAck calls WinAPI functions. Consider the following piece of
disassembly:

This code takes the DWORD located at 403b13, subtracts the constant 78f5ec4d, with the
result 403ad0, and calls the procedure at this address.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152748/180504-SynAck-ransomware-2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152754/180504-SynAck-ransomware-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152801/180504-SynAck-ransomware-4.png


4/14

This procedure pushes two constants (N1 = ffffffff877bbca1 and N2 = 2f399204) onto the
stack and passes the execution to the procedure at 403680 which will calculate the result of
N1 xor N2 = a8422ea5.

This value is the hash of the API function name that SynAck wants to call. The procedure
403680 will then find the address of this function by parsing the export tables of system
DLLs, calculating the hash of each function name and comparing it to the value a8422ea5.
When this API function address is found, SynAck will pass the execution to this address.

Notice that instead of a simple CALL in the image above it uses the instructions PUSH +
RET which is another attempt to complicate analysis. The developers of SynAck use different
instruction combinations instead of CALL when calling WinAPI functions:

push reg

retn

jmp reg
mov [rsp-var], reg

jmp qword ptr [rsp-var]

Deobfuscation

To counter these attempts by the malware developers, we created an IDAPython script that
automatically parses the code, extracts the addresses of all intermediate procedures,
extracts the constants and calculates the hashes of the WinAPI functions that the malware
wants to import.

We then calculated the hash values of the functions exported from Windows system DLLs
and matched them against the values required by SynAck. The result was a list showing
which hash value corresponds to which API function.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152808/180504-SynAck-ransomware-5.png


5/14

Our script then uses this list to save comments in the IDA database to indicate which API is
going to be called by the Trojan. Here is the code from the example above after
deobfuscation.

Language check

At an early stage of execution the Trojan performs a check to find out whether it has been
launched on a PC from a certain list of countries. To do this, it lists all the keyboard layouts
installed on the victim’s PC and checks against a list hardcoded into the malware body. If it
finds a match, SynAck sleeps for 300 seconds and then just calls ExitProcess to prevent
encryption of files belonging to a victim from these countries.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152815/180504-SynAck-ransomware-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152822/180504-SynAck-ransomware-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152830/180504-SynAck-ransomware-8.png


6/14

Directory name validation

Shortly after the language check, which can be considered fairly common among modern
ransomware, SynAck performs a check on the directory where its executable is started from.
If there’s an attempt to launch it from an ‘incorrect’ directory, the Trojan won’t proceed and
will just exit instead. This measure has been added by the malware developers to counter
automatic sandbox analysis.

As with API imports, the Trojan doesn’t store the strings it wants to check; instead it stores
their hashes – a tactic that hinders efforts to find the original strings.

SynAck contains nine hashes; we have been able to brute-force two of them:

0x05f9053d == hash("output")
 0x2cd2f8e2 == hash("plugins")

In the process we found a lot of collisions (gibberish strings that give the same hash value as
the meaningful ones).

Cryptographic scheme

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152838/180504-SynAck-ransomware-9.png


7/14

Like other ransomware, SynAck uses a combination of symmetric and asymmetric
encryption algorithms. At the core of the SynAck algorithm lies the hybrid ECIES scheme. It
is composed of ‘building blocks’ which interact with each other: ENC (symmetric encryption
algorithm), KDF (key derivation function), and MAC (message authentication code). The
ECIES scheme can be implemented using different building blocks. To calculate a key for the
symmetric algorithm ENC, this scheme employs the ECDH protocol (Diffie-Hellman over a
chosen elliptic curve).

The developers of this Trojan chose the following implementation:

ENC: XOR

KDF: PBKDF2-SHA1 with one iteration

MAC: HMAC-SHA1

ECDH curve: standard NIST elliptic curve secp192r1

ECIES-XOR-HMAC-SHA1

This is the function that implements the ECIES scheme in the SynAck sample.

Input: plaintext, input_public_key
 Output: ciphertext, ecies_public_key, MAC

1. The Trojan generates a pair of asymmetric keys: ecies_private_key and
ecies_public_key;

2. Using the generated ecies_private_key and input_public_key the Trojan calculates
the shared secret according to the Diffie-Hellman protocol on an elliptic curve:
ecies_shared_secret = ECDH(ecies_private_key, input_public_key)

3. Using the PBKDF2-SHA1 function with one iteration, the Trojan derives two byte
arrays, key_enc and key_mac, from ecies_shared_secret. The size of key_enc is
equal to the size of the plaintext;

4. The plaintext is XORed byte to byte with the key_enc;
5. The Trojan calculates the MAC (message authentication code) of the obtained

ciphertext using the algorithm HMAC-SHA1 with key_mac as the key.

Initialization

At the first step the Trojan generates a pair of private and public keys: the private key
(session_private_key) is a 192-bit random number and the public key
(session_public_key) is a point on the standard NIST elliptic curve secp192r1.

https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme


8/14

Then the Trojan gathers some unique information such as computer and user names, OS
version info, unique infection ID, session private key and some random data and encrypts it
using a randomly generated 256-bit AES key. The encrypted data is saved as the
encrypted_unique_data buffer.

To encrypt the AES key, the Trojan uses the ECIES-XOR-HMAC-SHA1 function (see
description above; hereafter referred to as the ECIES function). SynAck passes the AES key
as the plaintext parameter and the hardcoded cybercriminal’s master_public_key as
input_public_key. The field encrypted_aes_key contains the ciphertext returned by the
function, public_key_n is the ECIES public key and message_authentication_code is the
MAC.

At the next step the Trojan forms the structure cipher_info.

struct cipher_info
{
uint8_t encrypted_unique_data[240];
uint8_t public_key_n[49];
uint8_t encrypted_aes_key[44];
uint8_t message_authentication_code[20];
};

It is shown in the image below.

This data is then encoded in base64 and written into the ransom note.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152846/180504-SynAck-ransomware-10.png


9/14

As we can see, the criminals ask the victim to include this encoded text in their message.

File encryption

The content of each file is encrypted by the AES-256-ECB algorithm with a randomly
generated key. After encryption, the Trojan forms a structure containing information such as
the encryption label 0xA4EF5C91, the used AES key, encrypted chunk size and the original
file name. This information can be represented as a structure:

struct encryption_info
 {

 uint32_t label = 0xA4EF5C91;
 uint8_t aes_key[32];

 uint32_t encrypted_chunk_size;
 uint32_t reserved;

 uint8_t original_name_buffer[522];
 };

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152856/180504-SynAck-ransomware-11.png


10/14

The Trojan then calls the ECIES function and passes the encryption_info structure as the
plaintext and the previously generated session_public_key as the input_public_key. The
result returned by this function is saved into a structure which we dubbed
file_service_structure. The field encrypted_file_info contains the ciphertext returned by the
function, ecc_file_key_public is the ECIES public key and message_authentication_code is
the MAC.

struct file_service_structure
{
uint8_t ecc_file_key_public[49];
encryption_info encrypted_file_info;
uint8_t message_authentication_code[20];
};

This structure is written to the end of the encrypted file. This results in an encrypted file
having the following structure:

struct encrypted_file
{
uint8_t encrypted_data[file_size - file_size % AES_BLOCK_SIZE];
uint8_t original_trailer[file_size % AES_BLOCK_SIZE];
uint64_t encryption_label = 0x65CE3D204A93A12F;
uint32_t infection_id;
uint32_t service_structure_size;
file_service_structure service_info;
};

The encrypted file structure is shown in the image below.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152905/180504-SynAck-ransomware-12.png


11/14

After encryption the files will have randomly generated extensions.

Other features

Termination of processes and services

Prior to file encryption, SynAck enumerates all running processes and all services and
checks the hashes of their names against two lists of hardcoded hash values (several
hundred combined). If it finds a match, the Trojan will attempt to kill the process (using the
TerminateProcess API function) or to stop the service (using ControlService with the
parameter SERVICE_CONTROL_STOP).

To find out which processes it wants to terminate and which services to stop, we brute-forced
the hashes from the Trojan body. Below are some of the results.

Processes Services

Hash Name Hash Name

0x9a130164 dns.exe 0x11216a38 vss

0xf79b0775 lua.exe 0xe3f1f130 mysql

0x6475ad3c mmc.exe 0xc82cea8d qbvss

0xe107acf0 php.exe 0xebcd4079 sesvc

0xf7f811c4 vds.exe 0xf3d0e358 vmvss

0xcf96a066 lync.exe 0x31c3fbb6 wmsvc

0x167f833f nssm.exe 0x716f1a42 w3svc

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152914/180504-SynAck-ransomware-13.png


12/14

0x255c7041 ssms.exe 0xa6332453 memtas

0xbdcc75a9 w3wp.exe 0x82953a7a mepocs

0x410de6a4 excel.exe

0x9197b633 httpd.exe

0x83ddb55a ilsvc.exe

0xb27761ed javaw.exe

0xfd8b9308 melsc.exe

0xa105f60b memis.exe

0x10e94bcc memta.exe

0xb8de9e34 mepoc.exe

0xeaa98593 monad.exe

0x67181e9b mqsvc.exe

0xd6863409 msoia.exe

0x5fcab0fe named.exe

0x7d171368 qbw32.exe

0x7216db84 skype.exe

0xd2f6ce06 steam.exe

0x68906b65 store.exe

0x6d6daa28 vksts.exe

0x33cc148e vssvc.exe

0x26731ae9 conime.exe

0x76384ffe fdhost.exe

0x8cc08bd7 mepopc.exe

0x2e883bd5 metray.exe

0xd1b5c8df mysqld.exe

0xd2831c37 python.exe



13/14

0xf7dc2e4e srvany.exe

0x8a37ebfa tabtip.exe

As we can see, SynAck seeks to stop programs related to virtual machines, office
applications, script interpreters, database applications, backup systems, gaming applications
and so on. It might be doing this to grant itself access to valuable files that could have been
otherwise used by the running processes.

Clearing the event logs

To impede possible forensic analysis of an infected machine, SynAck clears the event logs
stored by the system. To do so, it uses two approaches. For Windows versions prior to Vista,
it enumerates the registry key SYSTEM\CurrentControlSet\Services\EventLog and uses
OpenEventLog/ClearEventLog API functions. For more modern Windows versions, it uses
the functions from EvtOpenChannelEnum/EvtNextChannelPath/EvtClearLog and from
Wevtapi.dll.

SynAck is also capable of adding a custom text to the Windows logon screen. It does this by
modifying the LegalNoticeCaption and LegalNoticeText keys in the registry. As a result,
before the user signs in to their account, Windows shows a message from the
cybercriminals.

Attack statistics

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152924/180504-SynAck-ransomware-14.png


14/14

We have currently only observed several attacks in the USA, Kuwait, Germany, and Iran.
This leads us to believe that this is targeted ransomware.

Detection verdicts

Trojan-Ransom.Win32.Agent.abwa
 Trojan-Ransom.Win32.Agent.abwb
 PDM:Trojan.Win32.Generic

IoCs

0x6F772EB660BC05FC26DF86C98CA49ABC
0x911D5905CBE1DD462F171B7167CD15B9

Malware Descriptions
Malware Technologies
Obfuscation
Ransomware
Trojan

Authors

 Anton Ivanov

 Fedor Sinitsyn

 Orkhan Mamedov

SynAck targeted ransomware uses the Doppelgänging technique

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/obfuscation/
https://securelist.com/tag/ransomware/
https://securelist.com/tag/trojan/
https://securelist.com/author/anton/
https://securelist.com/author/fedors/
https://securelist.com/author/orkhanmamedov/

