
1/7

Analyzing the nasty .NET protection of the Ploutus.D
malware.

antonioparata.blogspot.co.uk/2018/02/analyzing-nasty-net-protection-of.html

Twitter: @s4tan

EDIT: The source code is now online:
https://github.com/enkomio/Conferences/tree/master/HackInBo2018

Recently the ATM malware Ploutus.D reappeared in the news as being used to attack US
ATM ([1]). In this post I'll show a possible analysis approach aimed at understanding its main
protection. The protection is composed of different layers of protection, I'll focus on the one
that, in my hopinion, is the most annoying, leaving the others out. If you want a clear picture
of all the implied protections, I strongly recommend you to take a look at the de4dot Reactor
deobfuscator code.

Introduction

Reversing .NET malware, in most cases, is not that difficult. This is mostly due to the
awesome tool dnSpy ([2]), which allows debugging of the decompiled version of the
Assembly. Most of the .NET malware use some kind of loader which decrypts a blob of data
and then loads the result through a call to the Assembly.Load method ([3]).

From time to time some more advanced protection are involved, like the one analysed by
Talos in [4]. What the article doesn't say is that in this specific case the malware uses a multi
files assembly ([5]).

This implies that instead of using the Assembly.Load method, it uses the way less known
Assembly.LoadModule method ([6]). This protection method is a bit more difficult to
implement but I have to say that is way more effective as obfuscation. The malware also

http://antonioparata.blogspot.co.uk/2018/02/analyzing-nasty-net-protection-of.html
https://twitter.com/s4tan
https://github.com/enkomio/Conferences/tree/master/HackInBo2018


2/7

encrypt the method bodies and decrypt them only when necessary. This protection is easily
overcome by calling the "Reload All Method Bodies" command in dnSpy at the right moment
(as also showed in the Talos article).

Ploutus.D is also protected with an obfuscator which encrypts the method bodies and
decrypts them only when necessary. The protector used is .NET Reactor ([7]) as also pointed
out in a presentation by Karspersky ([8]). This particular protection is called NecroBit
Protection, and from the product website we can read that:

NecroBit is a powerful protection technology which stops decompilation. NecroBit
replaces the CIL code within methods with encrypted code. This way it is not possible
to decompile/reverse engineer your method source code.

The difference with the previous case is that if we try to use the "Reload All Method Bodies"
feature in dnSpy, it will fail (this is not technically correct since there is nothing to reload as
we will see).

Reversing Ploutus.D obfuscation

To write this blog post I have reversed the sample with MD5
ae3adcc482edc3e0579e152038c3844e. When I start to analyse a .NET malware, as first
task I ran my tool Shed ([9]) in order to have a broad overview of what the malware does and
to try to extract dynamically loaded Assemblies. In this case I was able to extract some
useful strings (like the configured backend usbtest[.]ddns[.]net) but not the Assembly with the
method bodies decrypted (however this is not an error and as we will see it is the correct
behaviour).

The next step is to debug the program with dnSpy. If you run it the following Form will be
displayed:

 

https://github.com/enkomio/shed
https://4.bp.blogspot.com/-a4BqzXRlP5Q/WpG6rvI8Y5I/AAAAAAAAB9I/IprPcUrFewALs7WJZnTIe75Jjnpj0BWZQCLcBGAs/s1600/Start%2BForm.png


3/7

 
I started to dig a bit on the classes that extend the Form class in order to identify which
commands are supported. Unfortunately most of the methods of these classes are empty, as
can be seen from the following screenshot:

 
It is interesting to note that all the static constructors are not empty. All of them are pretty
simple (in some cases they have just one instruction), what it is interesting is that all of them
call the same method: P9ZBIKXMsRMxLdTfcG.Nf9E3QXmJD();, which is marked as
internal unsafe static void Nf9E3QXmJD().

By analysing it, the thing start to get interesting since this method is pretty huge, especially
since it implements a very annoying control flow obfuscation. It is interesting to notice that if
we set a breakpoint on this method and re-start the debugging session, it is amongst the first
methods invoked by the program. Scrolling through the code we can find the following
interesting statement:

if 
(P9ZBIKXMsRMxLdTfcG.Ax6OYTY7tiMf4Yu1B4(P9ZBIKXMsRMxLdTfcG.XnSi7dQe0TUTJbDcxg(P9ZBIKXMs
"clrjit.dll"))

This piece of code is particularly interesting, since it tries to identify the clrjit.dll module. Once
found, it identifies the CLR version, which in my case is 4.0.30319.0. Then, it extracts the
resource m7fEJg2w6sBe9LM3D3.i4tjc9Xt0Vhu5G72Uh.

After a while the getJit string appears in the execution. This function is exported by clrjit.dll
and it is a very important method since it allows to get a pointer to the compileMethod
method. To know more about it you could refer to my Phrack article about .NET program
instrumentation ([10]). We can also identify a call to the VirtualProtect method.

https://3.bp.blogspot.com/-TCkiAqjJj2w/WpUp4i182sI/AAAAAAAAB-U/5IEuNTaVbPEJnMBVEWrF4DC2Hol2eUD1wCLcBGAs/s1600/Empty%2Bmethod%2Bwith%2Bmeaninful%2Bname.png


4/7

With these information we can start to make some assumption, like that the malware hook
the compileMethod method in order to force the compilation of the real MSIL bytecode. Let's
verify our assumption, in order to do so we need to change tool, in particular we will use
WinDbg with the SOS extension (if you want to know more about debugging .NET
applications with WinDbg take a look at my presentaion [11]).

In order to inspect the program at the right moment, we will set an exception when the
clrjit.dll library is loaded. This is easily done with the command:

sxe ld clrjit.dll 

once that this exception is raised let's inspect the clrjit module as showed in the following
image:

The getJit method is an exported by clrjit dll and returns the address of the VTable of an
ICorJitCompiler object, where the first item is a pointer to the compileMethod method, as can
be seen from the source code ([12]). But, since we don't trust the source code, let's debug
the getJit method till the ret instruction and inspect the return value stored in eax:

 
as can be seen from the image above, the address of the compileMethod is at 0x70f049b0.
Now let's the program run until the main windows is displayed and then break the process in
the debugger. Let's display again the content of the VTable (which was 0x70f71420).

 
As can be seen from the image above the value of the first entry of the VTable changed to

https://4.bp.blogspot.com/-1wxdy3l3hfY/WpO5x1wAiWI/AAAAAAAAB-E/5FD6q808JMI5WaHz9aXTlWSKHJXWYAYEgCLcBGAs/s1600/getJit.png
https://4.bp.blogspot.com/-61Z2F96Btcs/WpG7BMxWfXI/AAAAAAAAB9Q/SHUwtYgfunYPIDPREoG5ZvjI7JfhfO7mwCLcBGAs/s1600/compileMethodAddress.png
https://2.bp.blogspot.com/-M_FATRyRHgo/WpG7G9PoPQI/AAAAAAAAB9U/Wg2fLeeuKiEnkwlKVU6_j3lJXnBVU1NvgCLcBGAs/s1600/compileMethodAddressHook.png


5/7

from 0x70f049b0 to 002a0000. So our assumption about the hooking of the compileMethod
was right :)

Now we want to identify which method hooked the compileMethod method. To do this we will
load the SOS extension (with the command .loadby SOS clrjit), set a breakpoint at the
compileMethod method and when the brakpoint hits, type !CLRStack command to see which
method was set as replacement. In order to trigger the compileMethod breakpoint I clicked
on a random button in the interface.

 
from the image above we can spot that the interested method is qtlEIBBYuV. Find below the
decompiled code of the metohd (I have renamed the argument names and added some
comments):

What is interesting from the code above is that:

it reads the address of the COREINFO_METHOD_INFO structure at (1)
writes back the real MSIL bytecode at (2)
updates the fields ILCode and ILCodeSize at (3) and (4)
finally call the original compileMethod at (5)

In this way, it is sure that the correct MSIL code is compiled and executed (for more info on
this structure please refer to [10,12]).

Finally, we have a pretty good understanding of how the real code is protected, now we can
try to implement a simple program which dumps the real MSIL bytecode and rebuilds the
assembly. The de4dot tool, instead, uses a different approach, which is based on emulating
the decryption code of the method body and then rebuild the assembly.

Let's the code speak

A possible approach to dump the real MSIL bytecode is:
Hook the compileMethod before the malware
Force all static constructors to be invoked and force compilation of all methods via
RuntimeHelpers.PrepareMethod. This will ensure that we are able to grab all the
ILCode of the various methods.

https://1.bp.blogspot.com/-NCTMfGrWO6I/WpG7Ny54LJI/AAAAAAAAB9Y/yy4EP1J2p_kyEJq_ZpMwAWPPNSL_uc8WgCLcBGAs/s1600/CLRStack.png


6/7

When the hook is invoked store the values of the fields ILCode and ILCodeSize. We
have to record also which method is currently compiled, this is done with the code
getMethodInfoFromModule from [10].
Rebuild the assembly by using Mono.Cecil or dnlib (my choice)

However, for this specific case, I'll use a slightly different approach, which is not as generic
as the previous one but it is simpler and more interesting imho :)

As we have seen from the code above, the P9ZBIKXMsRMxLdTfcG.k6dbsY0qhy is a
dictionary of objects which contains the real MSIL bytecode as value and as key the address
of the MSIL buffer. What we can do is to read the value of this object via reflection and
rebuild the original binary. All this without implying the hooking of any methods :)

I have implemented a simple program that extracts those values via reflection, calculates the
address of each method and rebuild the assembly. If you want to take a look it, here is the
code.

After dumped the real MSIL, we can see that now the methods are not empty anymore:

 

Conclusion

The purpose of this post was to show how to analyse, in an effective way, a strongly
obfuscate malware with the help of different tools and the knowledge of the internal working
of the .NET framework.

As an alternative, if you want to obtain a de-obfuscated sample I encourage you to use the
de4dot tool (and to read the code since this project is a gold mine of information related to
the .NET internals).

At the time of this writing the sample is not correctly deobfuscated by de4dot due to an error
in the string decryption step. To obtain a deobfuscated sample with the real method body,
just comment out the string decryption step in ObfuscatedFile.cs.

Too often developers underestimate the power of reflection and as a result it is not
uncommon to bypass protection (included license verification code) only by using reflection
and nothing more :)

References

https://2.bp.blogspot.com/-flCTLe9VEnU/WpG8L4QTMlI/AAAAAAAAB94/hry5ysoQsBY2fhdktDMsLHzzFodZyaYDQCPcBGAYYCw/s1600/BeforeAndAfter.png


7/7

[1] First ‘Jackpotting’ Attacks Hit U.S. ATMs - https://goo.gl/6WY14V
[2] dnSpy - https://github.com/0xd4d/dnSpy
[3] Assembly.Load Method (Byte[]) - https://goo.gl/owZtC1
[4] Recam Redux - DeConfusing ConfuserEx - https://goo.gl/oKgj1k
[5] How to: Build a Multifile Assembly - https://goo.gl/mVdHuU
[6] Assembly.LoadModule Method (String, Byte[]) - https://goo.gl/D6N797
[7] .NET REACTOR - http://www.eziriz.com/dotnet_reactor.htm
[8] Threat hunting .NET malware with YARA.pdf - https://goo.gl/RxEw1G
[9] Shed, .NET runtime inspector - https://github.com/enkomio/shed
[10] http://www.phrack.org/papers/dotnet_instrumentation.html
[11] .NET for hackers - https://www.slideshare.net/s4tan/net-for-hackers
[12] getJit() - https://github.com/dotnet/coreclr/blob/master/src/inc/corjit.h#L241


