
1/9

Knowledge Fragment: Unwrapping Fobber
byte-atlas.blogspot.ch/2015/08/knowledge-fragment-unwrapping-fobber.html

About two weeks ago I came across an interesting sample using an interesting anti-analysis
pattern.

 The anti-analysis technique can be best described as "runtime-only code decryption". This
means prior to execution of a function, the code is decrypted, then executed and finally
encrypted again, but with a different key.

 Malwarebytes has already published an analysis on this family they called "Fobber".
 However, in this blog post I wanted to share how to "unwrap" the sample's encrypted

functions for easier analysis. There is also another blog post detailing how to work around
the string encryption.

The sample and code related to this blog post can be found on bitbucket.

Fobber's Function Encryption Scheme

First off, let's have a look how Fobber looks in memory, visualized by IDA's function analysis:

http://byte-atlas.blogspot.ch/2015/08/knowledge-fragment-unwrapping-fobber.html
https://blog.malwarebytes.org/intelligence/2015/06/elusive-hanjuan-ek-caught-in-new-malvertising-campaign/
https://bitbucket.org/byte_atlas/fobber_decryption

2/9

IDA's first view on Fobber.

IDA only recognizes a handful of functions. Among these is the actual code decryption
routine, as well as some code handling translating relevant addresses of the position
independent code into absolute offsets.

Next, a closer look at how the on-demand decryption/encryption of functions works:

http://3.bp.blogspot.com/-1ZK3vhTxCV8/VdMnHj0nZ0I/AAAAAAAAAFQ/TKQbL9pff7s/s1600/fobber_ida_before.png

3/9

The Fobber-encrypted function sub_95112A, starting with call to decryptFunctionCode.

We can see that function sub_95112A starts with a call to what I renamed
"decryptFunctionCode":

http://3.bp.blogspot.com/-VHtq3RX01jA/VdMnbO37H5I/AAAAAAAAAFY/JyZ6gZ6vh8w/s1600/fobber_call_to_decryption.png

4/9

Fobber's on-demand decryption code for functions, revealing the parameter offsets
neccessary for decryption.

This function does not make use of the stack, thus it is surrounded by a simple
pushad/popad prologue/epilogue. We can see that some references are made relative to the
return address (initially put into esi by copying from [esp+20h]):

Field [esi-7] contains a flag indicating whether or not the function is already decrypted.
Field [esi-8h] contains the single byte key for encryption, while
field [esi-Ah] contains the length of the encrypted function, stored xor'ed with 0x461F.

The actual cryptXorCode takes those values as parameters and then loops over the

http://1.bp.blogspot.com/-MzNqgauQoq8/VdMnuCvTuXI/AAAAAAAAAFg/GEZJkgv9lME/s1600/fobber_decrypt_code.png

5/9

encrypted function body, xor'ing with the current key and then updating the key by rotating
3bit and adding 0x53.

Function for decrypting one function, given the neccessary parameters.

After decryption, our function makes a lot more sense and we can see the default function
prologue (push ebp; mov ebp, esp) among other things.

http://1.bp.blogspot.com/-LlLuYY6RI4s/VdMoOHT-KsI/AAAAAAAAAFo/JmG0ygRFlW0/s1600/fobber_xor_function.png

6/9

The decrypted equivalent of function sub_95112A, revealing some "real" code.

Also note the parameters:

0x951125 - key: 0x7B
0x951126 - length: 0x4629^0x461F -> 0x36 bytes
0x951128 - encryption flag: 0x01

So far so good. Now let's decrypt all of those functions automatically.

Decrypt All The Things

First, we want to find our decryption function. For all Fobber samples I looked at, the regex
r"\x60\x8B.\x24\x20\x66" was delivering unique results for locating the decryption function.

Next, we want to find all calls to this decryption function. For this we can use the regex
r"\xE8" to find all potential "call rel_offset" instructions.

 Then we just need to do some address math and check if the call destination (calculated as:
image_base + call_origin + relative_call_offset + 5) is equal to the address of our decryption
function.

 Should this be the case, we can extract the parameters as described above and decrypt the
code.

http://3.bp.blogspot.com/-8uA7U_f21hI/VdMofIGpMoI/AAAAAAAAAFw/Ty36SIpKy_w/s1600/fobber_call_after_decryption.png

7/9

We then only need to exchange the respective bytes in our binary with the decrypted bytes.
In the following code I also set the decryption flag and fix the function ending with a "retn"
(0xC3) instruction to ease IDA's job of identifying functions afterwards. Otherwise,
rinse/repeat until all functions are decrypted.

Code:

#!/usr/bin/env python

import re
import struct

def decrypt(buf, key):
 decrypted = ""
 for char in buf:
 decrypted += chr(ord(char) ^ key)
 # rotate 3 bits
 key = ((key >> 3) | (key << (8 - 3))) & 0xFF
 key = (key + 0x53) & 0xFF
 return decrypted

def replace_bytes(buf, offset, bytes):
 return buf[:offset] + bytes + buf[offset + len(bytes):]

def decrypt_all(binary, image_base):
 # locate decryption function
 decrypt_function_offset = re.search(r"\x60\x8B.\x24\x20\x66", binary).start()
 # locate all calls to decryption function
 regex_call = r"\xe8(?P<rel_call>.{4})"
 for match in re.finditer(regex_call, binary):
 call_origin = match.start()
 packed_call = binary[call_origin + 1:call_origin + 1 + 4]
 rel_call = struct.unpack("I", packed_call)[0]
 call_destination = (image_base + call_origin + rel_call + 5) & 0xFFFFFFFF
 if call_destination == image_base + decrypt_function_offset:
 # decrypt function and replace/fix
 decrypted_flag = ord(binary[call_origin - 0x2])
 if decrypted_flag == 0x0:
 key = ord(binary[call_origin - 0x3])
 size = struct.unpack("H", binary[call_origin - 0x5:call_origin - 0x3])[0] ^ 0x461F
 buf = binary[call_origin + 0x5:call_origin + 0x5 + size]
 decrypted_function = decrypt(buf, key)
 binary = replace_bytes(binary, call_origin + 0x5, decrypted_function)
 binary = replace_bytes(binary, call_origin + len(decrypted_function), "\xC3")

8/9

 binary = replace_bytes(binary, call_origin - 0x2, "\x01")
 return binary

[...]

IDA likes this this already better:

IDA's view on a code-decrypted Fobber sample.

However, we are not quite done yet, as IDA still barfs on a couple of functions.

Conclusion

http://4.bp.blogspot.com/-vanirzJsUtc/VdMqJU97euI/AAAAAAAAAF8/yXP70pRtbtQ/s1600/fobber_ida_after.png

9/9

After decrypting all functions, we can already start analyzing the sample effectively.
But we are not quite done yet, and the second post looks closer at the inline usage of
encrypted strings.

sample used:
 md5: 49974f869f8f5d32620685bc1818c957
 sha256: 93508580e84d3291f55a1f2cb15f27666238add9831fd20736a3c5e6a73a2cb4

Repository with memdump + extraction code

http://byte-atlas.blogspot.com/2015/08/knowledge-fragment-fobber-inline-string.html
https://bitbucket.org/byte_atlas/fobber_decryption

