
1/16

Shifu – the rise of a self-destructive banking trojan
virusbulletin.com/virusbulletin/2015/11/shifu-rise-self-destructive-banking-trojan

2015-11-02

Floser Bacurio Jr

Fortinet, Singapore

Wayne Low

Fortinet, Singapore Editor: Martijn Grooten
Abstract

The banking trojan Shifu appears to inherit some of its features from several other well-known banking trojans. Floser Bacurio
and Wayne Low decided to take a close look at one of its droppers.

Following takedown operations against various notorious banking trojans, including Zeus, Dridex and Gozi, a freshly brewed
banking trojan, Shifu, has recently made the news; we believe it inherits some features from the earlier well-known banking
trojans. We decided to dive deeper into one of its droppers (MD5: E60F72FFA76386079F2645BE2ED84E53; SHA1:
963BFC778F94FE190FDD1DD66284E9BC9DD2BED6). A number of features caught our eye when looking at its underlying
code.

Dropper

Exploiting CVE-2015-0003

On our first look at the dropper, we observed that the dropper code is not heavily obfuscated, although most of the strings are
encoded; it turns out that the strings can easily be decoded using a simple XOR operation.

At the entry point, we can immediately tell that Shifu attempts to exploit a local privilege escalation vulnerability. The
vulnerability was assigned the CVE number CVE-2015-0003 in February 2015 and can be used to elevate the privilege of a
process to system privilege on Windows 7 and above. The exploit code can easily be found on the Internet, so it is not
surprising that the malware attempts to exploit this (patched) vulnerability. This means that the malware may not execute
properly without sufficient privileges and also serves as a reminder that Windows users should always install the latest
Windows updates.

After performing the local privilege escalation routine, we arrive at the code where the malware will extract the payloads
embedded in its binary. The payloads consist of two aPLib compressed blobs for 32-bit and 64-bit platforms, which is a very
common technique used by malware nowadays. The use of the aPLib compressor suggests that Shifu might have adopted
some of the techniques used by malware like Zeus (aka Zbot) or Rovnix (and thus Carberp), for which the source code has
been leaked.

Malware don’t like HIPS

One of the most notable things observed in the code injection routine is an attempt to obfuscate the MZPE header by
overwriting random bytes in it. This action does not affect the execution of the payload since the payload code will be injected
into the memory of the remote process and will be executed directly in the context of the remote process via an asynchronous
thread. The purpose of overwriting bytes in the MZPE header is to defeat behavioural analysis systems and HIPS technology
– with a corrupted MZPE header, the sample does not look like a legitimate binary file and could thus bypass some trivial PE
signature checks.

https://www.virusbulletin.com/virusbulletin/2015/11/shifu-rise-self-destructive-banking-trojan

2/16

Figure 1. Corrupting the MZPE header.

Code obscuring

Analysing the decompressed buffer directly might result in an incorrect AddressOfEntryPoint as Shifu’s author has
intentionally obfuscated the entry point address by XORing with a widely used XOR key, 0x31337, throughout the program
regardless of the dropper or payload. Shifu will first try injecting the payload code into explorer.exe. When the code injection
into explorer.exe fails, to play it safe, Shifu’s author implements an additional routine which will create or spawn a random
Windows process found in C:\Windows\system32, or in C:\Windows\syswow64 if it is a 64-bit platform. Under normal
circumstances, most Windows executable files (for instance svchost.exe) can be executed, but will quit immediately when
called by non-Windows services. In order to circumvent this behaviour, Shifu first creates a suspended Windows process and
then injects an infinite sleep, Sleep(-1), routine and executes it in the memory of the suspended process. After that, the
suspended process will be resumed and continue execution, but it will not quit immediately unless it is forced to exit explicitly.
Once the targeted process has been determined, Shifu will carry out another code injection routine to execute the payload via
CreateRemoteThread or RtlCreateUserThread (Figure 2).

3/16

Figure 2. Remote code execution using CreateRemoteThread/RtlCreateUserThread.

Anti-sandbox and anti-VM

There are many anti-sandbox and anti-VM detection techniques in the dropper, as is common in mal-ware nowadays. Some of
these checks have been documented in a McAfee blog post [1], so Table 1 lists some of the process names, as well as their
hashes (computed by checking well-known process names using the Windows API function RtlComputeCrc32) that are
‘blacklisted’ by Shifu. Shifu checks a list of active processes running on the machine, as well as the sample’s file name,
against hard-coded CRC32 hashes in order to avoid the malware being analysed by a sandbox or by virtual machines that are
built to perform dynamic analysis of malware samples.

Process name CRC32 hash

vmwareuser.exe 0x99DD4432

vmwaretray.exe 0x1F413C1F

vboxservice.exe 0x64340DCE

vboxtray.exe 0x63C54474

wireshark.exe 0x77AE10F7

procmon.exe 0x5BA9B1FE

procexp.exe 0x3CE2BEF3

fortitracer.exe 0x332FD095

ollydbg.exe 0xAF2015F2

python.exe 0xD2EFC6C4

4/16

Process name CRC32 hash

sysanalyzer.exe 0x4231F0AD

sniff_hit.exe 0xD20981E0

joeboxserver.exe 0x2AAA273B

joeboxcontrol.exe 0x777BE06C

Table 1. Process names that are ‘blacklisted’ by Shifu.

It also employs a check against the file names shown in Table 2.

Dropper’s file name CRC32 hash

sample.exe 0xE84126B8

malware.exe 0x3C164BED

test.exe 0xC19DADCE

Table 2. File names that are checked.

Payload

On analysing the decompressed payload using a disassembler, it turns out that we have landed at an invalid code entry point,
as mentioned in the previous section, and the disassembler will complain that the import address table is corrupted. The
payload cannot be analysed in a disassembler directly without first ‘fixing’ the file. We later realized that, besides the code
entry point obfuscation, Shifu’s author has also deployed some other trivial tricks to the payload to mislead analysts:

Obfuscating the import table address – the original import table address can be restored by XORing with the key
0x31337.

5/16

Obfuscating import function names (Figure 3 and Figure 4) – the function names are encoded using the static XOR key
0xFF. (In the Appendix, we provide a simple IDAPython script to fix the function names under IDA Pro.)

6/16

Figure 3. Obfuscated import function names.

7/16

Figure 4. Shifu deobfuscating the import table address before loading the DLL by name.

(Click here to view a larger version of Figure 4.)

Shifu’s author also utilized multi-threading to add complexity to the malware and make dynamic analysis more challenging. On
the other hand, from a static analysis perspective, the malware’s encoding/encryption routine is insignificant and most of the
strings in the binary can trivially be decoded and fixed within IDA Pro with a few lines of code (Figure 5). However, some of the
strings, such as the command-and-control server name, are encrypted using RC4.

Figure 5. A simple script to decode the encoded string.

(Click here to view a larger version of Figure 5.)

Multiple process code injection

Before Shifu is able to carry out its wide range of information-stealing activities, it needs to make sure its payload code will be
injected into the relevant processes. When the payload is injected by the dropper, the very first thing it will do is traverse the
running processes and transfer its code into any process that does not already contain it. In other words, all the active
processes apart from the system processes will contain a copy of the payload code whenever the machine is infected.

Afterwards, a named pipe will be created in order to allow communication between the payloads in different processes.

Comprehensive data theft features

Keylogger and screenshot capture

Looking into Shifu’s data theft features, we could see that the malware is equipped with some of the keylogging features found
in traditional keyloggers, as well as having the ability to steal numerous banking credentials from the victim. Shifu also uses
the Windows API-hooking technique in order to steal other credentials. Table 3 shows a short summary of the hooked
Windows APIs along with their respective purposes.

Hooked Windows API Purpose

User32!GetClipboardData Captures the ASCII and UNICODE text currently saved in the clipboard
window

User32!TranslateMessage Captures the keyboard’s keystrokes

User32!GetMessageA/User32!GetMessageW The hook’s handler performs the same thing as the
user32!TranslateMessage hook’s handler

Table 3. Hooked Windows APIs and their purposes.

https://www.virusbulletin.com/uploads/images/figures/2015/11/Shifu-4-large.jpg
https://www.virusbulletin.com/uploads/images/figures/2015/11/Shifu-5-large.jpg

8/16

Under normal circumstances, these Windows API hooks should be able to capture the keystrokes on an infected machine.
However, Shifu also tries to capture virtual keyboards, which are commonly used in Internet banking, by taking screenshots of
the infected machine whenever the malware detects a mouse click. It is also noteworthy that the virtual keyboard screen will
only be grabbed when the malware detects an opened screen with one of the following titles, all of which are used by Italian
Internet banking websites:

Password

Telemaco

Scelta e Login dispositivo

TLQ Web

db Corporate Banking Web

SecureStoreCSP - enter PIN

Certificate capture

Shifu manipulates Windows API hooks in order to intercept the certificate password when a certificate is being imported to the
certificate store. All the certificate blob data and passwords found in the Crypt32!PFXImportCertStore API will be intercepted,
unless the process contains the string ‘torrent’.

The imported public keys on the infected machine will also be captured. This is possible, using the Windows
Crypt32!CertEnumSystemStore API, without having access to the private key.

These hooks may be useful to the attackers when the victim imports certificates using a Windows PGP client like Gpg4win;
the hook handlers could intercept the private key and certificate and save it to Shifu’s specified log directory as
‘randomhexavalue_cert.pfx’. Furthermore, it could be useful if the attackers want to access the cryptocurrency wallet
downloaded from the victim machine, which is encrypted using an RSA key pair.

Shifu’s author and its operators will be able to abuse the stolen certificates for nefarious purposes.

Other data thefts

In line with the current cryptocurrency hype, Shifu also targets Bitcoin and Litecoin wallet files found on the victim’s machine.
Shifu tries to steal VPN and VNC login credentials by checking the command line of running executables. If a remote desktop
protocol (RDP or VNC) or VPN process is found with the configuration file name specified in the command line, Shifu attempts
to save a copy of the configuration file.

It appears that this trojan steals far more information than a typical banking trojan would: from keylogging, screenshot capture,
certificate capture and cryptocurrency wallet grabbing, to FTP and POP3 credentials grabbing. The malware also appears to
target point-of-sale terminals for payment card data as well as some financial institutions themselves. It scans the machines if
one of the following strings is found in the path of the executable file of the current process:

tellerplus

bancline

fidelity

micrsolv

bankman

vanity

episys

jack henry

cruisenet

9/16

gplusmain

silverlake

v48d0250s1

When a potential POS machine is found, the malware will send a flag, ‘ETC’, back to its C&C server. Based on the malware
code, there is no immediate action after the machine has been recognized as a POS system; perhaps a memory-scrapping
module will be deployed by the botnet operators to this machine at a later time.

Stealthy banking trojan stays under the radar?

When analysing Shifu’s Windows API-hooking mechanisms, we also discovered that the malware tries to remain hidden from
the victim. The malware conceals its presence from the running processes by hijacking the Windows
ntdll!ZwQuerySystemInformation API, which is called whenever a user-mode program attempts to enumerate a list of active
processes using one of various process enumeration APIs. However, this is a well-known technique and is defeated by all
modern security tools. Apparently, the purpose of this trick is to remain concealed from non-tech-savvy users, however what
confused us is that the malware also hijacks Windows API calls used for DNS resolution, such as ws2_32!gethostbyname,
ws2_32!getaddrinfo and ws2_32!GetAddrInfoExW, to redirect URLs that contain the pattern ‘secure\..*\.moz\..*’ to
‘google.com’. Essentially, this seems to dismiss the idea of the malware being stealthy, as hijacking a website is often a clear
sign of infection.

Home sweet home

When a new machine is infected, the malware will report the new victim to the command-and-control (C&C) server by
connecting to a domain that is hard-coded in the code, using the path ‘/news/userlogin.php’. The following is the information
on the machine that will be stored in the botnet’s control panel (also see Figure 6):

botid – username and computer name

ver – botnet version

up – uptime of the infected machine

os – operating system identifier of the infected machine

ltime – local timestamp of the infected machine

token – existence of smart card information

cn – unknown

av – name of the security solution installed

dmn – domain name of the workstation

Figure 6. Machine information sent back to the C&C control panel.

All the data sent and received is obfuscated to prevent direct exposure by a packet sniffer program. The data is encoded and
decoded using the RC4 algorithm with the key ‘a7zoSTHljZylEx4o3mJ2eqIdsEguKC15KnyQdfx4RTc5sjH’.

When information is collected on the machine, it is immediately sent back to the C&C server via the path
‘/news/userpanel.php’. A fake HTTP referrer, ‘www1.google.com’, is used throughout the C&C communications.

10/16

When there is a need to generate a random domain name via a domain generation algorithm (DGA), the malware contacts the
master C&C server first to retrieve some configuration data via the path ‘/news/users.php’.

In the payload of the most recently distributed Shifu, with a compilation date of 06 Oct 2015, we have noticed a subtle update:
it no longer connects to the C&C server on machines that are found to have Man-in-the-Middle (MitM) interception for HTTPS
connections. It makes this check by comparing the certificate’s MD5 fingerprint with those of some well-known websites (see
Figure 7):

microsoft.com

dropbox.com

twitter.com

sendspace.com

etrade.com

facebook.com

instagram.com

github.com

icloud.com

python.org

11/16

Figure 7. Checking the existence of MitM interception on HTTPS.

The purpose for this update is believed to be to avoid the malware’s SSL traffic being intercepted and analysed by
researchers and by intrusion detection systems that typically have SSL traffic inspection capabilities.

One browser plug-in kills them all

It seems that Shifu’s author feels nostalgic about the PhishWall anti-phishing solution from SecureBrain. All third-party
browser plug-ins will be disabled immediately via a single registry value, ‘Enable Browser Extensions’, located in
HKCU\Software\Microsoft\Internet Explorer\Main, if PhishWall is found to be installed as an Internet Explorer plug-in. This
makes sense, given that Shifu was first found to be actively spread in Japan, as SecureBrain is a Japanese security provider.
Moreover, it appears that Shifu’s author is cautious with the SecureBrain solution and does not want to create obvious noise –
for example by disabling all browser plug-ins – that could easily alert non-tech-savvy victims.

In addition to disabling third-party IE plug-ins, it also disables the pop-up blocker in IE through a registry key:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3
"1406" = 0

12/16

Botnet-like banking trojan

Last but not least, Shifu also allows the botnet operator to download and execute additional modules, hence it supports a
limited set of commands. The following is a list of commands currently supported by the malware:

webinject

Webinjection to the targeted Internet banking sites is carried out through a local Apache server installed silently by Shifu. In
the underlying code, we realized that the botnet operators issue mitm_mod and mitm_script commands to download a copy of
the Apache web server software as well as the webinjection script and its associated configuration file, config.xml. When
these files are in place on the infected machine, the malware will first modify and make sure the Apache server is properly
configured by setting the server’s address to localhost (127.0.0.1) using a random port for both HTTP and HTTPS. After the
server’s configuration file is set, the server’s process will be started and its status will be monitored periodically through an
asynchronous thread every second to make sure it keeps running.

Webinjection through the local HTTP server won’t work without setting up a hook on the browser process. However, the hook
implementation is simpler than that of traditional banking trojans. Table 4 shows a summary of the hooks on the Winsock API.
Besides hooking the Winsock API, it also hijacks the SSL verification API used by the browser process so that the verification
is always successful regardless of whether the presented SSL certificates are valid.

Hook Windows API Purpose

ws2_32!connect ws2_32!connectEx Redirect all the HTTP/HTTPS traffic to a local HTTP
server to carry out man-in-the-middle operation

crypt32!CertVerifyCertificateChainPolicy
nss3.dll!SSL_AuthCertificateHook
nspr4.dll!SSL_AuthCertificateHook

Always return success when the browser’s SSL
verification process takes place

Table 4. Hooks on the Winsock API.

wipe_cookies

It is assumed that Shifu is mainly distributed via Flash-based exploit kits. This module allows the botherder to make the botnet
clean up Flash cookies found in the %APPDATA%\Macromedia folder to cover the presence of the exploited Flash files.

update

Like most software, the botnet also supports automatic updates. As the malware uses a trivial protection method to prevent
the removal of the malware file – through an opened file handle – it must first close the file handle before being able to replace
the new binary file.

load

This allows for the execution of arbitrary executables downloaded from the C&C server.

kill_os

The real reason why the botnet supports the self-destruction feature (which destroys both the malware and the operating
system) is still a mystery to us. But based on the nature of the botnet – it copies lots of ideas and codes from different
notorious malware – and the fact that it tries to evade analysis by both auto-analysis systems and manual analysis, we can
safely assume that the self-destruction routine will be executed when it is found to be executing on an unwilling platform.

The self-destruction routine (see Figure 8) is pretty straightforward:

Remove all the files attached to removable drives, for instance thumb drives.

Corrupt the filesystem (e.g. NTFS/FAT) by overwriting its boot sector.

Shut down the machine.

In case the shutdown operation is not successful, it terminates itself.

13/16

Figure 8. Shifu’s self-destruction routine.

Conclusion

In conclusion, Shifu is an enhanced or improved piece of banking malware that has borrowed a lot of techniques from its
predecessors; it rectified and refined the weaknesses possibly found in other renowned competitors. The author clearly has a
good understanding of how to deal with thread synchronization in multi-threaded applications – which could indicate that
he/she is an experienced programmer. However, the use of some old-school techniques in Shifu can be easily spotted and
blocked by many security products.

Bibliography

[1] Japanese Banking Trojan Shifu Combines Malware Tools. https://blogs.mcafee.com/mcafee-labs/japanese-banking-trojan-
shifu-combines-malware-tools/.

[2] Shifu: ‘Masterful’ New Banking Trojan Is Attacking 14 Japanese Banks. https://securityintelligence.com/shifu-masterful-
new-banking-trojan-is-attacking-14-japanese-banks/.

Appendix

Table A1 shows the sample SHA1 used in the analysis.

Compilation
timestamp Dropper’s SHA1 X86 Payload’s SHA1

18 August
2015

963BFC778F94FE190FDD1DD66284E9BC9DD2BED6 16E4476146511F6B9D8DDF4B232D896D7EC91F50

https://blogs.mcafee.com/mcafee-labs/japanese-banking-trojan-shifu-combines-malware-tools/
https://securityintelligence.com/shifu-masterful-new-banking-trojan-is-attacking-14-japanese-banks/

14/16

Compilation
timestamp Dropper’s SHA1 X86 Payload’s SHA1

06 October
2015

B4ED692D6E8C35F3C611084E6785972CCAE8DCDC 8FC58220FD84F3A59F20D52F4A07F07657474467

Table 5. Sample SHA1 used in the analysis.

15/16

shifu_fix_iat.py

import idaapi
import idautils

Global variables
IMG_BASE = idaapi.get_imagebase()
list_seg = []
for seg in idautils.Segments():
list_seg.append(seg)
IMG_END = idc.SegEnd(list_seg[len(list_seg)-1])

def decrypt(ea, key):

Virtual address to IMAGE_IMPORT_DESCRIPTOR->FirstThunk
va_iat = 0
Virtual address to IMAGE_IMPORT_DESCRIPTOR->OriginalFirstThunk
va_int = 0
tmp_ea = ea

Back-tracing to locate the IMAGE_IMPORT_DESCRIPTOR from import address table passed from the callback
for xref in idautils.XrefsTo(ea, 0):
 if XrefTypeName(xref.type) == ‘Data_Offset’:
 va_iat = xref.frm - 0x10

if va_iat != 0:
 print “Import Name Table->%08x” % (idaapi.get_long(va_iat) + IMG_BASE)
 va_int = idaapi.get_long(va_iat) + IMG_BASE
else:
 return

if va_int != 0:
 va_itd = idaapi.get_long(va_int)
 # Enumerate array of IMAGE_THUNK_DATA
 while va_itd != 0:
 va_itd = va_itd + IMG_BASE
 if va_itd > IMG_BASE and va_itd <= IMG_END:
 print «Image thunk data->%08x» % va_itd
 va_ibn = va_itd + 2
 ch = idaapi.get_byte(va_ibn)
 str = ‘’
 while ch != 0 and ch != 255:
 str += chr(ch ^ key)
 va_ibn += 1
 ch = idaapi.get_byte(va_ibn)

 # Save the decoded import name
 print «IMAGE_IMPORT_BY_NAME->Name (%08x): %s» % (va_itd+2, str)
 idc.MakeName(tmp_ea, str)
 tmp_ea += 4

 # Next IMAGE_THUNK_DATA
 va_int += 4
 va_itd = idaapi.get_long(va_int)
else:
 return

def imp_cb(ea, name, ord):
if not name:
 print «%08x: ord#%d» % (ea, ord)
else:
 print «%08x: %s (ord#%d)» % (ea, name, ord)

The decrypt function will be responsible to enumerate IMPORT_DESCRIPTOR_TABLE to decode all the function name
decrypt(ea, 0xFF)
We only want to callback once for every imported DLL
return False

Main
nimps = idaapi.get_import_module_qty()

for i in xrange(0, nimps):
name = idaapi.get_import_module_name(i)
if not name:

16/16

 print «Failed to get import module name for #%d» % i
 continue

print «Walking-> %s» % name
idaapi.enum_import_names(i, imp_cb)

print «All done...»

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order to infiltrate organizations’
dedicated environments and transform them into attack launchpads. In this article Aditya Sood presents a new module
introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to exfiltrate sensitive data from end-user
systems and store it in its C&C panels. In this article, researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and from that moment onward, was
intrigued by the properties of these small pieces of self-replicating code. Joe Wells was an expert on computer viruses, was
partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another language, which could then easily
be ‘run’ on any gateway, thus revealing a sample’s true nature in a safe manner. In this article he explains how he
recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware, discussing his team's findings
related to the C&C design and some security issues they identified during the research.

Bulletin Archive

Copyright © 2015 Virus Bulletin

https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201511-Shifu.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

