Who’s Behind Your Proxy? Uncovering Bunitu’s Secrets

blog.malwarebytes.com/threat-analysis/2015/08/whos-behind-your-proxy-uncovering-bunitus-secrets/

Malwarebytes Labs August 5, 2015

Disclaimer

The following research is the result of a collaboration with ad-fraud fighting firm Sentrant.
Analysts from both the Sentrant and Malwarebytes teams have been working on the Bunitu
malware and we decided to combine our efforts to provide a more complete study.

Executive summary

In our previous analysis we showed how the Bunitu Trojan was distributed via the

Neutrino exploit kit in various malvertising campaigns. After spending more time analyzing
the proxy, we realized that the requests we were receiving were not related to ad-fraud
activity (as we initially suspected) but instead appeared to be for some sort of VPN service.

We believe that the operators of the Bunitu botnet are selling access to infected proxy bots
as a way to monetize their botnet. People using certain VPN service providers to protect their
privacy are completely unaware that the backend uses a criminal infrastructure of infected
computers worldwide.

1/12

https://blog.malwarebytes.com/threat-analysis/2015/08/whos-behind-your-proxy-uncovering-bunitus-secrets/
http://sentrant.com/
https://blog.malwarebytes.org/intelligence/2015/07/revisiting-the-bunitu-trojan/
https://blog.malwarebytes.org/intelligence/2015/07/revisiting-the-bunitu-trojan/

Bunitu infections July'15

1200

1000

200

o e — = e B T T = T T = B B B B T T T = T = B B =]

Number of Bunitu infections in July based on telemetry data from Malwarebytes Anti-Malware.

Not only that, but all traffic is also unencrypted — ironic for a VPN service — and could be
intercepted via a Man-In-The-Middle attack. Malicious actions such as data theft or traffic
redirection could therefore easily be performed.

During our research we noticed that a VPN service called VIP72 was heavily involved with
the Bunitu botnet and its proxies. VIP72 appears to be a top choice for cybercriminals, as
referenced on many underground forums. A recent report from FireEye on Nigerian
scammers also mentions VIP72.

In this article we will review the proxy mechanism and expose the underlying infrastructure
used by the Bunitu botnet. We are also sharing indicators of compromise so that end users
are able to clean up their computers and no longer help to provide free exit nodes

for dubious VPN services.

Technical details

Experiments performed

In order to confirm our hypothesis regarding the Bunitu proxies we developed our own Bunitu
“‘honeypot”. We reverse engineered the Bunitu command and control (C2) protocol and
developed a script that mimicked the proxy registration request.

2/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/Graph.png
https://www2.fireeye.com/rs/%20848-DID-%20242/images/rpt_nigerian-scammers.pdf

We then used the script to register our honeypot to the Bunitu C2 and recorded the URLs of
all the requests that were subsequently sent to our honeypot. A copy of the honeypot
registration script can be found on our GitHub here: bunitu_tests.

Findings

Almost immediately after registering our honeypot we realized that many of the requests we
were receiving came from a VPN service known as VIP72.

Since the clients were already connected through a proxy it seemed strange that they would
be visiting a second proxy, so we decided to investigate further. We also shut down the
honeypot as we did not want to accidentally intercept legitimate requests from people who
were unaware that they were using a botnet as a proxy.

We registered an account and logged into VIP72 and were surprised to see our honeypot
proxy listed as one of their available exit IP address. Of course this in of itself is not proof
that VPIP72 is knowingly using Bunitu botnet proxies.

It could be the case that they were scanning the Internet for open proxies (proxies that are
listening on the Internet without requiring authentication) and using them to route traffic.
However, we noticed a bug in the proxy registration system. The |IP address that the proxy is
initially registered from will be maintained in the VIP72 database as the “HOST” and
associated with the proxy, even if the proxy moves to a new |IP address.

To prove that VIP72 is using Bunitu proxies as their exit points, we registered a Bunitu proxy
from one IP (Honeypot #1) then moved it to another IP (Honeypot #2) and registered it again
using the same bot ID.

(&) @ vip72.com/access/index.phpraction=SocksAndProxies&Reall P=1 [Search [-al=T - I

vip~72.com

Viewed proxies: 540, Limit views:

— B Socks | Praxy

r A S I BL [+ X 3 Ope ™,
ok Sxough 1 erine 2 e e pot cowry:
from the VPS honeypot - .
DOWNLOAD SOCKS CLIENT and use 15000~ 5 tegion: please select country
City: please select region

Search by: SOCKS Port ~ s | activete fiter Ml Resetfiter |
On Line (hours): |§3 -
Activate seanch Reset search

Honeypot #2 Honeypot #1
{current) IP (original registration) IP

2015-07-01 | * . ¥ CANADA

Countries
ANADA 1]100.00 %|

Total records: 1 (100%)

3/12

https://github.com/hasherezade/bunitu_tests
https://blog.malwarebytes.org/wp-content/uploads/2015/07/vip72.png

As you can see in the VIP72 proxy list, the IP for Honeypot #1 is still listed as the proxy
“‘HOST” with the new IP for Honeypot #2 listed as the current IP.

If VIP72 was simply scanning the Internet for open proxies it is possible that they would have
identified both our proxies (old and new IP) at different times. However, without having
access to the Bunitu C2 server and bot ID there is no way that they could have associated
those IPs to the same proxy as shown in the screenshot above.

This is proof that the operators of VIP72 also have direct access to the Bunitu botnet server
and use Bunitu infected hosts as proxies for their service.

Distributors

Our experiment lead us to the conclusion that distributors are different based on
the geolocation of Bunitu infected machines.

Bunitu infections by country

Netherlands
A%,

In the US. and Canada, the VPN provider is VIP72, but in Central and Eastern Europe
characteristics of the traffic are entirely different and suggest another VPN provider which we
have not been able to pinpoint yet.

4/12

https://blog.malwarebytes.org/wp-content/uploads/2015/08/country.png

1) register the bot

bunitu C&C
(middleman)

infected machine [+

4) send command from the
distributor Y

2) notifly

appropriate
distributor

3) send commands to (based on bot's
my bots Geolocation)

Y

Distributor {i.e.
VIPT2)

Our hypothesis is that the botnet is operated by a middleman who resells a pool of bots to
various providers. Then, the bots are assigned to particular VPN networks according to their
geolocation.

Proxy analysis

Two types of proxies are created on an infected machine:

1. Standard, by opening ports and passing traffic through them which works if the
machine has a public IP address.

2. Tunneled, by connecting to C&C #2 and receiving commands through and passing the
results back which works even if the infected machine has no public IP address.

Viewing connections by fcpview, we can see:

[B bunite. 612 TCP 12360 I LISTEMIMG
B bunite.. 512 TCP I LISTEMIMG

B bunitu.. 512 TCP 10.0.2.15 1036 95 211.15.37 53 ESTABLISHED

» First 2 connections belong to standard proxies — HTTP and SOCKS (listening at 2
randomly chosen ports).

e Second connection belongs to C&C#2 (in this case: 95.271.15.37) at remote port 53
(tunnel).

Connection initialization process:

As we mentioned in the previous post about Bunitu, during installation of the Trojan, a unique
ID is generated and stored in the registry:

5/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/middleman_1.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/proxy_connections.png

£ Registry Editor
File Edit “iew Favorites Help

(] Tracing A/ Mame Type Data
=@ Tvpe. 1 Installer] (DEFEU"Z) REG_5Z (value not set)

(3 serinstallzble driver || faif sy nehronous REG_DWORD 0x00000001 (1)

8 W?n;:lows DIIName REG_EXPAND_SZ2 C\Documents and SetkingstesteriLocal Settings! Application Datalynfucsu.dll
= ----{gngrg:;entials Impersonate REG_DWORD 0x00000001 1)

D"D GPExtensions MaxWait REG_DWORD 000000001 (1)

=01 NatiFy [ab] Startup REG_S7 ynfucvu

D crypt3zchain .zinkraxx REG_BIMARY f& 1b 70 67 d6 6f o0 9d ad dF
{7 crvptnet
[escdl

D ScCertProp
{1 schedule
[sclgntfy
CI SensLogn
D kerrnsey
(23 wiballoon
o= /rifucu
-] Specialaccounts
-0 wow

{1 WPAEverks

{23 Windows Script Host

-(Z] Wwindows Scripting Hosk
[0 WZCSWC

{2 Mozila 5
-] mozilla.org
-] ODBC ~|
£ il | &

My ComputeriHEEY _LOCAL_MACHINE\SOFTWARE \MicrosoftyWindows MTCurrentYersion|winlogoniNotifyynfucsu

This is an important value sent to the C&Cs and used to identify the particular bot (bot ID). It
occurs in each and every packet exchanged between the bot and C&C, often in its truncated
version containing only the first 4 byes, i.e.: fb 1b 70 67 for the above case.

In short, presence of the relevant key in the packet can be used as proof that the packet
belongs to the Bunitu protocol.

Standard proxy registration (packet sent to C&C#1):

51 387.6766B70(120.185.108.130 TCP 68 57296 = domain [ACK
52 387.6780990(120.185.108.130 DNS 112 [Malformed Packet]

TCP segment data (39 bytes)

Details:

6/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/zinktaxx_xp.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/register1.png

00 01 01 00 00 01 00 00 00 00 00 00 = header (hard coded)
67 ab = socks proxy port (little endian -> 0xab67 = 43879)
a® 32 = http proxy port (little endian -> 0x32ab = 12971)
05 00 = hard coded value

3a = minutes since last reboot

02 = hours since last reboot

fb 1b 70 67 d6 6f cO0 9d ad df = bot ID

8d fo = hard coded unique to each =versionsit of the malware

Tunneling proxy registration (packet sent to C&C#2):

73 472.7460410(95.211.15.37

TCP 68 56382 = domain [ACK] Seq 1 Ack=1 W

0000 00 04 02 00 00 OO 0D 0D 00 Q0 00 00 00 00 08 00 ceeeenas
0010 45 00 00 42 54 ed 40 00 40 06 17 67 6d f3 f1 76 E..BT.@. @..gm..v
0020 5f d3 of 25 dc 3= 00 35 QC 63 ea de 82 67 22 41 %

0030 80 18 00 e5 fb 7c 00 0 8 03 00 09 be 46|.. F
0040 71 93 47 oc [E] ;ra 5; d& ; g e, ... pg.o..!]
o050 0

Details:

Oe 00 = Length of the message (little endian) -> 0x00e0 -> 14
fb 1b 70 67 d6 6f cO 9d = bot ID, truncated (without last WORD)
21 04 00 00 = command (O0x0421) "start the proxy"

Communication models: standard proxy vs tunnel:

C&C#1 is used to register standard proxies when the clients have a public IP address.

To keep the connection with C&C#1, the client periodically sends the above registration
packet. Due to the fact that the infected machine has a public IP, the role of the C&C is
simple: To make sure that the bot is ready to receive commands.

To emulate the bot’s behavior, we have implemented the following script: cnc1_test.py. The
server is just used to receive data from the client, and does not send any special response
back and that’'s why it is not possible to verify whether the given host is a Bunitu C&C#1.

C&C#2 (tunnel) is used when the clients don’t have a public IP

Communication with the tunnel and keeping the connection alive is more complex, as it
involves a custom protocol. In this case, the server plays an active and important role: Its
responses can be used to test whether a particular host is a Bunitu C&C#2. For such a
verification, we have created following script: cnc2_test.py.

After receiving the registration packet, C&C#2 tests the bot by asking it to execute a DNS
query:

712

https://blog.malwarebytes.org/wp-content/uploads/2015/07/register2.png
https://github.com/hasherezade/bunitu_tests/blob/master/cnc1_test.py
https://github.com/hasherezade/bunitu_tests/blob/master/cnc1_test.py

1. C&C#2 (IP: 95.211.178.145) sends a command to test the connection by
querying google.com

2. The bot executes the request by making the DNS query and then testing the
connection with the queried IP 216.58.209.70 that belongs to google.com

3. The bot reports success (or failure) to C&C#2 (IP: 95.211.178.145)

4. C&C#2 confirms receiving the report

. 758486000 95.211.15.37 [TCP segment of a reassembled PDU]
78 799.759557000 §5.211.15.37 TCP 68 49642 = domain [ACK] Seq=15 Ack=51 Win=29312 Le
79 799.763614000 _ 89.108.202.21 DNS 2| 72 Standard query 0xb289 A google.com
80 799.801820000 89.108.202.21 |[EECCINEEUNEEE Os | 88 Standard query response 0xb288 A 216.58.209.78
81 799.803705000 |EEEEINEENNEEE 216-58.209.78 TCP | 76 43396 > http [SYN] Seq=0 Win=29200 Len=0 MSS=14
82 799.843613000 216.58.209.78 TcP | 76 http = 43395 [SYN, ACK] Seq=0 Ack=1 Win=42540 L
83 799.843608000 NI -:c.55.209.78 TCP | 68 43396 = http [ACK] Seq=1 Ack=1 Win=20312 Len=0 -
84 799.845141000 [Nl c5.211.15.37 TcP 3[105 [TCP segment of a reassembled POU]

85 799.983446000 95.211.15.37 [N 1 cP 4105 [TCP segment of a reassembled POU)

TCP segment data (50 bytes)

0000 00 0D D2 OO OO OO OO 0D 0D QO OO0 OO OO0 DO OB 0O

0010 45 00 00 66 e 02 40 00 37 06 ec 21 5f d3 of 25
0020 a4 7f d5 f6 00 35 cl eb 20 cd 89 4e 7a 22 00 lc
0030 f7 00 00 01 0 a fo 2b
0040
0050
0060
0070

Packets exchanged between C&C#2 (blue) and bot (red) during this test:

0pEEEEee 2e RO 0O @O B0 GO 08 0G0 @8 B0 @8 e6 ... V...
POEREE1G GG G GO AA|e1 A6 A0 A1) B AE GO GO B0 GG B0 BB, ...
pEOEER2Ze ed ba ca 39 01 67 of 6f 67 6c 65 2e 63 6f 6d €@ ...9.goo gle.com.

pEEeAO36 56 B8 P.
QoeoeeeE 21 00 OO GO|56 la 8a ba| OO B0 GO 0O 0O GO GO EB !.. . V...
DOOEEA1E GO GO GG GO |01 08 62 Al 6@ 60 08 BDI?C 1b 60 @@I Y000l oo
QEeeedZE e4 ba ca 3901 oo ookl

0EEeER32 21 00 00 00(56 la 83 ba| GO 06 GO 60 Q@ @G @O GO !, . M., ...,

poOEEEE42 GO RO GO CE|R4 00 B2 BO| GG BO 0O eO)7c 1b 6B B8} saoolloas

ooEoees2 66 ee ee eejel; L

Every packet exchanged between C&C#2 and a bot is prompted by a DWORD containing
the length of the data that follows it (little endian). After that, there is the bot ID (truncated to
first 4 bytes).

The 6-th DWORD (marked red) packet can have the following meanings:

o 0100 00 01: “test the given domain”
e 0100 02 01: “bot reporting: domain tested”
e 04 00 02 00: “report accepted”

The 8-th DWORD (marked purple) is the socket number via which the bot performed a
request (to google)

8/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/test_req.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/testpackets.png

The 9-th DWORD (marked yellow) is a unique value generated by the C&C#2

The bot tests the connection with google, and then builds the response for the C&C#2
(based on the request and changing the appropriate fields):

.
5]

=

aaL R
moOos &

Tunneling communication process for the client

9/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/google_response.png

request #1

client (without proxy) |« Internet

response #1

Bunitu proxy communication schema (simplified)

request #1

client of the proxy * hunitu server (C&C
service #2)
3
response #1
response #1
request #1
¥
infected machine
request #1 response #1

REQUEST (C&C#2 to bot)
The tunneled C&C receives the requests from the connected clients. It wraps them in the
internal protocol and sends them to an infected machine.

1. C&C#2 (IP: 95.211.178.145) gives an order to make a particular request (demanded by
the proxy user)
2. The bot performs the request

10/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/bunitu_tunelling.png

45001 . 79330t
45002 . 79392¢

g5.211.178.145 [TCP segment of a reassembled PDU]
HTTP GET / 1437584680576/ rexdot.]s?1=00¢
46003 14604.80734¢ HTTP 1459 HTTP/1.1 200 OK (af@ication/javas
26004 14604.80737: [N 1 103.137.65 TCP 68 52721 > http [ACK] Sdq=8147 Ack=57:
46005 14604.80783; (NG IEEINEE ©S-211.178.145 DONS 1464 Dynamic update responfe 0x7931 Name
46006 14504.20726¢ IR o5.211.178.145 TCP 100 [TCP segment of a reasgembled PDU]
46007 14604.85157¢ 95.211.178.145 TCP 1464 [TCP segment of a reasdembled PDU]

46008 14604.85161(95.211.178.145 IR - 572 [TCP segment of a reasskmbled PDUI

45009 14504, 851666 95.211.178.145 TCP 68 45309 = domain [ACK] SeqeS971932 Ac

2|178.21.154. 48

91.103.137.65

Q40] ; . A Mo
QoS0 ab 66 05 Q0 X : f..P...
Q080 X 00 |do 43 00 00| = L 5t 31 : GET /_ 14
[olopiol (55 35 38 34 36 38 30 35 . 36 2f 3" 1 576/ rexd
Q20 5T > Ga 73 3f 6c 3d 39 i B9 54 : ¢ .]s% L= S0&1 d=01
olai=To NN] ! 63 59 6f 77 2 : 7 beRZHgZ
[l0T=ToT (¢ §5 55 55 S0 S5t e} - : i3 B3] fFZCMccFE
oobo |} i §1 34 35 4f 2e] y E 5 B ; 50. b.87&et=
QocO B9 65 77 26 68 73 72 3 : 5 B] e sr c=1&extr
oodo i1 B 72 31 26 k k : :] =&fr= tz=-1208&

RESPONSE (bot to C&C#2)

The infected machine carries out the requested operations and its IP address is visible from
the outside. After fetching the results, it packs them in the internal protocol and sends them
back to the C&C (tunnel).

1. The bot gets the response from the appropriate server
2. The bot passes the response to C&C#2 (IP: 95.211.178.145), wrapped in the internal
protocol and then C&C#2 passes it to the proxy user

46002 14604.79392¢ EEUNEENNE 175. 21, 154.49 HTTP 1119 GET / 1437584680576/ rexdot.]s?L=9081d=01TglucYo

46002 14604.80734¢ 91.103.137.65 HTTP 1459 HTTP/1.1 200 OK (application/javascript)
.20737: [ol.103.137.65 ACK] Sck=8147 Ack=5775 Win=47360
.80783¢ 95.211.178.145 DNS 1464 Dynamic update responie 0x7931 Name exists[Malf

14604, 80786¢ 95.211.178.145

45006

0OD0 00 04 02 00 00 00 00 00 00 00 G0 00 OO0 00 08 00
0010 45 00 05 a8 35 a0 40 00 40 06 dl 828 6d 3 ad cf
0020 St d3 b2 91 b4 e5 00 35 b6 e0 dc 62 66 49 15 &5

0030 80 10 05 a4 7f 5f 00 00 01 01 05 0a 00 63 f9 4d
0040 e2 03 de 95 /90 0S5 00 00 | fd e0 43 fd||00 00 00 OO
o050 |NEEERENNER /- 65 05 00 |03 02 02 02|58 05 00 00
0050 cc 05 00 00 dO 43 00 00 01 48 54 54 50 2f 31 2Ze

0070 3T 20 22 20 50 20 4T 4p 0d 0a 43 61 63 68 65 2d
0020 43 6f 6e 74 72 6f 6c 3a 20 6e 6f 2d 62 61 62 68} Control: no-cach
0090 65 2¢ 20 6e &f 2d 73 74 &f 72 65 od 0a 50 72 61 e, no-st ore..Pra
00a0 |57 6d 61 3a 20 62 6f 2d 63 61 63 68 65 0d 0a 43 gma: no- cache..C
o0ho |6f 6e 74 65 G6e 74 2d 54 79 70 65 3a 20 61 70 70l ontent-T ype: app
00c0 |6c 69 63 61 74 69 6f 62 2f 6a 61 76 61 73 63 72)| lication /javascr
oodo |69 70 74 3b 20 63 68 61 72 73 65 74 3d 75 74 66) 1pt; cha rset=utf
00e0 f2d 38 Od 0a 43 6f Ge 74 65 6e 74 2d 45 Ge 63 67| -8..Cont ent-Enco
00f0 |64 69 Ge 67 3a 20 67 7a 69 70 Od 0a 45 78 70 69) ding: gz 1p..Expl
0100 |72 65 73 3a 20 2d 31 0d 0a 56 61 72 79 3a 20 41§ res: -1. .Vary: A
0110 §63 63 65 70 74 2d 45 6e 63 6f 64 69 68 67 0d Oal ccept-En coding..
0120 50 33 50 3a 20 43 50 3d 22 42 55 53 20 43 55 52| P3P: CP= "BUS CUR
0120 120 42 4f 4e &f 20 46 49 4e 20 49 56 44 sf 20 4f CONo FI N IVDo O

During the communication process, C&C#2 may request the bot to connect to additional IPs.

Here is a command from C&C#2 instructing the bot to connect to a new IP and setup the
tunnel SOCKS proxy:

11/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/getcmd_server.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/getcmd_bot_resp.png

peeeees7 |15 00 GO 0O 60 GO GO OO OO 60 00 B0 0B 60 e ed).....,
peeeees7 |00 06 66 EIEI-EZ c7 e5 fbl 20038tz

Details:
15 00 00 00 - message size

33 - command for “connect to new IP”
42 c7 e5 fb - new IP address (little endian)

Conclusion

Bunitu shows us how versatile malware can be, especially when compromised systems are
tied together towards the same goal. While we have analyzed its main components, there is
still much more that is unknown about this threat and in particular the extent of its reach or
the list of VPN providers using it.

We hope that this research will help others to identify Bunitu related infections and eventually
reduce the size of the botnet. We also invite security firms and law enforcement to get in
touch with us via the contacts provided below so we can share with them additional
intelligence.

Analyzed samples:

¢ Original sample (installer) md5=542f7b96990de6cd3b04b599c25ebe57 ; payload
(ynfucvu.dll) md5=1bf287bf6cbe4d405983d1431c468de7

o Original sample (installer) md5=ac4e05a013705fd268e02a97c15d6f79 ; payload
(lyhbyjo.dll) md5=b71832a8326b598208f49bf13e5b961f

Acknowledgements/contacts

We would like to thank the following contributors to this report:
Sentrant: Sergei Frankoff

Malwarebytes: hasherezade

12/12

https://blog.malwarebytes.org/wp-content/uploads/2015/07/connect_ip.png
https://www.virustotal.com/en/file/14cf87a14700a36d19e4fb98034437adc054417facb45356f296fe0cfe5d28f4/analysis/
https://www.virustotal.com/en/file/a5090acf84510573ac48de030cf59400813a54cd4af42d1de4bcee9d6ee44cb0/analysis/
https://www.virustotal.com/en/file/9c25ce1b5e36926919b29383d4fdde1b71e441254318e790429f684f0cfe2ecd/analysis/
https://www.virustotal.com/en/file/6e662bb0f8831d487e386338916f4b5fdba19f76c98c20908ac812d290f654ee/analysis/
https://blog.malwarebytes.org/author/hasherezade/

