ZeroAccess uses Self-Debugging

blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/

Joshua Cannell

July 25, 2013

Debuggers—a tool traditionally used to find errors (called “bugs”) in code—are also used by
security experts. In the field of malware analysis, debuggers are a vital tool used to reverse-
engineer malware binaries, helping analysts to understand the purpose and functionality of

malware when dynamic analysis isn’t enough.

Because they’re such a valuable tool, sometimes malware authors try to prevent analysts from
using them. By employing various techniques in the code (known as “anti-debugging”), malware

can successfully thwart junior analysts.

Recently | found an interesting anti-debugging technique | haven’t seen before. | discovered this

technique while reversing a ZeroAccess Trojan (seems it's always ZeroAccess lately, right?).

The technique employs various native Win32 APIs used for debugging a process. By using
these APls, the analyst cannot use their own debugger, since only one debugger can be

attached to a process at a time.

To connect to the debugger at the API level, the Trojan uses DbgUIConnectToDbg. This API
along with others used to communicate with the Windows Debugger all seem to be

undocumented by Microsoft.

B0481AE3
B8481AE3 push
88481AELY mov
B8481AEG sSub
A8481AE? push
B8481AEA push
B8481AEB push
B8481AEC call
B0481AF2 test
a8ue1aFy jl

ebhp

ebp, esp

esp, 6G4h

ebx

esi

edi
ds:DbgUiConnectToDbg
eax, eax

loc_481CB2

Next the Trojan creates a child process using the calling EXE (new-sirefef.exe). This was not
surprising, as malware usually does this while unpacking. Allow me to explain.

1/4

https://blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/
http://en.wikipedia.org/wiki/Debugging#Anti-debugging

28481AA5 push eax ; 1pProcessInformation

da401AAG lea eax, [ebp+Startuplnfo]

28481AA? push eax s lpsStartuplInfo
aB41AAA Xor eax, eax

a8481AAC push eax ; 1pCurrentDirectory
@8481AAD push eax ; 1pEnvironment
88481AAE push 2880861h ; duCreationFlags
88401AB3 push eax ; bInheritHandles
d8401AB4 push eax ; 1pThreadattributes

88401ABS push eax 1pProcessattributes
A8481ABG push [ebp+1lpCommandlLine] ; lpCommandlLine
88481ABY? push [ebp+1lphApplicationHame] ; lpApplicationMame
B8401ABC call ds:CreateProcessl

Typically, a parent process creates a suspended child process using the calling EXE. Afterward,
the parent will de-obfuscate some code and then place it in the child. Whenever this is
complete, the parent makes a call to execute the child (usually with ResumeThread), which is
now completely different from the calling EXE. And thus, while you have two processes that
appear identical, they are completely different when viewed internally.

= _{n explorer.exe | 16,360 K 23800k 1892 Windows Explorer Microzoft Corporation
ol wrnbnnled Aee IR 4 12852 K 1244 Wkware Tanls Core Service WkMware Ine
= tTg new-sirefefl. exe ‘ 1.260 K 1.904 K 3488 Nucnetyep cMHApOHMZaUMK Fopnopauma Makkpocogr
(':g new-zirefef. exe 1.396 K 3.0EK 964 ucnetyep cuHXpoHMsauMd Kopnopauus Mafkpocopr

This sample doesn’t quite work this way. Under the creation flags parameter for the
CreateProcess function, the CREATE_SUSPENDED flag was not being used, but instead the
DEBUG_PROCESS flag. There was also another used, called
CREATE_PRESERVE_CODE_AUTHZ_LEVEL (Note: for a list of process creation flags, click
here).

"CivyDocuments and SettingsihAdministratory\Desktoph\new-zsirefef.exe™
VL ZDoouments and SettingshtAdministratorhDesktoph\new-sirefef.exel™"
NULL
NULL
FALSE
DEBUG_FROCESS| 2000000
NULL
NULL
001ZFEDLC
- O012FFz0

Now both the parent and child process are being debugged, which means we can’t attach an
additional debugger to either. This complicates matters as the debugger is the primary tool we
use to step through code.

However, we can still observe what’s happening statically using our IDA dump. The parent
process appears to handle debug event codes and performs an action for each event (for a list
of all codes, see here). After an event has been processed the Trojan continues debugging and
receives another event using DbgUiContinue.

2/4

https://www.google.com/search?q=CREATE_PRESERVE_CODE_AUTHZ_LEVEL&oq=CREATE_PRESERVE_CODE_AUTHZ_LEVEL&aqs=chrome.0.69i57j69i61j69i62l3.847j0&sourceid=chrome&ie=UTF-8
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679308(v=vs.85).aspx

=T

il i
apLe1cen

A0481CEA CONTIHUE_TO _HEXT_EUEHT:

80481C80 push [ebp+1lpfipplicationHame]
A8481CE2 mov esi, [ebp+uvar 4]

A4 B1CEG lea eax, [esi+h]

28481 C89 push eax

808481CEA call ds:[bgUicontinue
a8481C98 cmp [ebp+1lpCommandlLine], ebx
A84BE1C93 jz short loc_481CAS

When an EXCEPTION_DEBUG_EVENT code is received, the Trojan enters a function that
decrypts a PE DLL file to the heap. The new PE is then placed into the memory space of the
child process.

Address Hex dump ASCIT e
4D 54 90 00 03 00 00 00 04 00 OO0 OO0 FF FF OO 0O |Mz20.0 O . .
ES 00 OO0 00 00 00 00 00 40 00 00 OO0 00 00 00 00 ,..eea.. B.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. e e e eesnnnnnns
00 00 00 00 00 00 00 00 00 00 00 00 FO OO0 00 00 ... eeeenns i)

OE 1F B4 OE 00 B4 09 CD 21 Ea 01 4C CD 21 54 &8 |00°0.°.1'.0LI'Th
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F |is program canno
74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 |t be run in DOS
60 6F 64 65 2E 0D 0D 04 24 00 00 00 00 00 00 00 mode....§.......
74 EA 5C 89 3E 9B 32 Da 3E 5B 32 Da 3E 8B 32 Da | zé\hire¢2Us¢ 2020
Gl 54 52 Di 3D 8B 32 Da 3E 5B 33 DA 48 8B 32 Da | O0.RU=¢20:¢ 30H: 20
FD 4 6F D& 33 8B 32 D& 19 4D 4F Da 3C 8B 32 Da | ¥.0U3¢ 200MO0< 217 | »

< *

The new PE file is actually the final unpacked version of the rootkit. We can dump the memory
from here and load it into IDA to perform some static analysis. Looks like we have some
websites in plain-text the Trojan is going to contact, possibly to locate the infected user
(geoip_country_code).

[.rdat... 00000007
5] .rdat... 0000009
S| .rdat... 00000047
I's] .rdat... 00000014
[5] .rdat... oooooooE
[5] .rdat... ooooooio

fp.exe

GET Jcount. php?page=%uistyvle=LED_g&nbdigits=9 HTTP[1. 1\rinHosk: v, e-zesinternet. comir, .
GET fapp/genip.js HTTR!1.0hrinHost: j.maxmind.comirinConnection: closelrinirin

geoip_country _code

j.maxmind, com

ShelExecubebxw

T o T MM

This is just another example of how malware authors attempt to prevent reverse-engineering of
their code with anti-debugging. In this example, however, the ZeroAccess Trojan does not allow
the analyst to use their own debugger by connecting to the Windows Debugger itself. All in all |

think it's a very interesting technique, and we’re sure to see more of it in the future.

3/4

Joshua Cannell is a Malware Intelligence Analyst at Malwarebytes where he performs research
and in-depth analysis on current malware threats. He has over 5 years of experience working
with US defense intelligence agencies where he analyzed malware and developed defense
strategies through reverse engineering techniques. His articles on the Unpacked blog feature
the latest news in malware as well as full-length technical analysis. Follow him on

Twitter @joshcannell

4/4

http://blog.malwarebytes.org/author/jcannell/
https://twitter.com/joshcannell

