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Summary
 Over the past two years, the Hancitor malware family has been a fairly regular nuisance that defenders on the front line of organizations have

to deal with on an almost weekly basis. The malware itself has gone through more than 80 variations during this time, sometimes just to define
new variables for campaigns and other times a complete rewrite of the malware’s core functionality by the code authors. Every now and then
though, they venture out into the unknown with techniques unlike what Hancitor has used before. These occasions tend to be short-lived and I
look at them more as “testing” phases. I suspect the malware authors monitor their infection rates and when they deviate from the tried and
true, campaigns end up being less successful. For those interested in an overview of how a typical Hancitor malspam campaign operates, Unit
42 recently published a blog on the subject.  In this post, I’ll be diving into the technical inner-workings of their latest malware packer.

 For this particular instance,  campaigns on January 24, 2018 and January 25, 2018 used a different document format, Rich Text Format (RTF),
that leveraged an exploit (CVE-2017-11882) to launch shellcode which executed a PowerShell command used to download the standard
binary which has been used for months. Usually, Hancitor is distributed through Microsoft Word documents utilizing macros but RTF
documents typically require some kind of exploit to execute code. In the past, Hancitor has kept itself at arm’s length from exploitation and
instead relied entirely on social-engineering. This most likely helps evade against anti-virus (AV) and endpoint detection and response (EDR)
systems monitoring for that type of activity.

 The first RTF variant on the 24  is fairly straightforward; however, on the 25th, the RTF now included an embedded PE file that was entirely
different than their standard binary. This PE file exhibited a new unpacking technique that the Hancitor developers have never employed before
and this will be the meat of the blog post. My end goal is to identify the standard Hancitor command and control (C2) gate URL’s, which stayed
the same even with the new dropper in use.

 For this analysis, I’ll be using the following sample:

SHA256 B489CA02DCEA8DC7D5420908AD5D58F99A6FEF160721DCECFD512095F2163F7A

 
 RTF Dropper

 I won’t be getting into the details of the exploit but suffice to say, they used the CVE-2017-11882 exploit in their RTF document to launch
shellcode and execute a PowerShell command. The PowerShell command in this campaign will save a base64 encoded PE to disk and then
call the Start-Process cmdlet on it.

1 $EUX4JTF7 = '';foreach($82OJU7FY3US in (1..12 | foreach{ '{0:X}' -f (Get  Random -Max 235) })){$EUX4JTF7 += "$82OJU7FY3US"};$NR3M
=  "$env:USERPROFILE\" + $EUX4JTF7 +  ".exe";
[IO.File]::WriteAllBytes($NR3MNTAYNI,  [System.Convert]::FromBase64String('TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAA  AA
<TRUNCATED>…AAAAAAAAAAAAA'));Start-Process $NR3MNTAYNI

 
 Hancitor PE

 Once the PE is launched, it will create a simple mutex called “e” and then begin to employ some anti-disassembly techniques that seek to
hinder static analysis. In general, most popular disassemblers default to flow-oriented disassembly as opposed to linear disassembly. This
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means that when the disassembler analyzes instructions, if the instruction would shift the execution of the program to another location, then
the disassembler may follow the instructions to that location to continue analysis. All bytes which would come after the branching may go
unanalyzed and won’t be disassembled. Abusing this functionality to confuse the disassembler is a very common technique.
Effectively, this sample builds an address location into a register and then uses that register as the operand for a CALL instruction to shift
execution to a section of code that the disassembler hasn’t analyzed. Since the disassembler doesn’t know what value will be in that register
upon analysis, assuming the code isn’t analyzed due to other reasons, then it just leaves it as ‘data’. In a debugger, this problem is fairly trivial
to deal with as you can just instruct the debugger to re-analyze the code from any point you choose.
After its initial jump into unanalyzed code, the malware begins to employ more anti-disassembly and anti-debugging techniques. Specifically, it
starts executing code where there will be one or two instructions immediately followed by a jump. Normally, you would be able to read
instructions linearly and get an understanding of the overall functionality, but with jumps interspersed between each instruction, the flow is
obscured and harder to analyze as you only ever see one or two pieces of the overall function on your screen. This requires you keep track of
what’s going on, step-by-step.
In this case, the first thing the code does is to load the address for VirtualProtect() into the EAX register and build the parameters on the stack
for a call to it. Again, using a call to the register further helps prevent static analysis. Once the call is made, it adjusts the privileges for all
memory space loaded by this PE to have read, write, and execute (RWE) bits set, shown below. This is also new to the Hancitor malware, but
is specifically used within the packer which we will discuss shortly.

1
2
3
4
5
6

Address Size Owner Section Contains Type Access Initial Mapped as
00400000 00001000 b489ca02 PE header Imag RWE CopyOnWr RWE
00401000 00008000 b489ca02 .text code Imag RWE CopyOnWr RWE
00409000 00002000 b489ca02 .rdata imports Imag RWE CopyOnWr RWE
0040B000 00001000 b489ca02 .data data Imag RWE CopyOnWr RWE
0040C000 00001000 b489ca02 .rsrc resources Imag RWE CopyOnWr RWE

Setting all of the permissions to RWE allows for execution in the program to be transferred to any of the mapped memory regions, whereas
typically it’s limited to the “code” section. There is also no reason they couldn’t have contained all of this within the “code” section, so it’s a
good indicator for detection when everything is converted to RWE. This is commonly done when there will be code hidden outside of the
originally defined area; however, in this sample, they never actually execute code outside of this memory region so it’s a shotgun approach to
adjusting privileges.
The next action it will take, still using the same instruction-jump obfuscation, begins to XOR 0xC80 bytes beginning at address 0x402185 with
the value 0xD1. One interesting oddity to their method here is that they move the value 0x5AF06AD1 to the EAX register, but only use the
lower byte, AL (0xD1), for the XOR and ignore the other three bytes. It wouldn’t be the first time the Hancitor malware has intended to use a
full value but introduced errors in their code that caused it to only partially work as intended. The decoding routine looks like the following.
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004040EA    3007            XOR BYTE PTR DS:[EDI],AL
004040EC    E9 8B000000     JMP b489ca02.0040417C
--
0040417C    41              INC ECX
0040417D    EB DD           JMP SHORT b489ca02.0040415C
--
0040415C    47              INC EDI
0040415D    EB D8           JMP SHORT b489ca02.00404137
--
00404137    39F1            CMP ECX,ESI
00404139    0F81 24FFFFFF   JNO b489ca02.00404063
--
00404063    0F82 81000000   JB b489ca02.004040EA

Once this loop finishes decoding new shellcode, it will transfer execution to address 0x402185 with a JMP instruction.
To illustrate looking at assembly that hasn’t been analyzed yet, from a debugger perspective, you would see these bytes as data within the
“code” section.
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00402185       55              DB 55                                          ;  CHAR 'U'
00402186       8B              DB 8B
00402187       EC              DB EC
00402188       81              DB 81
00402189       EC              DB EC
0040218A       04              DB 04
0040218B       02              DB 02
0040218C       00              DB 00
0040218D       00              DB 00
0040218E       53              DB 53                                         ;  CHAR 'S'
0040218F       56              DB 56                                         ;  CHAR 'V'
00402190       57              DB 57                                         ;  CHAR 'W'
00402191       60              DB 60                                         ;  CHAR '`'
00402192       FC              DB FC

Simply telling the debugger to reanalyze the code found will make it human readable.
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00402185    .  55              PUSH EBP
00402186    .  8BEC            MOV EBP,ESP
00402188    .  81EC 04020000   SUB ESP,204
0040218E    .  53              PUSH EBX
0040218F    .  56              PUSH ESI
00402190    .  57              PUSH EDI                                      ;  b489ca02.00402E05
00402191    .  60              PUSHAD
00402192    .  FC              CLD

Initial Shellcode
Once inside this new shellcode it begins to look up the address locations for a number of functions using GetProcAddress(). These functions
will be used throughout the unpacking routines. The function names are not obfuscated and, once decoded from the above, can be seen in
plain text.

    Some of the functions and DLL names looked up are listed below:
GetModuleHandleA
LoadLibraryA
VirtualAlloc
VirtualFree
OutputDebugStringA
ntdll.dll
_stricmp
memset
memcpy

Throughout the unpacking, VirtualAlloc(), memcpy(), and VirtualFree() are heavily used for moving data around and overwriting existing data.
 Once it has all of the addresses, the sample will allocate a 0x1000 byte memory page and copy all of the decoded shellcode into it. Next, it will

begin to egg hunt for two DWORD values, 0x88BAC570 and 0x48254000 respectively, in which it will find the address four bytes from the start
of the second egg. Egg hunting allows the code to be position independent and is a technique found in almost all Hancitor variants. After
identifying the address, it will be used in another “JMP EAX” instruction to transfer execution to a new function within the copied shellcode, at
offset 0x3E4, in the newly allocated memory range.

  Data Setup
 From a control flow perspective, the same code is being executed, albeit from a new location, which frees up the unpacking functions to

overwrite the code in the main body of the Hancitor PE.
 The first actions taken is to overwrite code in three locations by copying data toward the end of the “code” section to earlier areas, shown

below.

Source memcpy() Size Dest Addr Range

0x407C9E 0x514 0x4058D4-0x405DE8

0x4078B6 0x3E8 0x40400A-0x4043F2

0x406C36 0xC80 0x402185-0x402E05

 
 During this operation, there is another good example that illustrates some of the anti-analysis tricks in use.

1
2
3
4
5
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9
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001F0453    EB 10             JMP SHORT 001F0465
001F0455    82EF 3D           SUB BH,3D
001F0458    3C 5D             CMP AL,5D
001F045A    53                PUSH EBX
001F045B    C8 E8518D         ENTER 51E8,8D
001F045F    FB                STI
001F0460    D9D0              FNOP
001F0462    231B              AND EBX,DWORD PTR DS:[EBX]
001F0464    14 83             ADC AL,83
001F0466    C003 89           ROL BYTE PTR DS:[EBX],89
001F0469    8540 FF           TEST DWORD PTR DS:[EAX-1],EAX
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Beginning at the top of the code, you’ll notice the “JMP SHORT 001F0465” instruction which is not actually in the address listing on the left
side of this snippet. This is a common technique to obscure code flow because it was disassembled linearly at the instruction boundaries, but
the JMP instruction is redirecting execution outside of the boundary. Once this jump is actually taken and lands in the middle of the shown
instruction 0x1F0464, the code will be re-analyzed based on the instruction pointer location and change the meaning entirely.

1
2

001F0465    83C0 03           ADD EAX,3
001F0468    8985 40FFFFFF     MOV DWORD PTR SS:[EBP-C0],EAX

Unpacking More Shellcode
This next phase is where the unpacking actually occurs and the main purpose of this blog. Before I get into it, I’ll preface it with if you know
how RC4 works, you may want to skip ahead as the first two sections will cover the RC4 key-scheduling algorithm (KSA) and the RC4 pseudo-
random generation algorithm (PRGA), which are used as part of this unpacking algorithm.
In general, packers seek to modify data or code in such a way that it’s unlike the original content, effectively obfuscating it. Packers are not
inherently bad but it adds another layer of evasion to malware, so they tend to go hand-in-hand. Each packer typically attempts to put their own
spin on how to do this by coming up with unique algorithms; this makes it difficult to programmatically unpack malware at scale but also allows
for varying levels of protection. Code packing algorithms can be as simple as a one-byte XOR across the data to full-on encryption or
compression.
In the case of this malware, they’ve created an algorithm which initially uses RC4 KSA and incorporates the RC4 PRGA within a loop to
generate a table of offsets that dictate the order in which to piece back together more shellcode.

  RC4 KSA
To kick things off, this sample creates the substitution box (S-box) used in RC4 KSA. First, it will allocate an array of incrementing values
starting from 0x0 to 0x100 (0-256) entirely on the stack.
I’ve annotated the assembly below which covers building and modifying the S-box, which is heavily utilized throughout the rest of the
unpacking.
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# Counter Check
001F04CA     8B4D F8           MOV ECX,DWORD PTR SS:[EBP-8]                  ; Set ECX to counter value
001F04CD     83C1 01           ADD ECX,1                                     ; Increment counter by 0x1
001F04D0     894D F8           MOV DWORD PTR SS:[EBP-8],ECX                  ; Store counter on stack
001F04D3     817D F8 00010000  CMP DWORD PTR SS:[EBP-8],100                  ; Compare counter to 0x100
001F04DA     74 61             JE SHORT 001F053D                             ; End loop if counter is at 0x100
# Add previous loop value to value found at index in array 2 and the counter
001F04DC     8B45 F8           MOV EAX,DWORD PTR SS:[EBP-8]                  ; Set EAX to counter value
001F04DF     33D2              XOR EDX,EDX                                   ; Zero-out EDX register
001F04E1     F7B5 48FFFFFF     DIV DWORD PTR SS:[EBP-B8]                     ; Divide counter by 0x10 to retrieve index value for array
2
001F04E7     8B85 40FFFFFF     MOV EAX,DWORD PTR SS:[EBP-C0]                 ; Set EAX to value of array 2 offset
001F04ED     0FB60410          MOVZX EAX,BYTE PTR DS:[EAX+EDX]               ; Set EAX to value at array 2 offset + counter
001F04F1     0345 EC           ADD EAX,DWORD PTR SS:[EBP-14]                 ; Add previous result to EAX (0 on first run)
001F04F4     8B4D F8           MOV ECX,DWORD PTR SS:[EBP-8]                  ; Set ECX to counter value
001F04F7     0FB6940D FCFDFFFF MOVZX EDX,BYTE PTR SS:[EBP+ECX-204]           ; Set EDX to value of array 1 offset + counter
001F04FF     03C2              ADD EAX,EDX                                   ; Add the array 1 and array 2 values
001F0501     33D2              XOR EDX,EDX                                   ; Zero-out EDX register
001F0503     B9 00010000       MOV ECX,100                                   ; Set ECX 0x100
001F0508     F7F1              DIV ECX                                       ; Divide value in new value by 0x100
001F050A     8955 EC           MOV DWORD PTR SS:[EBP-14],EDX                 ; Copy remainder value to stack (now "old" value)
001F050D     8B55 F8           MOV EDX,DWORD PTR SS:[EBP-8]                   ; Set EDX to counter value
# Swap the array 1 dereferenced values
001F0510     8A8415 FCFDFFFF   MOV AL,BYTE PTR SS:[EBP+EDX-204]              ; Set AL to value of array 1 offset + counter
001F0517     8845 F7           MOV BYTE PTR SS:[EBP-9],AL                    ; Store original value on stack
001F051A     8B4D F8           MOV ECX,DWORD PTR SS:[EBP-8]                  ; Set ECX to counter value
001F051D     8B55 EC           MOV EDX,DWORD PTR SS:[EBP-14]                 ; Copy "old" value to EDX
001F0520     8A8415 FCFDFFFF   MOV AL,BYTE PTR SS:[EBP+EDX-204]              ; Set AL to value of array 1 offset + old value
001F0527     88840D FCFDFFFF   MOV BYTE PTR SS:[EBP+ECX-204],AL              ; Set first index in array 1 to new value
001F052E     8B4D EC           MOV ECX,DWORD PTR SS:[EBP-14]                 ; Set ECX to counter value
001F0531     8A55 F7           MOV DL,BYTE PTR SS:[EBP-9]                    ; Copy "old" value from stack
001F0534     88940D FCFDFFFF   MOV BYTE PTR SS:[EBP+ECX-204],DL              ; Set second index in array 1 to old value
001F053B   ^ EB 8D             JMP SHORT 001F04CA                            ; Next iteration

In this case, there are two arrays, the S-box built on the stack and another 16-byte “key” array found at 0x455 into the new shellcode. This key
array is used to modify values throughout the KSA. Effectively, it takes the counter and uses 0x10 to calculate its modulo, afterwards this is
used as an index into the key array. The dereferenced value found at the index is added to the “final” value from the previous iteration. In the
case of the first iteration, this “final” value will be zero. Once those two values are added together, it will add the counter value to the sum and
use 0x100 to calculate its modulo, becoming the new “final” value for the next iteration.
After completing that equation, it takes the “final” value as an index in the 256-byte S-box array and swaps the dereferenced value with the
dereferenced value found at the index in the first array using the counter. This is the RC4 KSA in a nut shell.
Here is an example of this on iteration 0x14 in the loop, after some of the data has been modified already. You can see that after 0xC6, at
offset 0x13, there are incrementing values: 0x14, 0x15, 0x16, 0x17, etc.
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    For value 0x14, it retrieves the modulus of 0x4 by using 0x10 for the calculation, which is then used to find the additive value in the key
array. The value at key[4] is 0x5D and this is added to the previous “final” value, 0xC6, which can be seen at offset 0x13.

1 0x5D + 0xC6 = 0x123

Next, it uses the counter as an index and dereferences the value to add into the equation. For the first couple of runs, the dereferenced value
equates to the counter, but eventually these begin to overwrite and the values change accordingly.

1 0x123 + 0x14 = 0x137 % 0x100 = 0x37

Now the values at sbox1[0x37] and sbox1[0x14] are swapped, as can be seen below.

 

    On the next iteration, with the key value being 0x53, it would look like this:

1 (0x53 + 0x37 + 0x15) % 0x100 = 0x9F

The values at sbox1[0x9F] and sbox1[0x15] would be swapped.
 You’ll see that at offset 0x1A in the example output above, the value is 0xC. On iteration 0x1A then, 0xC will be the value added to the key and

the previous “final” value. This happens for 256 iterations and every value gets shifted around from its original starting point. Talos has a nice
blog from 2014 that talks about S-box creation in malware and the RC4 entry on Wikipedia has a succinct overview as well.

 I’ve recreated the logic shown previously Python as it may be easier to illustrate it with code.

1
2
3
4
5
6
7
8
9
10
11
12

def sbox1init():
    return [x for x in range(0, 0x100)]
def rc4ksa(sbox1, key):
    oldValue = 0x0
    for counter in range(0, len(sbox1)):
        addValue = key[counter % len(key)]
        fnlValue = (oldValue + addValue + sbox1[counter]) % 0x100
        sbox1[fnlValue], sbox1[counter] = sbox1[counter], sbox1[fnlValue]
        oldValue = fnlValue
    return sbox1
key = [0x82, 0xEF, 0x3D, 0x3C, 0x5D, 0x53, 0xC8, 0xE8, 0x51, 0x8D, 0xFB, 0xD9, 0xD0, 0x23, 0x1B, 0x14]
sbox1 = rc4ksa(sbox1init(), key)

In the Python codes first iteration, where the value in sbox1[0x0] is 0x00 and key[0x0] is 0x82, you would add 0x0 to 0x82 to 0x0 (the value at
sbox1[counter]) and divide by 0x100. The remainder, 0x82, would then be placed in sbox1[0x0] and the value which was at sbox1[0x0] would
be swapped into sbox1[0x82]. There are a lot of cleaner examples of code available online for the RC4 KSA but for the sake of learning, along
with making sure that if there were any errors introduced by the malware authors, I created everything based on their logic used.

 

RC4 PRGA
 The RC4 PRGA is used within the main unpacking loop specifically to generate a keystream value but how that value is used is where the

malware author begins to diverge from RC4.
 I’ll briefly cover PRGA and then move onto the parent unpacking loop, which will make reference back to this algorithm.

 Using a loop counter as an index into the original S-box, PRGA will dereference the value at sbox1[counter] and add it to the previous
keystream value to create the second index. These values will then get swapped around in the S-box, similar to how the KSA does it. Finally, it
will retrieve the value at sbox1[counter] and sbox1[secondIndex], add them together, and then use them in a modulo calculation with 0x100 to
generate the new keystream value.

 For example, the first byte referenced (counter starting at 0x1 in this case) is sbox1[0x1], which is 0x7 after completing the KSA. The value at
sbox1[0x7] is 0xA6 and they swap values so that sbox1[0x1] is 0xA6 and the value at sbox1[0x7] is 0x7. It then adds 0xA6 to 0x7 to make

http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/RC4
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0xAD and takes the dereferenced value at sbox1[0xAD], in this case 0x58, as the keystream value.
Now, at this point, in regular RC4, the new keystream value would be used in an XOR operation to decode or encode a byte of ciphertext or
plaintext. As you can guess, that is not the case with this malware.

  Offset Table
Taking a step back, once the S-box generation is complete, the next step is to allocate two more regions of memory. It fills the first region,
again, with incrementing values until it hits 0x5C36 but this time each value is a DWORD instead of a singular byte. This region will show itself
to be yet another S-box in function.
Next, it launches into the main unpacking loop, which is the meat of the operation. On each iteration of this loop, it will use an inner-loop (the
previously detailed RC4 PRGA) to retrieve a keystream byte – performed four times each parent loop iteration.
After obtaining the four bytes of keystream values, it will combine them into a DWORD and use it in a modulo calculation with the loop counter
from the parent loop, decrementing by one each iteration from the length of the data (0x5C36).
For example, the first four bytes of keystream values are 0x58, 0x58, 0xF2, and 0xEA, which is combined to form 0xEAF25858.

1 0xEAF25858 % 0x5C36 = 0x5200

It takes the result of this operation and uses it as an index into the second S-Box of DWORD’s. Next, it takes the dereferenced value found at
the index and stores it in the third memory region, incrementing by an offset of 4 each time. Finally, it swaps the dereferenced values in the
second memory region with the value found at the index into the second S-box.
In this case, the first DWORD in the third memory region will be 0x5200. It swaps the dereferenced values in the second memory region with
the counter value so the value at the offset for 0x5200 will become 0x5C35 (decremented by 4 bytes) and the value found at the offset for
0x5C35 will be 0x5200.
This process continues until the parent loop finishes and, once complete, it will allocate another memory region wherein it copies 0x5C36 bytes
from address 0x401000 in the main program.
Alright, if you’ve stuck with me this long, what I want to convey is that all of the above is to create an elaborate table of DWORD offsets, used
as indexes, that define how the data will be unshuffled, which is finally what happens next.
For each byte in the new memory region, which is the data just copied from address range 0x401000-0x406C36, it will add the corresponding
DWORD value for the respective iteration to the base of 0x401000 and copy that byte over. As a reminder, the data being copied at this point
is the same data initially moved into position by the first three memcpy() calls.
The first DWORD in the third memory region is 0x5200, as discussed previously, and the first byte at 0x401000 is 0x8B, thus at 0x406200
(0x401000 + 0x5200) the value 0x8B will be placed. At no point are any of the bytes manipulated, as would be standard in an RC4
implementation, but instead are just rearranged into their respective order.
To help illustrate with code, below is the full implementation of the algorithm in Python. To save space, I’ve removed the data but this is
available in full on GitHub if you want to review further.

https://github.com/pan-unit42/public_tools/blob/master/hancitor/hancitor_offsetgen.py
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def sbox1init():
    return [x for x in range(0, 0x100)]
def sbox2init():
    return [x for x in range(0, 0x5C36)]
def rc4ksa(sbox1, key):
    oldValue = 0x0
    for counter in range(0, len(sbox1)):
        addValue = key[counter % len(key)]
        fnlValue = (oldValue + addValue + sbox1[counter]) % 0x100
        sbox1[fnlValue], sbox1[counter] = sbox1[counter], sbox1[fnlValue]
        oldValue = fnlValue
    return sbox1
def offsetGen(sbox1, sbox2):
    offsetTable = []
    innerCount = 1
    oldValue = 0x0
    for counter in range(len(sbox2), 0, -1):
        fnlValue = ""
        for x in range(0, 4):
            innerIdx = innerCount % len(sbox1)
            oldValue = (sbox1[innerIdx] + oldValue) % 0x100
            addValue = (sbox1[oldValue] + sbox1[innerIdx]) % 0x100
            sbox1[innerIdx], sbox1[oldValue] = sbox1[oldValue], sbox1[innerIdx]
            fnlValue = "%02X" % sbox1[addValue] + fnlValue
            innerCount += 1
        fnlValue = int(fnlValue, 16) % counter
        offsetTable.append(sbox2[fnlValue])
        sbox2[fnlValue], sbox2[counter-1] = sbox2[counter-1], sbox2[fnlValue]
    return offsetTable
def unshuffle(data, offsetTable):
    unshuffle = [0x0] * len(offsetTable)
    data = [data[x:x+2] for x in range(0, len(data), 2)]
    for counter, entry in enumerate(offsetTable):
        unshuffle[entry] = chr(int(data[counter], 16))
    return "".join(unshuffle)
key = [0x82, 0xEF, 0x3D, 0x3C, 0x5D, 0x53, 0xC8, 0xE8, 0x51, 0x8D, 0xFB, 0xD9, 0xD0, 0x23, 0x1B, 0x14]
data = ""
offsetTable = offsetGen(rc4ksa(sbox1init(), key), sbox2init())
data = unshuffle(data, offsetTable)

Thus, concludes the unpacking algorithm. You’ll see familiar strings for the actual Hancitor malware once it finishes.

 

    Hancitor
 Before execution shifts back to the main program, they use more anti-debugging tricks by calling the OutputDebugStringA() function to check

whether or not the program is being debugged. Once that check is passed, it will begin executing the code found at 0x404000.
 I won’t spend too much time on the functionality of Hancitor as it has been blogged about endlessly but this is what this particular sample will

do.
Get OS version
Get adapter address
Get Windows directory
Get volume information
Check external IP with api[.]ipify[.]org

Once it has the information it needs, depending on whether you’re running on x86 or x64 architecture, it formats the following string used in the
initial POST to the Hancitor gate.

 

    After filling it out it will look similar to the below.
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Gates

 Going back to the entire reason I even delved into this was that I’ve maintained a Hancitor decoder for the past two years and, with each new
variant, I try to find a way to decode out the Hancitor gates so they can quickly be identified and blocked. This variant, even after all of the
above unpacking, still left me in the dark as to where the gates were.

 To figure that out, we have to look a bit further into the code. At the address 0x402B51 in the unpacked shellcode we’ll find a series of
Windows decryption calls that take a blob of encrypted data, decrypt it, and reveal the Hancitor gate URL’s and campaign code.

CryptAcquireContextA
CryptCreasteHash
CryptHashData
CryptDeriveKey
CryptDecrypt
CryptDestroyHash
CryptDestroyKey

The algorithm in use here is SHA1 hashing with actual RC4 encryption. It uses an 8-byte value (0xAAE8678C261EC5DB) to derive the SHA1
key and then decrypts 0x2000 bytes.

 

   

The first entry is the campaign code which correlates to the date the campaign was ran on, in this case January 24 , subsequently followed by
the three Hancitor gates.

 

Conclusion
 While Hancitor continues to evolve, they stick to a fairly strict playbook. This sample diverged from that playbook quite heavily but only saw

usage in one campaign before they reverted back to other, older, variants. This may be due to the way it’s packed being detected more
frequently or some other unknown reason that caused a drop in their infection rates that prompted removing it. Either way, it’s important to
continue tracking their operation and documenting new techniques and tactics used by this adversary.

 Palo Alto Networks customers are protected from Hancitor by WildFire and Traps. This threat can be tracked within AutoFocus by using the
Hancitor tag.

  IOCs
 Hancitor Gates

hxxp://naveundpa[.]com/ls5/forum[.]php
hxxp://undronride[.]ru/ls5/forum[.]php
hxxp://dingparjushis[.]ru/ls5/forum[.]php

User-Agent

Mozilla/5.0 (Windows NT 6.1; Win64; x64; Trident/7.0; rv:11.0) like Gecko

Get updates from 
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.
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https://github.com/pan-unit42/public_tools/blob/master/hancitor/h_decrypt.py
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Hancitor
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

