Related Posts

malwaretech.com/2013/08/powerloader-injection-something-truly.html

MalwareTech August 13, 2013

I’m not dead

It has been a while since i wrote an article (I've been pretty busy in real life), so | decided to
get writing. This article will probably only make sense to people from a malware research /
programming background, but to compensate i will be posting a fairly non technical article in
the near future.

| will be talking about the infamous injection method from PowerLoader 2.0, which has been
seen in many different malware families such as: Carberp, Redyms and Gapz. Recently,
after looking at the difference between OverclOck’s proof of concept and the real deal, a
friend asked me “Why does PowerLoader go to all the trouble of using ROP chains instead
of just executing the shellcode like OverclOck does.”, | already had a perfect idea of why, but
decided to do some digging and answer the question “How?”, this digging resulted in me
finding something that truly impressed me, (| try not to admire the work of criminals as i don’t
want to seem like a psychopath (=). | would have written this article sooner, but i was totally
unaware that no blogs had really gone into depth on this method, i like to be unique!

The Purpose

Most antiviruses don’t treat all processes the same, a known “trusted” process is usually far
less likely to flag up any warnings from the antivirus. In this case, the goal of malware is to
inject code into one of these “trusted” processes in order to run with less risk of detection. Of
course antiviruses will attempt to catch injection too, so the challenge is for malware to find a
way into the trusted process without being detected.
In order to give a better idea of the stealthiness of PowerLoader | have listed below some
common telltale signs of a malicious process attempting to inject.
(The following only apply to a process trying to perform any of these actions on another
process)

¢ Allocating heap space

o Creating threads

e Overwriting process/module memory

e Manipulating thread context

* Queuing asynchronous procedure calls (APCs)

Proactive antiviruses will check for processes trying to perform these actions and could likely
result in the user being alerted to a malicious process. The aim of PowerLoader is to subvert
this, (which seems to be a success as it is not picked up by antiviruses, and does not cross
off anything on the list).

1/7

https://www.malwaretech.com/2013/08/powerloader-injection-something-truly.html

Writing the code to explorer

In the case of PowerLoader, the trusted process targeted is explorer. | won’t be putting any
images/reversed code for this part as it has already been well documented by ESET.
PowerLoader gets the malicious code into the process by opening an existing, shared
section already mapped into explorer, removing the need to allocate heap space or overwrite
process memory. PowerLoader then proceeds to map the shellcode onto the end of the
chosen section. Below is a list of targeted shared sections.

o BaseNamedObjectsShimSharedMemory

o BaseNamedObjectswindows_shell_global_counters
BaseNamedObjectsMSCTF.Shared.SFM.MIH
o BaseNamedObjectsMSCTF.Shared.SFM.AMF
o BaseNamedObjectsUrlIZonesSM_Administrator
BaseNamedObjectsUrlZonesSM_SYSTEM

Executing the code

In order to execute the remote code without creating a thread, PowerLoader uses a little trick
with the explorer tray window procedure. By opening “Shell_TrayWnd” and calling
SetWindowlLong, PowerLoader is able to set a variable used by the window procedure to
point to a specific address in its shellcode. Here PowerLoader sets the address to a pointer
to a pointer to KiUserApcDispatcher, whereas OverclOck’s code will just set it to a pointer to a
pointer to the payload (which resides in a shared section).

When SendNotifyMessage is called by the malware, the window procedure inside explorer is
triggered and this is what happens.

(WIS
mou eax, [esi]

push esi

call dword ptr [eax]

Figure 1: A snippet from the Window Procedure

Now this code is simple, it will perform a double indirection that will result in the address
pointed to by the pointer that was set using SetWindowlLong, being executed.

This is where PowerLoader differs from OverclOck’s version. The instruction “call dword ptr
eax” will read the value pointed to by EAX and then call it. The read part won’t trigger DEP
(Data Execution Prevention), if the section is not executable (in later versions of windows it is
execute-protected), however if EAX points to an address inside the section, DEP will be
triggered. Because the sections protection is only set to Read/Write in later versions of
windows, OverclOck’s code will likely trigger DEP and crash explorer, however, because

2/7

http://www.welivesecurity.com/2012/12/27/win32gapz-steps-of-evolution/
https://www.malwaretech.com/wp-content/uploads/2013/08/WndProcLite.png

PowerlLoader’s pointer points to KiUserApcDispatcher (resides in ntdll), DEP is not

triggered.
Well how does one get from KiUserApcDispatcher to code execution, without executing the

non-executable shellcode, | hear you ask?

ROP Chains, Unicorns, and Rainbows

This part greatly interested me, partly because | have never seen a ROP chain in the wild
before but mainly because it is the most advanced injection method | have ever come
across. In order to understand how PowerLoader gets from KiUserApcDispatcher, to
shellcode execution, we need to do some disassembling.

In Figure 1, we see the Window Procedure pushing ESI onto the stack, then calling
KiUserApcDispatcher. It is important to remember ESI contains the address (held in the
shellcode) of the pointer to the KiUserApcDispatcher pointer.

So let’s see dissasemble KiUserApcDispatcher.

il e
; Exported entry 45. KilUserApcDispatcher

; _ stdcall HiUserfpcDispatcher{x, %, =, %, X}
public HKilUserfApcDispatcher@28
_KilUserapcDispatcher@28 proc near

Context= byte ptr 18h

lea edi, [esp+18h] ; Address in stack (Sets EDI for REP HMOUSE)
pop eax ; Pop return address into EAR

call eax ; Call what would have been the return address
push 1

push edi

call _ZuwContinuel@8 ; ZuwContinue(®,x)

nop

Figure 2: KiUserApcDispatcher

Pay attention to the first 3 instructions. “lea edi, [esp+10h]’ is loading the last parameter into
the EDI register. If you remember in Figure 1, the last parameter pushed to the stack was
ESI, which contains an address within the shellcode. Next it pops the return address into the
EAX and then calls it, this results in execution being transferred back to the Window
Procedure.

So really nothing has happened here, We've just set the EDI to an address inside the
shellcode and then gone back to where we came from. So in order to see what happens
next, we are going to have to dig deeper. Here is some more of the Window Procedure.

3/7

https://www.malwaretech.com/wp-content/uploads/2013/08/KiUserApcDispatcher.png

e

eax, 1 ; Load KilserfpcDispatcher Pointer From shellcode
esi Start of ROP Chain (Sets ESI Ffor REP HOUSD)

dword ptr [eax]); Call KillserdpcDispatcher

eax, [esi]
push [ebprarg &)

mow LK, esi
push i
push (i3
call dwoed gtr [pax+8] : Gall Function to clear the direction Flag and return
edi,
miow [ebp+arg_C], eax
jz JmpHotTaken
L |
4
[s um

|; STHRT OF FUHCTION CHUHE FOR %5 WndProcRCImpUndProc@REKGJPAUHWHD GRIIJEZ

JapHotTaken:
bl edi, edi
puszh edi 3 dubewlong
push edi ; nlndex
push ebx » hiind
call ds: imp SeltWindowlongW@12 @ SetWindowlongW(x,x,%)
now [esi+h], edi
| jnp loc_ 1001860
L 2 §
L =
loc_1@@1B6H:
mo Y eaw, [esi]
push esi
call dword ptr [eax+4] ; Gall function to copy the ROP Chain onto the current stack

Figure 3: More of the Window Procedure shown in Figure 1

Now in this disassembly we need to pay attention to the instructions underlined in red and
orange, the blue box is the code we already discussed (executes KiUserApcDispatcher and
sets EDI to ESI), the rest of the code can be ignored. As you can see, the function makes 2
more calls (EAX+8, followed by EAX+4), if you remember earlier, EAX is an address in the
shellcode, so the next call is to the address 8 Bytes below.

Let's take a look at the shellcode shall we?

B01680EGC dd offset KilserfpcDispatcherPtr

B0100E10 dd @

B0100E14 dd @

B0100E18 dd @

B0100E1C dd @

BE1600E28 KilserApcDispatcherPtr dd offset ntdll KilserApcDispatcher
B01686E24 ROPGadget MOUSB dd @

BH186E28 ROPGadget_SetDF dd 8

Figure 4: A small snippet from the shellcode

When SetWindowLong was called by PowerLoader it set the ESI (Blue Box Figure 3) to
00100EOC (Which holds the address 00100E20), The code then performs and indirection

47

https://www.malwaretech.com/wp-content/uploads/2013/08/WndProcExtended.png
https://www.malwaretech.com/wp-content/uploads/2013/08/ShellcodeStart.png

and EAX ends up pointing to KiUserApcDispatchPtr (00100E20). Using some very basic
maths, EAX+8 points to 00100E28 and EAX+4 to 00100E24.

What are 00100E28 & 00100E24? When the shellcode was made during runtime,
PowerlLoader searched for some byte sequences in explorer using ReadProcessMemory,
then stored the addresses of those sequences in the shellcode. The sequences are
instruction within the executable regions of explorer’s memory, their purpose is to perform
certain operations as PowerLoader can’t execute any of its own code yet, due to the section
being execute-protected.

00100E28 points to some code in explorer that executes the instruction “STD” followed by
“‘RET”, As a result the instruction underlined in red will result in the direction flag being set
and execution being returned to the Window Procedure.

Until now, nothing makes any sense at all. We’ve set the ESI to an address in the shellcode
(Figure 1), we've set the EDI to an address on the stack (Figure2), and we've set the
direction flag. What happens next makes sense of it all. EAX+4 is called from the window
procedure, as we established EAX+4 is a pointer in our shellcode, but what does it point to?
Again, we need to do some disassembling.

[~ ey

;opublic: wirtual long _ stdcall CRileSysBindDatac:SetFindData{struct _WIH32_FIHD_DATAW consl =)
?EetFindDat aRCFileSysBindDat aBRUAGIPEY_WINE? _FIHD_DATAWSNEZ proc near
arg_@- dword ptr &

arg_4= duword ptr @Ch

mou edi, edi

push ebp

mau ebp, esp

push B5l

moy es5i, [ebprarg_b]

push edi

mou edi, [ebp+arg ©]

aid edi, 2an

mo ecx, Yhh

rep mousd ; Copy ROP Chain owver stack

pop edl

=0 eax, 2ax

pop esi

pop ebp

rekn B

Figure 4: A random function in shell32.dII

Remember i said PowerLoader scanned some byte sequences in explorer? Well these bytes
were found, in this case inside some random shell32 function (it doesn’t matter). Now the
pointer doesn’t point to the start of the function, it points somewhere in the middle, as a
result, only the bytes in the red box are executed. It should become apparent what is
happening. The instruction “REP MOVSD” will move ECX (0x94) bytes from the address in
ESI to the address in EDI. Earlier the code managed to use code within explorer to set the
ESI to the shellcode address, the EDI to an address on the stack, then Set the direction flag
to 1. Because of this, the shellcode starting at address 00100EOC will be copied to the stack

5/7

https://2.bp.blogspot.com/--RMJud2582s/Ugn64Q0hi_I/AAAAAAAAAGU/RAmOHmrmJho/s1600/SomeFunctionInShell32.png

backwards (The copying will start at the address in ESI, copy a DWORD, then subtract the
address by 4 and repeat.

(Remember: because all addresses points to executable code within explorer address

space, and they are called using a pointer, no code in the shellcode is actually executed,
thus resulting in no nasty DEP errors.)

This is where things start to heat up, PowerLoader has just used code located within explorer
to overwrite some of the stack with some shellcode, which means although still incapable of
directly executing its own code, PowerLoader has control over return addresses and stack
based parameters.

Let’s have a look at the code that was copied.

aaaeapec dd
aaaeap9A dd
aaaeapey dd
a8a9aD98 dd
A0696D2C dd offset ROPGadget PopEax

A8689680AA CurrentProcHandle dd BFFFFFFFFh
Apa2abAYy dd offset ntdll atan

A0a%96DbA8 dd offset ShellcodeStart

A0A208DAC Shellcodelength dd 86h

G08960EA dd offset EmptylLocation

ABA28ADEY dd offset ntdll_atan

ABA?BEDES ROPGadget_JmpEax dd 1173CEFh

G0898DBEC EmptyLocation dd BCh

A8A28DCA dd BDh

Aea2eDcYy ShellCodeIAT dd offset unk 98E2C
A8A28DCE dd BFh

A8A28DCE dd 18h

aaae8appeE dd 11h

aaae8aDDY dd 12h

AaaevepDps dd 13h

aaaeeppc dd 14h

A0A28DEA dd 15h

A0A2BDEY dd 16h

A0A9BDES dd 17h

A0A9BDEC dd 18h

ABA28DFA dd offset ROPGadget ClearDF

A0A98DFY dd 1Ah

A8A28DF8 dd 1Bh

A0696DFC dd offset ROPGadget PopEax

ABA?BEGA dd 78h

A0A9BEGY dd offset ntdll alloca probe
A06890E6GE dd offset kerneld? WriteProcessHemory

=L]

Figure 5: The ROP Shellcode that is written to the stack

Once the code copying the ROP Shellcode to the stack is done, it hits the ret instruction, but
because the stack has been overwritten, it instead ends up executing code pointed to by the
ROP Shellcode, Each bit of code has a ret instruction which causes the next ROP gadget to
be executed. | stepped through in a debugger, below i have made a list of the ROP Gadgets
in order of execution, each line is a different gadget.

1. Direction Flag Clear

6/7

https://www.malwaretech.com/wp-content/uploads/2013/08/ROPShellcode.png

2. Pop 0x70 into EAX

3. Call _alloca_probe

4. WriteProcessMemory

5. Pop the address of ntdll'atan into EAX
6. Jmp to EAX

Some things to note:

e The _alloca_probe function is undocumented but | believe it takes the value in EAX
and check that the stack can hold that many items, if not it triggers the guard page to
allocate more stack space (0x70 is in EAX)

o The parameters for WriteProcessMemory are at address 00090DA0, these parameters
cause WriteProcessMemory to read the shellcode from the shared section, then write it
over ntdlllatan which we can assume isn’t used by explorer.

« Finally the last instruction jumps to ntdll'atan and the code begins execution.

TLDR / Recap

PowerLoader bypasses the execution protection on the shared sections, by using code
found inside explorer to copy a ROP Chain to the stack, then uses the ROP Chain to
manipulate the call stack into causing Explorer to call WriteProcessMemory and overwrite an
unused function in ntdll with some shellcode to complete the injection.

Conclusion

So there we have it, from non-executable section to shellcode execution by using explorer’s
own code against itself. I'll try and get a new article up soon, sorry for the inactivity <3

7/7

