
1/13

Robert Falcone, Mike Scott, Juan Cortes November 10, 2015

Bookworm Trojan: A Model of Modular Architecture
unit42.paloaltonetworks.com/bookworm-trojan-a-model-of-modular-architecture/

By Robert Falcone, Mike Scott and Juan Cortes

November 10, 2015 at 11:00 AM

Category: Malware, Threat Prevention, Unit 42

Tags: Bookworm, KBLogger, PlugX, RAT, Trojan

Recently, while researching attacks on targets in Thailand, Unit 42 discovered a tool that
initially appeared to be a variant of the well-known PlugX RAT based on similar observed
behavior such as the usage of DLL side-loading and a shellcode file. After closer inspection,
it appears to be a completely distinct Trojan, which we have dubbed Bookworm and track in
Autofocus using the tag Bookworm.

Bookworm’s functional code is radically different from PlugX and has a rather unique
modular architecture that warranted additional analysis by Unit 42. Bookworm has little
malicious functionality built-in, with its only core ability involving stealing keystrokes and
clipboard contents. However, Bookworm expands on its capabilities through its ability to load
additional modules directly from its command and control (C2) server. This blog will provide
an analysis of the Bookworm Trojan and known indicators of compromise. A later blog will
explore the associated attack campaigns and attributions surrounding Bookworm.

Bookworm: Chapter One

So far, it appears threat actors have deployed the Bookworm Trojan primarily in attacks on
targets in Thailand. Bookworm has many layers (see Figure 1) that increase the complexity
of its overall architecture. To make matters worse, the author used multiple algorithms not
only to encrypt and decrypt files saved to the system, but also to encrypt and decrypt
network communications between Bookworm and its C2 servers (known servers are listed in
the Indicators of Compromise section near the end of this post).

Layered Loading Approach

The threat actors use a commercial installation tool called Smart Installer Maker to
encapsulate and execute a self-extracting RAR archive and in some cases a decoy
slideshow or Flash installation application. The self-extracting RAR writes a legitimate

https://unit42.paloaltonetworks.com/bookworm-trojan-a-model-of-modular-architecture/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/author/mike-scott/
https://unit42.paloaltonetworks.com/author/juan-cortes/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/bookworm/
https://unit42.paloaltonetworks.com/tag/kblogger/
https://unit42.paloaltonetworks.com/tag/plugx/
https://unit42.paloaltonetworks.com/tag/rat/
https://unit42.paloaltonetworks.com/tag/trojan/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Bookworm
http://www.sminstall.com/


2/13

executable, an actor-created DLL called Loader.dll and a file named readme.txt to the
filesystem and then executes the legitimate executable.



3/13

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/Bookworm1.png


4/13

Figure 1 Architecture of Bookworm

Thus far, the actors deploying bookworm have used the legitimate executables Microsoft
Malware Protection (MsMpEng.exe) and Kaspersky Anti-Virus (ushata.exe) to perform DLL
side-loading and load the Loader.dll. Loader.dll decrypts the readme.txt file using a three
byte XOR algorithm with 0xd07858 as a key, which results in shellcode that is responsible for
decrypting the remainder of readme.txt containing the actual Bookworm Trojan. The
shellcode then loads Bookworm by manually loading another DLL named “Leader.dll”
embedded in the decrypted readme.txt and passes a buffer to Leader.dll containing
additional DLLs. Leader.dll is the main component of Bookworm, which will we refer to as
“Leader” for the remainder of this blog.

The initial execution of Leader results in the installation of Bookworm. The installation
process involves moving the legitimate executable and actor-created DLL to a new location.
Bookworm also creates an additional file in this new location that has the same filename as
the actor-created DLL but with no file extension. Figures 2 and 3 shows the newly created
files based on the legitimate application used to side-load the actor created DLL.

%AllUsersProfile%\Application Data\Microsoft\DeviceSync\MsMpEng.exe

%AllUsersProfile%\Application Data\Microsoft\DeviceSync\MpSvc.dll


%AllUsersProfile%\Application Data\Microsoft\DeviceSync\MpSvc

Figure 2 Files created if the Microsoft Malware Protection was used to Sideload the
DLL

%AllUsersProfile%\Application Data\Microsoft\DeviceSync\ushata.exe

%AllUsersProfile%\Application Data\Microsoft\DeviceSync\ushata.dll


%AllUsersProfile%\Application Data\Microsoft\DeviceSync\ushata

Figure 3 Files created if the Kaspersky Antivirus application was used to Sideload the
DLL

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/Bookworm1.png


5/13

After this process is completed, Bookworm changes how it loads itself, now reading the
newly created file “MpSvc” or “ushata” instead of readme.txt. The newly created file is
encrypted with RC4 using the contents of the following registry value as its key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Registration\ProductID

The decrypted contents of this new file contain a path to the following file:

%AllUsersProfile%\Application Data\Microsoft\Crypto\RSA\MachineKeys\sgkey.data

The sgkey.data file contains the shellcode from readme.txt that loads the Bookworm
modules, but instead of being encrypted with the three byte XOR algorithm like readme.txt,
sgkey.data is encrypted with RC4 using the “ProductID” value as the key. The installation
process finishes with the creation of a service named “Microsoft Windows DeviceSync
Service”, which results in the addition of registry keys listed in Figure 4, which will run
Bookworm when the system starts.

HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\Type: 0x00000120

HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\Start: 0x00000002

HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\ErrorControl: 0x00000001

HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\ImagePath: "C:\Documents and
Settings\All Users\Application Data\Microsoft\DeviceSync\MsMpEng.exe"


HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\DisplayName: "Microsoft Windows
DeviceSync Service"


HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\ObjectName: "LocalSystem"

HKLM\SYSTEM\CurrentControlSet\Services\DeviceSync\Description: "Allows USB devices

to be hosted on this computer. If this service is stopped, any hosted USB devices will
stop functioning and no additional hosted devices can be added. If this service is disabled,
any services that explicitly depend on it will fail to start."

Figure 4 Registry Keys Resulting from the Creation of the Bookworm Service

Bookworm Modules

Leader is Bookworm's main module and controls all of the activities of the Trojan, but relies
on the additional DLLs to provide specific functionality. The developers of Bookworm use
these modules in a rather unique way, as the other embedded DLLs provide API functions
for Leader to carry out its tasks. To load additional modules, Leader parses the buffer passed
to it by the shellcode in readme.txt for the other DLLs, which exist in the following structure:

struct embedded_dll {

DWORD dll_identifier;

DWORD length_of_dll;



6/13

char[length_of_dll] embedded_dll;
};

Table 1 contains all of the embedded DLLs in each Bookworm sample, their ID numbers, and
a description of the functionality of each DLL’s API functions provided to Leader. It should be
noted that Bookworm does not write any of these DLLs to the filesystem, as the Trojan
operates entirely in memory.

Name DLL
ID #

Description

Leader.dll 0x5 Main module. Communicates with the C2 server and other
activities by interacting with other modules in this table.

Resolver.dll 0x1 Used to resolve C2 server locations.

Mover.dll 0x2 Moves the Bookworm files from the RAR archive to a new folder
and runs it from the new location. Only used on initial infection
during installation.

Coder.dll 0xA Used to carry out RC4 encryption and decryption, base64
encoding and decoding and the generation of CRC32 hashes of
data.

Digest.dll 0xB Used to generate MD5 hashes of data.

AES.dll 0xC Used to encrypt and decrypt data using AES.

Network.dll 0xE Sets the network interface into promiscuous mode and gathers
network traffic for traffic destined to the system to receive data
from C2 responses. Also provides the ability to send data to the
C2 as well.

HTTP.dll 0x13 Used to create HTTP Requests to send to the C2.

WinINetwork.dll 0x17 Used to interact with the C2 server, specifically by sending HTTP
GET and POST requests.

KBLogger.dll N\A Key logger that records keystrokes and the contents saved to the
clipboard.

Table 1 Bookworm's Embedded Modules with their Corresponding Identification
Number and a Brief Description

Leader loads each DLL into memory and then resolves an exported function named
"ProgramStartup" within the loaded DLL. Leader then uses the "dll_identifier" (DLL ID # in
Table 1) value to determine the appropriate arguments to send to the DLL when calling the
ProgramStartup function. Leader then passes a pointer to a structure to each loaded DLL
with each DLL receiving a different offset that it will set with addresses of its internal



7/13

functions. The purpose of passing a structure to each DLL is to populate one large structure
that allows Leader to call specific functions within each DLL, which is very similar
conceptually to the import address table of a portable executable. Figure 5 below visualizes
this concept, showing Leader calling example functions in the Bookworm modules to carry
out various tasks.

Figure 5 Visualization of Leader using other Bookworm Modules’ API Functions to
Carry out Tasks

By using this type of modular framework, the developers of Bookworm have made static
analysis of the Trojan quite challenging. To perform static analysis of Bookworm, an analyst
must recreate the structure used by Leader to store the API functions of each DLL and apply
them throughout the entire Trojan. Without performing this task, an analyst would be unable
to determine which API function Leader calls within the supporting DLLs. For example,
Figure 6 below shows a code block within Leader that is responsible for encrypting a buffer
using functions within the AES module; however, the red, blue, and green boxes show calls
to functions based on an offset in a structure.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/bookworm2.png


8/13

Figure 6 Bookworm Calling API Functions using an Offset to its Structure

At first glance, an analyst would be unable to determine the purpose of the code block
displayed in Figure 6, as the functions called are not readily apparent. By creating a structure
and populating it with the correct API functions however, an analyst can determine the API
functions called in this code block. In Figure 7 below, the red, blue and green boxes show
calls to three functions within the AES module that allow Leader to encrypt data using the
AES algorithm.

Figure 7 Applying Bookworm's API Structure Exposes the API Functions Called

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/Bookworm3.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/bookworm4.png


9/13

Not only does this modular approach require an analyst to create a structure, but it also
takes away an analyst’s ability to use cross references (XREFs) on the API functions within
the supporting modules. Using XREFs during static analysis is a common technique to
quickly find where functions of interest are called. An analyst cannot use this method to find
where Leader is calling specific Bookworm APIs because the functions are not called
directly; rather they are called based on the structure offset. We are unsure if the developers
of Bookworm created this as an analysis hurdle, but it certainly contributes to anti-analysis
tactics.

Bookworm’s Capabilities

Although the developers of Bookworm have included only keylogging functionality in
Bookworm as a core ability, as suggested in Table 1, several of the embedded DLLs provide
Leader with cryptographic and hashing functions, while others support Leader’s ability to
communicate with its C2 server. The developers designed Bookworm to be a modular Trojan
not limited to just the initial architecture of the Trojan, as Bookworm can also load additional
modules provided by the C2 server. The ability to load additional modules from the C2
extends the capabilities of the Trojan to accommodate any activities the threat actors need to
carry out on the compromised system.

Key Logging Functionality

The KBLogger.dll module, which we will refer to as KBLogger, provides key logging and
clipboard grabbing functionality and is the only Bookworm module that does not provide
Leader with API functions. Instead, Leader creates a new process
“C:\WINDOWS\System32\dllhost.exe –user” that it injects itself into and uses to execute the
KBLogger functionality.

KBLogger runs on its own by creating a new window called “DolefulClass<username>
<PID>”, which is hidden so it is invisible to the user. The new window executes code that will
create the following folder to store files that contain logged keystrokes and stolen clipboard
contents:

%AllUsersProfile%\Application Data\Microsoft\Crypto\RSA\MachineKeys\<crc32 hash>bk

KBLogger captures keystrokes typed by the user and saves them to a file in the folder
above. KBLogger also specifically monitors for the keystroke combinations “Control + C”,
“Control + V” and “Control + X” that it uses as triggers to copy the contents of the clipboard to
a file. The keystrokes and clipboard contents are encrypted before KBlogger saves them to
the file system using the RC4 algorithm using a key derived from the value at the following
registry key:

HKLM\SOFTWARE\Microsoft\Internet Explorer\Registration\ProductID



10/13

KBLogger will generate the key for the RC4 algorithm by using XOR and an eight-byte key
(specifically 0x6E, 0x30, 0xD0, 0x30, 0xB9, 0x30, 0xB1, 0x30) on the value of the above
registry key. KBLogger creates files with the naming format “<username XOR with 2 byte key
0x5878>_<seconds since EPOCH>” to store the captured keystrokes and clipboard. For
example, on November 3, 2015, we saw the following file created during by KBLogger on an
analysis system with a username of “administrator”:

191c351136112b0c2a192c172a_56391E90

C2 Communications and Additional Modules

Bookworm uses a state machine to keep track of and carry out communications between the
compromised system and the C2 server. Also, Bookworm uses a combination of encryption
and compression algorithms to obfuscate the traffic between the system and C2 server. We
have seen the following encryption and compression methods used at various stages and in
differing combinations in the C2 communications:

RC4
AES
XOR with 0x5a
LZO

Bookworm first creates an HTTP request that acts as a network beacon to notify the C2 of
the compromised system. The initial network beacon is either an HTTP GET or POST
request, which varies between Bookworm samples. Unit 42 analyzed the contents of a
beacon seen in Figure 8, which was sent to a URL that follows a structure of "http://<c2
server>:<port>/0<crc32 hash of tick count><tick count><encrypted data>". The encrypted
data in the URL is a 32 character string (16 hexadecimal bytes) created by RC4 and AES
encrypting an empty data buffer using the tick count and crc32 hash of the tick count as a
key.

Figure 8 Initial C2 Beacon from Bookworm sample
8ae2468d3f208d07fb47ebb1e0e297d7

Subsequent HTTP POST requests from Bookworm to the C2 server include campaign
identifier and system uptime. The data in the HTTP POST has a structure of
“\x03\x04<campaign code>\x00<system uptime>”. Leader then compresses this string using
the LZO compression algorithm and compares the compressed length to the original string
length. Leader uses the shorter of the two strings and appends it to a DWORD that is the

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/11/bookworm5.png


11/13

size of the data and encrypts the combined string using AES with a key of "0123456789" and
XOR with a key of 0x5a. We believe the threat actors use the data in these POST requests
to map the compromised system to the appropriate campaign and to filter out analysis
systems. In our follow-up blog we will further discuss the campaign codes identified in our
analysis.

The threat actors also deliver additional modules to Bookworm via C2 communications. To
load additional modules into Bookworm, Leader parses C2 responses for data that have the
following structure:

<MD5 of cleartext of module><encrypted module>

Leader skips the first 16 bytes and RC4 decrypts the remaining data with the key
"0123456789". It then computes the MD5 hash of the resulting cleartext and checks this
hash with the MD5 in the first 16 bytes of the C2 response data to see if it is the same. If the
MD5 hashes match, then the code will carry out further checks on the decrypted data to
determine if the data is a new DLL for Leader to load as an additional module. At this time,
Unit 42 has not seen a Bookworm C2 server provide additional modules via network
communications. By performing static analysis on Leader.dll, we know that Leader will load
the additional modules and attempt to call "ProgramStartup" and "QueryBuffer" functions
exported by the DLLs.

Conclusion

While we did not discuss the surrounding attacks using Bookworm in detail, we have
observed threat actors deploying Bookworm primarily in attacks on targets in Thailand. The
developers of Bookworm have gone to great lengths to create a modular framework that is
very flexible through its ability to run additional modules directly from its C2 server. Not only
is this tool highly capable, but it also requires a very high level of effort to analyze due to its
modular architecture and its use of API functions within the additional modules. We believe
that it is likely threat actors will continue development Bookworm, and will continue to use it
for the foreseeable future.

Indicators of Compromise

File Names

sgkey.data

Known Bookworm C2 Servers

bkmail.blogdns[.]com
debain.servehttp[.]com



12/13

linuxdns.sytes[.]net
news.nhknews[.]hk
sswmail.gotdns[.]com
sswwmail.gotdns[.]com
sysnc.sytes[.]net
systeminfothai[.]gotdns.ch
thailandbbs.ddns[.]net
ubuntudns.sytes[.]net
web12.nhknews[.]hk

Bookworm Smart Install Maker Samples

0f41c853a2d522e326f2c30b4b951b04
8ae2468d3f208d07fb47ebb1e0e297d7
35755a6839f3c54e602d777cd11ef557
87d71401e2b8978c2084eb9a1d59c172
599b6e05a38329081b80a461b57cec37
ba1aea40182861e1d1de8c0c2ae78cb7
de1595a7585219967a87a909f38acaa2
f8c8c6683d6ca880293f7c1a78d7f8ce
0b4ad1bd093e0a2eb8968e308e900180
cba74e507e9741740d251b1fb34a1874
fcd68032c39cca3385c539ea38914735
3e69c34298a8fd5169259a2fef506d63

Bookworm Self-Extracting RAR Samples

04d63e2a3da0a171e5c15d8e904387b9
0d57d2bef1296be62a3e791bfad33bcd
4389fc820d0edd96bac26fa0b7448aee
74c293acdda0d2c3b5087763dae27ec6
b030c619bb24804cbcc05065530fcf2e
29df124f370752a87b3426dcad539ec6
9df45e8d8619e234d0449daf2f617ba3
40f1b160b88ff98934017f3f1e7879a5
210816c8bde338bf206f13bb923327a1
187cdb58fbc30046a35793818229c573
0b4ad1bd093e0a2eb8968e308e900180
499ccc8d6d7c08e135a91928ccc2fd7a
5e4852c8e5ef3cbceb69a9bc3d554d6c
5282b503b061eaa843c0bcda1c74b14f



13/13

Get updates from 
Palo Alto


Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

