Reversing the C2C HTTP Emmental communication

B blog.angelalonso.es/2015/10/reversing-c2c-http-emmental.html

= — — —_ — r —

= Open...

Open Recent

Merge...

Import from Hex Dump...
Close

Ctrl+0

Ctrl+Ww

Save

| Save As...

Ctrl+5S

Shift+Ctrl+S

File Set

>

Export Specified Packets...
Export Packet Dissections
Fxnort Selected Packet Bvtes ..

4
Ctrl+H

PEEY

v | Expression...

Prot

4] TCP
TCP
3] TCP
TCP
] TCP
TCP
HTTP
TCP

0 TCP
C___________________Jr0 |

In last post | explained how it was possible to decrypt the initial C&C communication from the data dumped from memory, with the support of a
python script. In this post, | am going to follow the same approach, but using the information from the captured network traffic.
For that | will capture with Wireshark all the communication with the C&C while the malware is running. Then | can export all the 'objects’ in the

HTTP connection, which means the content of the HTTP request and response.

[NoN | |X| capture.cap [
MEdit View Go Capture Analyze Statistics Telephony Tools

[Open... Ctrl+0 B <@ '7} & |
Open Recent r L

Merge... * |Expression...

Impaort from Hex Dump... Prot
Close Ctrl+W [o TCP
TCP
B save Ctrl+S |o TCP
[Save As... Shift+Ctrl+5S Tce
0 TCP

File Set »
TCP

Export Specified Packets... :E;”
Export Packet Dissections » = =5

Export Selected Packet Bytes... Ctrl+H
Export PDUs to File...
Export SSL Session Keys...

Export Objects

print... CirleP
= SMB/SMB2
&l Quit Ctri+Q g

= HTML Form URL Encoded: application/x-www-form-urlencoded
Form item: "i” = "McsZtRV7Bv7ZjMSzwk5alyZELiijPBF38NJcxdSVNELaIVxctx
= fRgJOPilsUZZyvc2swCzi0JC5ael7wlorRhyx48b3kIReFjFdcomTsuyEBPNXn thpE3
T+cp2CCNstribeKReraPgFegZKAL LU ZKoVG6Sxwgkzz tOMxQF LobMu2 1L+mLAZDI2p)
Key: 1
Value [truncated]: McsZtRV7Bw7Z)MSzwk5alyZEiijPBF38N]cxdSVNELaIVvy
~ Form item: "s” = ""
Key: s
value:

http://blog.angelalonso.es/2015/10/reversing-c2c-http-emmental.html
http://blog.angelalonso.es/2015/10/decrypting-emmental-blowfish-and-base64.html
http://3.bp.blogspot.com/-SzDAi0iHHH4/VjCC-DLCf3I/AAAAAAAAbj0/Qit15fPn8rs/s1600/Untitled.png

Now, | have e in a folder all the files with the objects from the HTTP request:

$ Is main

main(1).php main(11).php main(13).php main(15).php main(3).php main(5).php main(7).php main(9).php
main(10).php main(12).php main(14).php main(2).php main(4).php main(6).php main(8).php main.php

$ more main.php

i=McsZtRV7Bv7ZjMSzwk5alyZEiijP8F38NJcxd5VNEIalVxctxxXQUWCGbUaOlYRxhMxTtABNBYmMT %0A%2FkgJOPilsUZZyvc2swCziOJC5ae 17wl

As the HTTP request is URL encoded, | need first to decode it, so | will adapt the python script created in this post to do it automatically. This is

the script:

#!/usr/bin/python

from Crypto.Cipher import Blowfish
from Crypto import Random

from struct import pack

from binascii import hexlify, unhexlify
import sys

import urllib

file1 = sys.argv[1]
file_out = sys.argv[2]

blfs_key = open('/path/to/the/blfs.key','r")

url_encode = open(file1,'r')
url_encode_2 = url_encode.read()

url_decode = urllib.unquote(url_encode_2).decode('utf8')

file_ciphertext_base64 = url_decode
file_blfs_key = blfs_key.read()
ciphertext_raw = file_ciphertext_base64.decode("base64")

IV ="12345678"

_KEY =file_blfs_key

ciphertext = ciphertext_raw

KEY = hexlify(_KEY)[:50]

cipher = Blowfish.new(KEY, Blowfish. MODE_CBC, IV)
message = cipher.decrypt(ciphertext)

config_plain = open(file_out,'w")
config_plain.write(message)

With this script it is easy to run a shell command with a loop 'for' to decrypt all the files in the directory. Bare in mind than the HTTP response
are not URL encoded, so | will not need to perform that step on some of the files.

Now | should have decrypted all the information from each object. Looking at the first two HTTP POST requests | see this is the case, but for
the third one, this is not the case and the data is still encrypted. What's going on here?

2/6

http://blog.angelalonso.es/2015/10/decrypting-emmental-blowfish-and-base64.html

—lmmldﬁoru\!\Wmlr!\s-mslﬂl‘!wjecﬂlﬁljeﬂ!fﬂm_uﬂ decoded more
BTl

R

y=i. ob;emtclem.url_demde! more "mai
rotﬂfForu!lcvml)'!ls D510 ob jectssobjects/cleon_url_decodel more

~Android/Forensict/ Analysis-20151804.objects objectss
mmlcu&nlys\s -20151804/objects/objectss

—----END PUBLIC KEY-----
AHARAHAHAHAH:

~/Android/Forensicd/Analysis-20151004/objects /cbjectss [

A Public Key!! really interesting stuff...

Actually, if | look further in the second HTTP request from the screenshot above | can see the following:

$ more "main(3).php"
ai4...

cjogVGhIIEFuZHJvaWQgUHJvamVjdCB8IGphdmEudmVyc2lvbjogMA==
"s:3:"cmd";s:7:"get_key";s:3:"rid";s:2:"25";s:4:"data";s:0:"";}

This looks to me like the malware sends a request for a key and the server replies with the public key. So the only possibility is that the
malware is using that key to encrypt the data so only the C&C can decrypt it with the private key.

To confirm this is the case, | am going to check the source code of the malware with 'androguard’ as | explained in previous post.

Looking at the code, | see there is a method with the string 'get_key' and | can see which other method is calling it:

In [10]: d.CLASS_Lorg_thoughtcrime_securesms_h_c.METHOD_c.pretty_show()
HHHHHH#HH# Method Information
Lorg/thoughtcrime/securesms/h/c;->c()V [access_flags=public]

HiHHHHEHHE Params

local registers: vO0...v2

- return: void

s R

c-BB@O0xO0 :

0 (00000000) const-string V0, 'get_key'

1 (00000004) const-string v, "

2 (00000008) invoke-virtual ~ v2, v0, v1, Lorg/thoughtcrime/securesms/h/c;->a(Ljava/lang/String; Ljava/lang/String;)Ljava/lang/String;
3 (0000000e) move-result-object vO

4 (00000010) iput-object v0, v2, Lorg/thoughtcrime/securesms/h/c;->c Ljava/lang/String;
5 (00000014) invoke-virtual ~ v2, Lorg/thoughtcrime/securesms/h/c;->b()Ljava/lang/Boolean;
6 (0000001a) move-result-object vO

7 (0000001c) invoke-virtual vO0, Ljava/lang/Boolean;->booleanValue()Z

3/6

http://2.bp.blogspot.com/-mwWOOn9VhVI/VjCG3Eep5JI/AAAAAAAAbkI/W45bONwPoH8/s1600/Screen%2BShot%2B2015-10-28%2Bat%2B09.25.42.png
http://2.bp.blogspot.com/-8zgppnon5i0/VjCInHnyDII/AAAAAAAAbkc/aZSEM9WwyPw/s1600/Screen%2BShot%2B2015-10-28%2Bat%2B09.33.02.png
http://blog.angelalonso.es/2015/10/malware-analysis-with-androguad.html

8 (00000022) move-result v0
9 (00000024) if-eqz v0, 5 [c-BB@0x28 c-BB@0x2e]

c-BB@0x28 :
10 (00000028) invoke-direct v2, Lorg/thoughtcrime/securesms/h/c;->d()V [c-BB@0x2e]

c-BB@0x2e :
11 (0000002¢) return-void

HiHHHHIHEH XREF

F: Lorg/thoughtcrime/securesms/h/i; b (Landroid/content/Context;)V be

T: Lorg/thoughtcrime/securesms/h/c; b ()Ljava/lang/Boolean; 14

T: Lorg/thoughtcrime/securesms/h/c; d ()V 28

T: Lorg/thoughtcrime/securesms/h/c; a (Ljava/lang/String; Ljava/lang/String;)Ljava/lang/String; 8

HHHHHEHHEHHERHEHE

When decompiling the code | end up with some interesting Java methods:

String(v3_1.dofinal (android.v

Looking tat the Java code | can see that the public key is used. But also, looking deeper into the code, | find another interesting method:

private String a(String p9)
{

String v1_0=0;

Stringv0_0="";

try {
javax.crypto.Cipher v2_1 = javax.crypto.Cipher.getinstance("RSA/ECB/PKCS1PADDING");
v2_1.init(1, this.d);
String[] v3_2 = this.a(p9, 100);
java.util.ArrayList v4_2 = new java.util.ArrayList();
int vb = v3_2.length;

} catch (String v1) {
return this.a.c(v0_0);

}

while (v1_0 < v5) {
v4_2.add(android.util.Base64.encodeToString(v2_1.doFinal(v3_2[v1_0].getBytes()), 0));
v1_0++;

}

v0_0 = android.text.TextUtils.join(".", v4_2);

return this.a.c(v0_0);

So basically, one method is for encryption and the other for decryption, and both of them are using the same public key. This is really
interesting stuff.

So this is whats going on so far:

1. The compromised device sends the information encrypted with blowfish to the C&C

4/6

http://4.bp.blogspot.com/-uXqptmSfRoY/VjCL0N7wxQI/AAAAAAAAbko/cFFNNiagq1c/s1600/Screen%2BShot%2B2015-10-28%2Bat%2B09.46.57.png

. The C&C server replies with OK

. The compromised device requests the public key

. The C&C server replies with the public key

. The compromised device encrypts the information with the public key and sends to the C&C
. The C&C server can decrypt with it's private key

. The C&C server sends data encrypted with the private key ->I need to verify this

. The compromised device can decrypt with the public key > | need to verify this

0N s WN

To verify step 6 and 7, and as very quick PoC, | have created some Java code which takes the public key sent by the C&C and try to decrypt
the successive messages sent by the C&C.

[L 2. vim

© bash %5 | bash 36 | bash %7 @ bash M8

String decrypt
System.out.printl

catch(Exception

e gethessoge()

rumlB="5556" sh " shtext5e= Sue” shnum3="9151" shbextl="t
t3ue” shnuml="8151"

‘W, Enetz. ot/man . phe; ht

url_sas=""
url_log=""
phone_nusber=""

down
decrypted (plointext) = lood_domain="ttt"
ready_to_bind="8" />

<fconfigs";
What is the information sent by the C&C? it looks like a new config.xml with new C&C URL..
Very interesting..

Looking to the code again, | see methods which performs the request for a new configuration file:

In [7]: d.CLASS_Lorg_thoughtcrime_securesms_xservices_b.source()
package org.thoughtcrime.securesms.xservices;
class b extends android.os.AsyncTask {

android.content.Context a;

final synthetic org.thoughtcrime.securesms.xservices.XRepeat b;

5/6

http://1.bp.blogspot.com/-srrjZlXlpcw/VjCUtbBxG6I/AAAAAAAAbk4/kj7zqKcX0Fs/s1600/Screen%2BShot%2B2015-10-28%2Bat%2B10.25.51.png
http://4.bp.blogspot.com/-pnbEy947KTQ/VjCWVD9JkWI/AAAAAAAAblE/o1BR3oNTnCY/s1600/Screen%2BShot%2B2015-10-28%2Bat%2B10.31.41.png

public b(org.thoughtcrime.securesms.xservices.XRepeat p1, android.content.Context p2)

{
this.b = p1;
this.a = p2;
return;

}

protected varargs String a(String[] p4)
{

org.thoughtcrime.securesms.h.i.a(this.a);
org.thoughtcrime.securesms.h.i.c("CONF", "Check pull off urls", this.a);
org.thoughtcrime.securesms.h.i.b(this.a);
org.thoughtcrime.securesms.h.i.c(this.a);
org.thoughtcrime.securesms.h.i.c("CONF", "Get config data from server", this.a);
org.thoughtcrime.securesms.h.i.j(this.a);
org.thoughtcrime.securesms.h.i.c("DATA", "Send data to server", this.a);

return "OK";

}

protected void a(String p1)
{

super.onPostExecute(p1);
return;

}

protected synthetic Object doInBackground(Object[] p2)

{
return this.a(((String[]) p2));

}

protected synthetic void onPostExecute(Object p1)

{
this.a(((String) p1));
return;

}

As the HTTP request to the C&C are encrypted with the Public key, | can't decrypt it. However, | could check in memory the information before
is encrypted.

And this is what | found:
a:2:{s:7:"LogCode";s:4:"CONF";s:7:"LogText";s:27:"Get config data from server";}

Which matches the methods | checked previously :)

6/6

