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[Note: if you've been linked here without context, the introduction to Part #3 describing its
four phases can be found here.]

1. Introduction

In part one of this series, we analyzed the obfuscation on the x86 implementation of the
FinSpy VM, and wrote a tool to deobfuscate it to allow easier analysis. In the second part of
this series, we analyzed the VM instruction set, wrote a disassembler that works for the
running example, and obtained the VM bytecode listing. Now we are left with
devirtualization: we want to regenerate a facsimile of the original x86 program prior to
virtualization.

This task winds up being fairly lengthy, so we have divided the approach into four phases,
which corresponds to the work I did in devirtualizing FinSpy in the same order in which I did
it. (That being said, don't mistake "lengthy" for "difficult".) We begin Phase #1 by inspecting
the FinSpy VM bytecode program, discovering obfuscation involving the "Group #2"
instructions, and removing it via pattern-substitution.

2. Devirtualizing FinSpy: Initial Observations and Strategy

At this point in the process, I had my first listing of the VM bytecode program in
disassembled form. I began by inspecting the VM bytecode program and identifying ways to
simplify the bytecode. This ultimately resulted in the wholesale elimination of the Group #2
instructions.

You may wish to inspect the initial VM bytecode disassembly, which we shall progressively
refine throughout this Phase #1. Along the way, after discovering and applying
simplifications, we will gradually obtain new VM bytecode disassembly listings, which will be
linked throughout.

2.1 Recap of FinSpy VM Instruction Set and Bytecode Programs

To summarize part two, the FinSpy VM uses a fixed-length instruction encoding, with each
VM instruction represented by a structure that is 0x18 bytes in length. 
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Each instruction within a FinSpy VM program has two uniquely identifying characteristics
associated with it. For one, we can refer to the raw position of the VM instruction within the
array of VM bytecode instructions. So for example, the first instruction is located at position
0x0. Since each instruction is 0x18 bytes in length, the second instruction is located at
position 0x18, and generally instruction #N is located at position 0x18*N within the bytecode
array.

The second identifying characteristic for an instruction is its "key", a 32-bit value (the first
DWORD in an encoded FinSpy VM instruction) that can be used to locate a particular VM
instruction. Specifically, before entering the VM, the x86 code that executes before
transferring control to the FinSpy VM interpreter first pushes a key DWORD onto the stack.
Upon entering the VM, the FinSpy VM initalization code loads the key DWORD pushed by
the x86 portion, searches through the VM bytecode array to locate the VM instruction with
that key, and then begins interpreting VM instructions starting from that location. (It turns out
that FinSpy VM instruction keys cause some complications in devirtualization, as we shall
see later.)

Most FinSpy VM instructions are assumed to execute sequentially. That is, after one VM
instruction completes, the x86 code for the instruction handler adds 0x18 to the current VM
EIP, to advance it to the next VM instruction. VM control flow instructions may behave
differently, e.g., the conditional branch instructions are relatively-addressed like their x86
counterparts (if the branch is taken, the VM instruction adds a displacement, a multiple of
0x18, to VM EIP; if the branch is not taken, execution continues at the VM instruction 0x18
bytes subsequent to the current instruction). The FinSpy VM also has an instruction for
direct calls, and another one for indirect calls. These call instructions behave like you'd
expect; they push a return address onto the stack to re-enter the VM after the called
function returns.

The FinSpy VM's instruction set consists of three instruction groups:

Group #1: Conditional and unconditional jumps, (namely, JMP and all 16 of x86's
conditional branches such as JZ, JNS, and JP).
Group #2: VM instructions that access the FinSpy VM's single dedicated register.
Group #3: VM instructions that contain raw x86 instructions inside of them.

2.2 Preliminary Thoughts on Devirtualization

After analyzing the VM's instruction set and perusing the VM bytecode program, it seemed
like the group #3 VM instructions -- those with embedded x86 machine code blobs -- would
be easy to convert back into x86. There are three VM instructions in this group: "Raw X86",
"Call Direct", and "Call Indirect". (In practice, the latter two VM instructions wound up
presenting more complications than anticipated, with direct calls being the most difficult
aspect of the VM to devirtualize.)
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Group #1, the conditional and unconditional branch instructions, seemed similarly easy to
translate back to x86, since their implementations are virtually identical to how x86
conditional branches operate internally. Since conditional branches use relative
displacements to determine the address of the "taken" branch, the only challenge is to
determine the relative locations of each devirtualized instruction. Thus, once we know
exactly how far the branch instruction is from its destination, we can simply compute the
displacement. (Indeed, in practice, this was easy.)

Group #2, the set of VM instructions that access the FinSpy VM's single dedicated register,
was the wild-card. Although from analyzing the FinSpy VM harness I knew the raw
functionality of these instructions, I did not know before analyzing the VM program how
these instructions would be used, and nor how to devirtualize them. For ease of reference,
those instructions are summarized below from their more detailed expositions in part two:

mov scratch, 0                      [Operand: none] 
mov scratch, imm32                  [Operand: imm32] 
shl scratch, imm32                  [Operand: imm32] 
add scratch, imm32                  [Operand: imm32] 
mov scratch, savedReg32             [Operand: index of savedReg32] 
add scratch, savedReg32             [Operand: index of savedReg32] 
mov savedReg32, scratch             [Operand: index of savedReg32] 
mov dword ptr [scratch], savedReg32 [Operand: index of savedReg32] 
mov scratch, dword ptr [scratch]    [Operand: none] 
mov dword ptr [scratch], imm32      [Operand: imm32] 
mov dword ptr [imm32], scratch      [Operand: imm32] 
push scratch                        [Operand: none]

Given that the other two groups seem straightforward, and the heretofore-unknown nature
of Group #2, this seems like a good first task to devirtualize our FinSpy VM program:
analyze the usage patterns of group #2 instructions, and formulate a strategy for converting
them back to x86 machine code. (This turned out to be very easy and intuitive in practice,
with no real complications to speak of.)

3. Step #1: Tweak the Output to Print the x86 Disassembly

Upon perusing the output of my FinSpy VM disassembler, my first observation was that my
task would benefit from knowing the textual disassembly for the "Raw x86" instructions,
which were being rendered as raw machine code bytes. For example, the first few
instructions in the VM bytecode disassembly were:

http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
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0x000000: MOV SCRATCH, 0 
0x000018: ADD SCRATCH, EBP 
0x000030: ADD SCRATCH, 0x000008 
0x000048: MOV SCRATCH, DWORD PTR [SCRATCH] 
0x000060: MOV EAX, SCRATCH 
0x000078: X86 [199, 0, 215, 1, 0, 0] ; <- x86 machine code 
0x000090: X86 [184, 0, 240, 65, 0]   ; <- would prefer x86 assembly 
0x0000a8: X86 [201] 
0x0000c0: X86 [194, 4, 0]

My proximate goal was to figure out how the Group #2 instructions (those involving the
SCRATCH register, the first five in the listing above) were used within the VM program. For
context, it would be nice to see what the X86 instructions on the four subsequent lines were
doing. I.e., it would be convenient to have a textual representation for the x86 machine
code, instead of the above display as lists of bytes. 

For this task, I was fortunate to have already written an x86 disassembler and assembler
library in Python. (I have previously released this code to the public as part of the course
sample for my SMT-Based Program Analysis training class.) For the two group #3 VM
instructions with embedded x86 machine code -- "Raw X86" and "Call Indirect" -- I modified
my FinSpy VM disassembler to invoke the x86 disassembler functionality when printing
them. This was trivial to accomplish in the __str__() method for these Python classes, for
example:

       d = X86Decoder(self.Remainder[0:self.DataLen]) 
       i2container = d.Decode(0)

After doing this, the VM bytecode disassembly listing was easier to follow. An example is
shown below; the full disassembly listing can be found here.

0x000000: MOV SCRATCH, 0 
0x000018: ADD SCRATCH, EBP 
0x000030: ADD SCRATCH, 0x000008 
0x000048: MOV SCRATCH, DWORD PTR [SCRATCH] 
0x000060: MOV EAX, SCRATCH 
0x000078: X86 mov dword ptr [eax], 1D7h ; <- new: x86 assembly, not machine code
0x000090: X86 mov eax, 41F000h 
0x0000a8: X86 leave 
0x0000c0: X86 ret 4h

After some quick perusal, the x86 assembly language mostly looks like ordinary C code
compiled with MSVC, though some functions use instructions like PUSHA and POPA that
are not ordinarily generated by normal compilers, and hence were probably written in
assembly language prior to virtualization.

4. Step #2: Pattern-Based Simplification for Scratch Register Access

http://www.msreverseengineering.com/blog/2015/7/30/smt-based-binary-program-analysis-course-sample-x86-assemblydisassembly
http://www.msreverseengineering.com/training-classes/
https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-WithX86Disasm.txt
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Having a clearer FinSpy VM bytecode disassembly listing, I returned to trying to figure out
what the Group #2 "dedicated register" instructions were accomplishing. It's easy enough to
locate these instructions; all of them use the scratch register, which is denoted "SCRATCH"
in the VM bytecode disassembly, so you can simply search for "SCRATCH" to see where
these instructions are used. (Or just look at the disassembly listing -- group #2 instructions
comprise a significant fraction of the VM instructions for our sample.)

Here I went a bit too fast and would have benefited from being a bit more deliberate.
Inspecting the beginning of the VM bytecode program, I noticed a few different patterns
involving loading x86 register values into the scratch register. For example, repeating the
first two lines from the example in the last section, we see:

0x000000: MOV SCRATCH, 0 
0x000018: ADD SCRATCH, EBP

This code first sets the scratch register to zero, and then adds the value of EBP. Effectively,
this two-instruction sequence sets the scratch register to EBP. However, elsewhere there
were different patterns of VM instructions used to accomplish the same goal. Here was the
second pattern:

0x03c270: MOV SCRATCH, 0 
0x03c288: MOV SCRATCH, EDX

And still elsewhere in the FinSpy VM bytecode disassembly, we see more natural one-
instruction sequences to load register values into the stack register, for example:

0x001b48: MOV SCRATCH, ECX

Faced with these observations, I mistakenly identified this as a form of obfuscation: it
seemed as though there were several ways to load the value of an x86 register into the
scratch register, and that FinSpy was choosing between them arbitrarily in order to
introduce some randomness into the VM bytecode program. Such randomness could make
pattern-recognition more laborious. It might end up that I would need to write multiple
patterns to match these sequences, thereby multiplying the number of patterns I needed to
write involving x86 register loads by the number of patterns that the FinSpy VM employed
for loading an x86 register into the SCRATCH register.

I figured that I could save work for myself down the road if I coalesced the two-instruction
sequences down into a canonical representation of loading a register into the stack, namely,
one instruction sequences as in the third example. (I later realized that this isn't really a
form of obfuscation -- the FinSpy VM developers were just being lazy.)

To be specific, I wanted to write a search-and-replace rule that would take VM instruction
sequences of the form:

MOV SCRATCH, 0      | MOV SCRATCH, 0       
ADD SCRATCH, REG32  | MOV SCRATCH, REG32
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And replace them with one-instruction sequences of the form:

MOV SCRATCH, REG32

It was easy enough to accomplish the pattern recognition and replacement using Python's
type introspection functionality. Since my Python FinSpy VM disassembler from part
two used Python class types for these individual VM bytecode instruction types, I could
simply invoke the "isinstance" function to find instances of these patterns in the VM
bytecode disassembly listing. The code for this can be found in the function
"FirstSimplify" (search the code for that name to find the exact point of definition).

For instance, here is the code to identify the "MOV SCRATCH, 0" VM instruction. It
encompasses two different possibilities: the dedicated VM instruction that moves 0 into
SCRATCH, and the VM instruction that moves an arbitrary DWORD value into SCRATCH,
when the DWORD is zero.

def IsMovScratch0(insn): 
   if isinstance(insn,MovScratch0): 
       return True 
   if isinstance(insn,MovScratchImm32): 
       return insn.Imm32 == 0 
   return False 

The complete code for recognition and replacement is shown in the following sequence.
Please take the time to examine it, as all of the pattern-matching and replacement in the
rest of this section have similar implementations, and won't be discussed in much detail for
the sake of brevity.

http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
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# If the first VM instruction is "MOV SCRATCH, 0"... 
if IsMovScratch0(i1): 

   # Check to see if the second instruction is "MOV SCRATCH, REG32". If  
   # this function returns None, it wasn't. If it returns something other 
   # than None, then it returns the register number. 
   mr = IsMovScratchReg(i2) 
                
   # Otherwise, check to see if the instruction was "ADD SCRACH, REG32", 
   # and get the register number if it was (or None if it wasn't). 
   if mr is None: 
       mr = IsAddScratchReg(i2) 
                
   # Did one of the two patterns match? 
   if mr is not None: 
                    
       # Yes: make a new VM instruction, namely "MOV SCRATCH, REG32" to  
       # replace the two instruction sequence we just matched. Use the same 
       # file offset position from the first instruction in the sequence. 
       newInsn = MovScratchDisp8([0]*INSN_DESC_SIZE, i1.Pos) 
                    
       # Save the register number into the new instruction. 
       newInsn.Disp8 = mr 
                    
       # Use the same VM instruction key as for the first instruction. 
       newInsn.Key = i1.Key 
                    
       # Add the new VM instruction to the output list. 
       newInsnArr.append(newInsn)

If one of the two patterns match, the code above generates a new VM instruction to replace
the existing two. Since each VM instruction is uniquely associated with a position and key,
we decided to copy those attributes from the first VM instruction within the matched pattern,
and to delete the second VM instruction outright. (I worried that I might encounter situations
where other VM instructions would reference the second and now-deleted VM instruction by
its key or EIP, and in fact I had to account for this in Part #3, Phase #4.)

The new VM bytecode disassembly listing can be found here.

    (Note that I originally wrote these pattern replacements in OCaml, since ML-family
languages are intentionally designed with robust facilities for these sorts of tasks. My first
implementation had the Python program print out an OCaml representation of the FinSpy
VM program, which an OCaml program then simplified via pattern-substitutions. However,
given that only a few such pattern-replacements were necessary to deobfuscate FinSpy VM
bytecode programs, I decided that the cognitive and programmatic overhead of serializing
between the OCaml and Python programs was unnecessarily complicated, and so I re-
wrote the pattern replacement code in pure Python, despite the tedium.)

4.1 The "MOV SCRATCH, REG32" / "PUSH SCRATCH" Pattern

http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-4-second-attempt-at-devirtualization
https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-FirstSimplify.txt
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Next, I continued to inspect the VM bytecode disassembly listing and look for further
patterns involving the SCRATCH register. I found my next candidate shortly after the
previous one. In particular:

0x000120: MOV SCRATCH, ECX 
0x000138: PUSH SCRATCH

This VM instruction sequence obviously replaces the x86 instruction "push ecx". As with the
previous step, I decided to codify this into a pattern simplification. Any time we see the VM
instruction sequence:

MOV SCRATCH, REG32 
PUSH SCRATCH

We want to replace that with a single VM instruction representing "push reg32".
Mechanically, this works nearly identically to the previous step; we use Python's isinstance()
function to find occurrences of this VM instruction pattern. The complete code can be found
in the "SecondSimplify" function in the Python source code (search for the function name).
For ease of reference, here is how we identify "MOV SCRATCH, REG32" instructions:

def IsMovScratchReg(insn): 
   if isinstance(insn,MovScratchDisp32): 
       return insn.Disp32 
   if isinstance(insn,MovScratchDisp8): 
       return insn.Disp8 
   return None

To replace these two-instruction sequences, we generate a FinSpy VM "Raw x86"
instruction which contains the x86 machine code for the x86 PUSH operation. I use my x86
library to create the Python object for the replacement x86 instruction "push reg32": in this
example, the Python object for "push ecx" can be constructed as X86.Instruction([],
XM.Push, X86.Gd(mr,True)).

After generating the replacement x86 instruction object, I wrote a function to generate a
FinSpy VM instruction containing the raw machine code. The function "MakeRawX86" from
the simplification source code (search for the function name) is reproduced here for ease of
presentation:

https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
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def MakeRawX86(Pos, Key, x86Insn): 
   # Create a FinSpy VM "Raw X86" instruction with dummy 
   # content at the correct position (specified by Pos) 
   newInsn = RawX86StraightLine([0]*INSN_DESC_SIZE, Pos) 

   # Set the key to be the key from the first of the two 
   # instructions of the two-instruction matched sequence 
   newInsn.Key = Key 

   # Encode the x86 instruction into machine code, store 
   # the bytes in the FinSpy VM instruction 
   newInsn.Remainder = EncodeInstruction(x86Insn) 
    
   # Cache the length of the x86 instruction's machine code 
   newInsn.DataLen = len(newInsn.Remainder) 

   # Cache the textual disassembly for that instruction 
   newInsn.X86 = str(x86Insn) 
    
   # Return the FinSpy VM instruction just constructed 
   return newInsn

The FinSpy VM "Raw X86" instruction object returned by the function above is used as the
replacement for the two-VM instruction sequence "MOV SCRATCH, REG32 / PUSH
SCRATCH". As the code shows, its two uniquely-identifying characteristics (VM instruction
position and VM instruction key) are duplicated from the first of the two VM instructions in
the pattern.

After applying this substitution, the new VM bytecode disassembly listing can be found
here.

4.2 The "MOV SCRATCH, REG32" / "MOV REG32, SCRATCH"
Pattern

Shortly thereafter was another, similar VM instruction pattern:

0x000228: MOV SCRATCH, ESP 
0x000240: MOV ESI, SCRATCH

Clearly, this sequence virtualizes the x86 instruction "mov esi, esp". More generally, when
we see two adjacent VM instructions of the form:

MOV SCRATCH, REG32_1 
MOV REG32_2, SCRATCH

We can replace this with an x86 instruction "mov reg32_2, reg32_1". As in the previous
case, after using Python isinstance() checks to locate instances of this pattern, we generate
a Python object representing the x86 instruction "mov esi, esp", and call the MakeRawX86
function (detailed in the previous section) to generate a new "Raw x86" VM instruction to

https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-SecondSimplify.txt
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replace the two VM instructions comprising the pattern instance. This process can be seen
completely in the function "ThirdSimplify" from the simplification code (search for the
function name).

After applying this substitution, the new VM bytecode disassembly listing can be found
here.

4.3 The "MOV SCRATCH, 0" / "ADD SCRATCH, IMM32" Pattern

Continuing to look for patterns in the VM bytecode program, I saw the following:

0x0037b0: MOV SCRATCH, 0 
0x0037c8: ADD SCRATCH, 0x420344

This sequence can obviously be replaced with the single-instruction sequence "MOV
SCRATCH, 0x420344". The function "FourthSimplify" in the simplification code (search for
the function name) implements the detection and substitution. Again, it's trivial to write this
pattern-recognition and replacement code, though unlike the previously-described pattern-
substitutions, the replacement code is a Group #2 "SCRATCH register" FinSpy VM
instruction rather than a Group #3 "Raw x86" instruction, since the output involves the
scratch register.

After applying this substitution, the new VM bytecode disassembly listing can be found
here.

4.4 The "MOV SCRATCH, IMM32" / "PUSH SCRATCH" Pattern

More perusal of the VM bytecode disassembly turned up the following sequence:

0x006900: MOV SCRATCH, 0x000003 
0x006918: PUSH SCRATCH

As with previous examples, we can replace this two-instruction sequence with the x86
instruction "push 3", by using a "Raw x86" VM instruction. The function "FifthSimplify"
implements this -- it identifies "MOV SCRATCH, IMM32 / PUSH SCRATCH" sequences,
and replaces them with a "Raw x86" FinSpy VM instruction object containing the machine
code for an x86 "push imm32" instruction, again using identical techniques to those
discussed previously.

After applying this substitution, the new VM bytecode disassembly listing can be found
here.

4.5 Memory Address Patterns

https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-ThirdSimplify.txt
https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-FourthSimplify.txt
https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-FifthSimplify.txt
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After performing the aforementioned replacements, we start to see a lot less variety in the
remaining Group #2 instructions, and their further purpose quickly became obvious.
Namely, each remaining cluster of VM bytecode instructions using the SCRATCH register
consisted of two consecutive components: 1) a sequence of FinSpy VM instructions to load
a memory address into the SCRATCH register, using what I've called a "memory address
pattern"; followed by 2) a sequence of FinSpy VM instructions utilizing using the memory
address just generated, for a purpose such as reading from the address or writing to it,
using what I've termed a "memory access pattern". We will discuss both such patterns in
this section and the subsequent one.

For an example of both a memory address pattern and a memory access pattern, here is
the very beginning of the VM bytecode program after all the prior replacements have
executed:

0x000000: MOV SCRATCH, EBP                 ; Memory !address! 
0x000030: ADD SCRATCH, 0x000008            ; Memory !address! 
0x000048: MOV SCRATCH, DWORD PTR [SCRATCH] ; Memory !access! 
0x000060: MOV EAX, SCRATCH                 ; Memory !access!

The first two VM instructions set the SCRATCH register to EBP+0x8. These two instructions
comprise the "memory address pattern".

The last two VM instructions read a DWORD from the memory address contained in the
SCRATCH register, and store the result into EAX. These two instructions comprise the
"memory access pattern".

Clearly, these four VM instructions can be replaced by the single x86 instruction "mov eax,
[ebp+8]" -- which looks very much like something we'd expect to see near the beginning of
a function (suitably, given that the four VM instructions just shown are the first VM
instructions in the bytecode program, and are situated toward the beginning of an x86
function). 

For a more complicated example:

0x03c270: MOV SCRATCH, EDX      ; Memory !address! 
0x03c2a0: SHL SCRATCH, 0x000003 ; Memory !address! 
0x03c2b8: ADD SCRATCH, EAX      ; Memory !address! 
0x03c2d0: ADD SCRATCH, 0x000010 ; Memory !address! 
0x03c2e8: MOV EAX, SCRATCH      ; Memory !access!

Let's trace the value that is written to EAX at the end. The first two VM instructions shift
EDX left by 3; the third VM instruction adds EAX, and the fourth VM instruction then adds
0x10. Thus, the expression written to EAX is "EDX<<3 + EAX + 0x10". EDX<<3 is the same
thing as EDX*8, so our expression is "EDX*8 + EAX + 0x10". The format of the memory
expression should look familiar -- it can be encoded as the legal x86 ModRM/32 memory
expression "[EAX+EDX*8+0x10]". These first four VM instructions comprise a "memory
address pattern". The fifth and final VM instruction is the "memory access pattern" instance
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-- rather than reading from or writing to this memory location, we simply store the memory
address itself into EAX. Thus this VM instruction sequence performs the equivalent of the
x86 instruction "lea eax, [eax+edx*8+10h]".

Indeed, all of the memory address patterns appear to be creating memory addresses that
would be legal to encode using X86 ModRM memory expressions. X86 ModRM memory
expressions contain one or more of the following elements added together:

A 32-bit base register
A 32-bit scale register, optionally multiplied by 2, 4, or 8
A 32-bit displacement (an immediate DWORD)

By inspecting the VM bytecode program, all memory address sequences have an identical
layout.

If an index register is being used, the first VM instruction of the sequence sets the
SCRATCH register to the value of the base register. 
If the index register is multiplied by a scale factor, the next VM instruction is SHL
SCRATCH, IMM32, where IMM32 is 1, 2, or 3 (to multiply the index register by *2, *4,
or *8, respectively).
If a base register is used, the next instruction in the sequence adds the base register.
If a 32-bit displacement is used, the next VM instruction is an ADD SCRATCH, IMM32
instruction.

All of these elements are optional, though at least one must be present. So for example, if
the memory address is a raw 32-bit value (e.g. dword ptr [401234h]), only the ADD
SCRATCH, IMM32 VM instruction will be present. If the memory expression consists of only
a register (e.g., dword ptr [eax]), then only the MOV SCRATCH, REG32 VM instruction will
be present. Memory expressions that use more than one element will be virtualized by
combining the VM instructions for the elements present.

4.6 Memory Access Patterns

After a memory address pattern just described creates a memory expression in the
SCRATCH register, the next one or two VM instructions make up the memory access
pattern, and dictate how the memory address is used through how they access the
SCRATCH register. By examining the VM bytecode program, I found that there were four
distinct VM instruction sequences used for memory access patterns.

4.6.1 Memory Access Case #1: Memory Read, Store Into Register

The first case reads from the memory address, and stores the result in a register:
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; ... memory address pattern before this ... 
0x000048: MOV SCRATCH, DWORD PTR [SCRATCH] 
0x000060: MOV EAX, SCRATCH

This corresponds to "mov eax, dword ptr [memExpression]", with the details of
"memExpression" being dictated by the memory address pattern.

4.6.2 Memory Access Case #2: Memory Read, Push Result

The second case reads from the memory address, and then pushes the result on the stack:

; ... memory address pattern before this ... 
0x004950: MOV SCRATCH, DWORD PTR [SCRATCH] 
0x004968: PUSH SCRATCH

This corresponds to "push dword ptr [memExpression]", with the details of
"memExpression" being dictated by the memory address pattern.

4.6.3 Memory Access Case #3: Memory Write, Value Taken from Register

The third case stores a register into the memory location calculated by the memory address
sequence:

; ... memory address pattern before this ... 
0x000ae0: MOV DWORD PTR [SCRATCH], EAX

This corresponds to "mov dword ptr [memExpression], eax", with the details of
"memExpression" being dictated by the memory address pattern.

4.6.4 Memory Access Case #4: Store Address into Register

The fourth case does not dereference the memory location, but rather saves the result into
a register:

; ... memory address pattern before this ... 
0x000e28: MOV EAX, SCRATCH

This corresponds to "lea eax, dword ptr [memExpression]", with the details of
"memExpression" being dictated by the memory address pattern.

4.7 All Together: De-Virtualizing Memory References

After having fully analyzed the remaining references to the SCRATCH register as described
above, I wrote code to detect the memory address patterns and the following memory
access patterns, analyze them, and convert them back into x86 machine code. The function
"SixthSimplify" in the simplification code recognizes memory address patterns, inspects the
following instructions to determine the memory access patterns, and combines these two
pieces of information to determine which x86 instruction the two memory address/access

https://github.com/RolfRolles/FinSpyVM/blob/master/VMDisassembler/Tmp/Simplify.py
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sequences have replaced. Next, the code reconstructs an x86 instruction -- as a FinSpy VM
"Raw X86" instruction -- with which it finally replaces the VM instructions comprising the
memory address and memory access sequences. As before, the replacement "Raw x86"
FinSpy VM instruction uses the key and position attributes from the first VM instruction as
the unique attributes for the replacement instruction.

First, "SixthSimplify" invokes the function "DecodeAddressSequence". That function
determines if a given position within a list of FinSpy VM instructions begins a memory
address sequence. If not, the function returns None. If so, DecodeAddressSequence
extracts details from the memory address sequence -- the base register, the index register
and optional scale factor, and the 32-bit displacement -- and uses it to create a Mem32
object (the class used by my Python x86 library to represent 32-bit memory expressions),
which it then returns along with the number of VM instructions comprising the memory
address pattern. That code is shown below. 
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# Given: 
# * A list of FinSpy VM instructions in insnArr 
# * An index within that list in idx 
# 
# Determine if insnArr[idx] contains a memory address sequence. 
# If not, return None. If so, create an x86 memory expression 
# operand using my x86 library, and return it along with the 
# number of instructions in the address sequence. 

def DecodeAddressSequence(insnArr, idx): 
   # Save position of index within insnArr 
   oldIdx = idx 
    
   # The first VM instruction in the sequence is usually "MOV SCRATCH, REG32". 
   r1 = IsMovScratchReg(insnArr[idx]) 

   # Was it? 
   if r1 is not None: 

       # Yes, it was, so increment the current index 
       idx += 1 

       # Is the next VM instruction "SHL REG, [1/2/3]"? 
       if isinstance(insnArr[idx],ShlScratchImm32): 
           # Yes, copy the scale factor 
           scaleFac = insnArr[idx].Imm32 
           assert(scaleFac == 1 or scaleFac == 2 or scaleFac == 3) 
           # Increment the current index 
           idx += 1 
        
       # Otherwise, there is no scale factor 
       else: 
           scaleFac = None 

       # Is the next VM instruction "ADD SCRATCH, REG32"? 
       r2 = IsAddScratchReg(insnArr[idx]) 
       if r2 is not None: 
           # Yes, increment the current index 
           idx += 1 

       # Is the next VM instruction "ADD SCRATCH, IMM32"? 
       disp32 = IsAddScratchImm32(insnArr[idx]) 
       if disp32 is not None: 
           # Yes, increment the current index 
           idx += 1 
        
       # Make a memory expression from the parts, and return the length 
       # of the memory address sequence 
       return (idx-oldIdx, MakeMemExpr(r2, r1, scaleFac, disp32)) 
    
   # The second possibility is that the memory expression is a raw address. 
   imm = IsMovScratchImm32(insnArr[idx]) 
   # Was it? 
   if imm is not None: 
       # Yes: make a memory expression from the address, and return the 
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       # length of the memory address sequence (namely, 1). 
       return (1, MakeMemExpr(None,None,None,imm)) 

   # If we are here, neither of the memory address patterns matched, so 
   # signal match failure. 
   return None

Next, a similar function called "DecodeAccessSequence" uses pattern-matching to
determine which of the four memory access patterns -- mov reg32, [memExpr] / push
[memExpr] / mov [memExpr], reg32 / lea reg32, [memExpr] -- follows the access sequence.
The code is similar to the code just shown for decoding memory address sequences, and
so is not duplicated here. See the source code for the complete details.

Finally, after recognizing a memory address sequence followed by a memory access
sequence, we use the machinery we previously developed for regenerating x86 machine
code -- namely, the function "MakeRawX86" -- to create a FinSpy VM instruction containing
the machine code for the raw x86 instruction. We use this to replace the memory address
and access sequences just recognized.

After running this simplification pass, and all prior ones described for Group #2 instructions,
over the VM bytecode program, all Group #2 VM instructions disappear, and consequently
the SCRATCH register disappears from the VM bytecode disassembly listing. The final
disassembly listing of the simplified FinSpy VM program can be seen in its entirety here.

5. Step #3: Correcting a Small Error

Having dispensed with the Group #2 VM instructions, Groups #1 and #3 remained. Before
addressing them, however, there was one VM instruction that didn't fit into either one of
those groups. Namely, in producing my initial VM bytecode disassembly listing, I had
incorrectly identified the FinSpy VM unconditional jump instruction as being an instruction to
cause a deliberate crash. I disassembled this as "CRASH". My FinSpy VM bytecode
disassembly listing was confusing with how frequently the CRASH instruction occurred:

0x005bb0: JNZ VM[0x005c88] (fallthrough VM[0x005bc8]) 
0x005bc8: X86 xor eax, eax 
0x005be0: CRASH 
0x005bf8: X86 mov eax, dword ptr [esi+4h] 
0x005c70: CRASH 
0x005c88: X86 push ebx

I discussed this issue at length in part two -- the implementation for unconditional jumps
was considerably different from conditional jumps, and involved dynamic code generation,
which was only used otherwise for Group #3 instructions. Closer analysis revealed that the
true purpose of this instruction was as an unconditional jump and not a deliberate crash.
Upon learning this, I updated my disassembler component to rename the "CRASH"
instruction to "JMP", and to print the branch targets of these newly-renamed JMP
instructions. The resulting VM bytecode disassembly listing was clearer:

https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-SixthSimplify.txt
http://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
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0x005bb0: JNZ VM[0x005c88] (fallthrough VM[0x005bc8]) 
0x005bc8: X86 xor eax, eax 
0x005be0: JMP VM[0x008df0] 
0x005bf8: X86 mov eax, dword ptr [esi+4h] 
0x005c70: JMP VM[0x008df0] 
0x005c88: X86 push ebx

The entire VM bytecode disassembly listing after this modification can be found here.

6. Conclusion

In this Phase #1, we inspected our sample's initial FinSpy VM bytecode disassembly listing.
We improved the listing by including x86 disassembly for the x86 machine code embedded
in the Group #3 instructions. We inspected how the VM bytecode program used Group #2
instructions. A half-dozen simple pattern-replacement schema were sufficient to entirely
remove the Group #2 instructions. Afterwards, we corrected the output by observing that
the "CRASH" instructions were really unconditional jumps.

In the next Part #3, Phase #2, we are ready to attempt our first devirtualization for the
FinSpy VM bytecode program. Our initial attempts wind up being insufficient. We study the
deficiencies in Part #3, Phase #3, and remedy them in our second, final, devirtualization
attempt in Part #3, Phase #4.

https://github.com/RolfRolles/FinSpyVM/blob/master/VMProgram/Disasm-Simplified-Jmp.txt
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-2-first-attempt-at-devirtualization
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-3-fixing-the-function-related-issues
http://www.msreverseengineering.com/blog/2018/2/21/devirtualizing-finspy-phase-4-second-attempt-at-devirtualization

