
1/5

Botception with Necurs: Botnet distributes script with bot
capabilities

blog.avast.com/botception-with-necurs-botnet-distributes-script-with-bot-capabilities-avast-threat-labs

VBScript allows threat actors to steal personal data and make victims vulnerable to
keyloggers, banking malware and ransomware

Over the past few days, we have been analyzing a development with the Necurs botnet - a
cybercrime operation dating back to 2012 that quickly became one of the largest spam
botnets in the world. We reported on the infamous cybergang responsible for the distribution
of global malware campaigns such as “Locky” and “GlobeImposter” in two blog posts (here
and here) that explained how malware is spread via Necurs. And now we have seen a new
link to that chain with attackers serving brand new files via the same botnet. These files are
spreading malicious Visual Basic Scripts (VBScripts) and our analysis suggests that the
authors are using the services provided by the Necurs botnet to reach more victims. The
ultimate goal of the attackers is to make systems vulnerable to attacks with the ability to steal
personal data and to infect them with keyloggers, banking malware, and ransomware.

An examination of the source code suggests that the VBScripts are hosting a severe form of
malware known as Agony Rootkit used to infect the Master Boot Record (MBR) of
computers. This can be particularly destructive. By infecting the MBR, the malware is able to
execute before systems boot-up allowing it to bypass security software. It then inserts a
backdoor into the operating system which gives the attacker full control of the machine. With
these administrative rights, the attacker can install worms, keyloggers and other malicious
files. They can also access stored data including personal or financial information, putting
users at risk.

A deeper look inside the VBScripts distributed by Necurs

Below are examples of live VBScripts in action. At first glance, it appears to include random
numerical combinations that could be discarded as junk, possibly added to alter the code
structure in order to evade detection. However, we spent some time investigating the code
via the decryption function and spotted some logic behind its construction.

The scripts themselves are around 72KB and are similar in composition except for some
small changes in the obfuscation methods.

https://blog.avast.com/botception-with-necurs-botnet-distributes-script-with-bot-capabilities-avast-threat-labs
https://blog.avast.com/a-closer-look-at-the-locky-ransomware
https://blog.avast.com/lockys-javascript-downloader

2/5

A closer look at the code reveals some important information. We noticed that the function
uses ReadLine

on the file itself to decrypt the control panel (below):

The script is really easy to deobfuscate; the only issue is comment removal — which is often
present in analytical tools — that can mislead the analysts.

After decrypting these comments, in version one, we spotted a nice piece of code which
could be used as a modeling example “How to write the control panel for your malware in
VBS”. The next version is less self explanatory and readable.

It's probable that the authors of VBScripts connected with the authors of the Necurs botnet
because of its scale and potential for ubiquitous email scams. The scripts appear to work as
a downloader and control panel for the Agony rootkit, however changing the payload is
particularly easy. This could open the door to more severe malware infections for victims in
the future, such as ransomware or banking Trojans.

The malware control panel includes unusually beautiful code

The code itself contains very well-named variables and also debugging output to a log file.
However, debugging is switched off by default as the variable isDebug is set to false. The
debugging output informs about every important subroutine and contains strings such as:

"Preparing done!" (initialization and installation phase finished)
 "Oh, its main cycle! CMD response" & cmd (after receiving a new command)

 "F***! Panel maybe die! I will try to change it..." (new command has less than 4 characters)
 "Unistall [sic] command gotted!" (uninstall command received)

 "Oh, its ddos command!" (ddos command received)
 “ddos finished! Sended "&cnt&" requests!" (ddos command finished)

3/5

Interestingly, this makes this code unusually beautiful as one rarely stumbles upon a
relatively well-structured and “commented” piece of code with self-documenting names,
particularly when the subject is malware.

As well, the code reveals some important information about its creator. The author appears
to have a problem with the past tense of irregular verbs such as to get or to send. In addition,
several log entries use incorrect English language sentence construction, such as "Panel
maybe die!". It could suggest that the author’s first language is not English, however this
may well be staged.

The script initializes its variables such as Command and Control (C&C) addresses, various
paths and several objects that are used to interface system functions. Then, the script tries to
install itself to the folder %APPDATA% under the names <HWID>.vbs, g_<HWID>.vbs_w.vbs
(HWID being a random sequence of letters loaded from registry or generated at startup), and
possibly <static_number_sequence>_log.txt and relaunch itself from the %APPDATA%
directory. After the initial installation, it checks whether another instance of the script is
running. Persistence is key, so if only one instance is running, a task named ChromeUpdate
is created to launch the first file on user log on. Also, multiple registry entries that launch the
script at startup are created. Otherwise, the script quits.

Once the script gets over the initialization, it has to ask the C&C servers for commands and
process them. That is where a traditional event loop comes in. Verification that the script is
located in the %APPDATA% directory has to be passed first, otherwise agony is invoked six
times before proceeding to the next iteration. Let us assume that this test has passed. Now
the script sends a POST request with a rather long GET data string, e.g.:

os=Windows 10 Enterprise&user=Evzen@DEMO-PC&av=Avast AntivirusWindows
Defender&7045Mb # Intel(R) Core(TM)CPU E5-2690 v4 @ 2.60GHz # Standard VGA
Graphics Adapter&hwid=AABBccddEEFFGGhhiiJJKKLLm&x=64

The only fields that require some discussion are _fw_ and _hwid_. "fw" describes the
hardware (specifically RAM size # CPU info # GPU info), while "hwid" is a 25-character long
random string generated at first launch and saved into the registry at
HKEY_CURRENT_USER\Software\ARRSSS.

The response contains a command. These commands have a very similar structure and
every command triggers a confirmation that is sent again as a POST request to the same
address as a command request, however the data string differs:

ok=<zid>&hwid=<hwid> in case of success

error=<zid>&hwid=<hwid> in case of an error

The value <zid> is given by the command string. All available commands are listed below:

https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

4/5

Command Command
string

Action

download download!
<url>!<zid>

Download a file from <url> and execute it.

update update!<url>!
<zid>

Download a PE file from <url>, save it to %TEMP% and
execute it.

plugin plugin!<url>!
<zid>

Download a dll from <url>, save it to %TEMP% use
RUNDLL32.exe to execute it.

uninstall uninstall!
<data>!<zid>

Replace dropped files and a log by a file with one
whitespace.

ddos ddos!<url>!
<count>

Send <count> POST requests to <url>.

The denial-of-service (DDoS) attack that can be caused with the above command initiated by
this script also carries some data. It seems that these attacks can be identified by the
associated data, as all the scripts collected so far have the POST data hard-coded:

ufgiweugdiqwfgqofwg=325872346782356786426526349865923659

Now the script also ends up in several invocations of agony. The agony function serves three
purposes. It checks whether the script is running in the installation directory. The result only
affects which copy of the scripts is launched if no instance of %APPDATA%\<HWID>.vbs or
g_%APPDATA%\<HWID>.vbs_w.vbs is running, and the log entry suggests that this is
intended as a self-defense. Moreover, if the script is not named <HWID>.vbs and located in
%APPDATA%, it overwrites its two files by <static_number_sequence>_log.txt and adds
itself to startup through registry entries:

HKEY_CURRENT_USER\software\microsoft\windows\currentversion\run\
HKEY_LOCAL_MACHINE\software\microsoft\windows\currentversion\run\
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run\
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

Every agony ends up with 500 milliseconds of a blissful Sleep, a function suspending the
code execution for a given time.

Version progression

5/5

A new version, discovered approximately a day after the described script’s release, brought
several updates. In the new version, the payload is hidden beyond another .vbs file that acts
as a downloader for the following stage. Moreover, its functions seem to have been
refactored as e.g. the agony function is now removed in favour of a simple Sleep and the
detection of an antivirus installed on the system is now hidden in a function called func15.
Also, the script installs itself only to %APPDATA%/<HWID>.vbs, which simplifies checking for
running instances, which means that only one function is necessary for checking.

The command structure is simplified to only include the functions download, update, and
uninstall. The command update now expects a Visual Basic script, while update expects a
Portable Executable (PE) file.

The last significant addition is a new function called psCommand that, as expected, executes
a command in PowerShell. Currently, this is only used in the initialization.

VBS decryptor:
0089A6E7E92B75952F5C2E3A04A7AB65133F4CCA732BC96ECB0A34389D8FC7F4 (v1)

Dae17df6225f05e99bf0e84b3a8438560befc7eb6bd07a7b4d4e451ec33b6a5f (v2)

VBS control panel:

3011126B5210298D843D6D3B84143BE292633A4A7C0D14E947AE6BE11B74CE2F (v1)

676abca2210742e57b432558276b616b1e4e5286c772aed8c63efed230ff2430 (v2)

