Alina: Following The Shadow Part 2

%

P2 Irustwave:

This will likely be the final blog post in this series on the Alina Point of Sale (POS) malware
family. If you're just now joining us, please be sure to check out my previous blog posts on
this topic, which cover the intricacies of version 4.0, as well as information about how this
malware has evolved with respect to exfiltration and command and control (C&C).

e Alina: Casting_a Shadow on POS
o Alina: Following The Shadow Part 1

For this final part, I'm going to focus on how this malware is installed, what protections the
author has placed on the malware to prevent Anti-Virus detection and/or reverse
engineering of it, and how Alina aggregates track data. | may also throw in some other
random tidbits of information that I've encountered depending on how long this blog post
goes. My last one in particular was quite lengthy, so I'm going to do my best to avoid that
this time around. We're going to be looking at the same versions as before. I've included the
timeline graph below as a reference for readers.

1/8

https://www.trustwave.com/Resources/SpiderLabs-Blog/Alina--Following-The-Shadow-Part-2/
http://blog.spiderlabs.com/2013/05/alina-shedding-some-light-on-this-malware-family.html
http://blog.spiderlabs.com/2013/05/alina-following-the-shadow-part-1.html

Alina Versions Over Time

5.5
5.3
5.2
4.0
3.5
3.4
3.3
3.2
3.1
2.1
2.0
1.0
0.1

Alina
Version

R T -
L A T N = N N =Y
Y T]
O L C S C R R

Creation Date

Installation

Overall the malware authors were fairly consistent with regards to how this malware is
installed, as opposed to previous characteristics that we've looked at, where many changes
were incorporated in a large number of revisions. I've illustrated the changes witnessed
throughout various versions below:

Installation Over Time

5‘5 ..

53 b Installs to randomly picked |
name based on volume serial

5.2
4.0
3.5

3.4
Alina
Version

3.2
31
2.1
2.0
1.0
0.1

R T - T T T 5

-,) o = - - e A -

508 % B Y e B B Y 2 Y B N

SR < <] = e e R e P e 3
Creation Date

2/8

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/a2d09521-460b-4fd7-adff-d5d63d8d9e53.html;%20charset=utf-8
http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/e8c99c5e-0cce-44c3-a107-dbd2b5ee879f.html;%20charset=utf-8

v0.1/v1.0

For the early versions of Alina, the authors followed a simple process for malware
installation. In essence, the malware looks to see if it has been supplied with the 'ALINA=
<exe_name>' argument, where '<exe_name>' refers to an executable path. If this argument
is supplied, Alina will not perform the installation procedure, but will instead simply delete
this executable name before exiting.

If Alina started without this argument, it will begin the installation procedure. Alina copies
itself to the following path:
%TEMP%\ALINA <6 random_letters>.exe

It then modifies the HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ALINAhuahs
registry key, and writes the location of the previously copied executable. This is a simple
persistence technique that is encountered regularly when dealing with malicious samples.
Finally, Alina will call the new executable with the 'ALINA="' argument, and point it to itself,
ensuring the original file is deleted. I'm done my best to demonstrate this process visually
below:

Alina
Executed

ALINA=<exe_name:>

Arquments
No Arg |‘Etw/ \‘,ﬂ,rqu'm‘ﬂ[

Deletes Target
File

Copy 5elf To l

WTEMP¥AWALINA_<6_random_letterss.exe
Exit
+ Process

Persistence Via Registry Key

v

Calls New EXE with ALINA=<original_exe>

Create Mutex

v2.x /[v3.x [v4.x

Starting with version 2.0, the authors of Alina decided that they needed something a bit
stealthier regarding how the malware is installed. Specifically, instead of installing the
malware to 'ALINA_<6_random_letters>.exe', they instead decided to choose from a pool of
seven potential malware names. When Alina is installed, it chooses to copy itself to one of
the following names within the % TEMP% directory:

e java.exe

3/8

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/b7b93935-1e0f-4eb0-855b-b285eb8a2b71.html;%20charset=utf-8

e jusched.exe

¢ jucheck.exe

o desktop.exe

e adobeflash.exe

e msupdate.exe

o windowsfirewall.exe

Persistence once again utilizes the Run registry key, however, the specific name coincides
with the chosen malware name. For example, if 'windowsfirewall.exe' was chosen, the
malware would install to the ‘windowsfirewall' registry key. Additionally, when these versions
of Alina are installed, the malware will look for previously installed instances and remove
them. Once again I've tried to visualize this below:

Alina
Executed

ALINA=<exe_name:>

Mo Arguments
g / \Aﬂ.r gument

Deletes Target

Create Mutex) i
File
Removes Previous Instances of Malware l
+ Exit
Process
Randomly Chooses Malware Name

|
java.exe adobeflash.exe I

r
I
I
I [jusched.exe] [msupdate.exe]
|
|
|
I
I
—

Copy 5elf To
WTEMP%\<chosen_exe>

b

Persistence Via Registry Key

[de sktop.exe [winduwsnrewall.exe

Calls New EXE with ALINA=<original_exe> | —

v5.x

With version 5, we see a number of overall changes to Alina (many of which were covered
in the previous post). With regard to installation, we see the authors shift away from a
completely random choice of malware names. This likely has to due with the fact that every
time Alina ran on the victim machine in versions 2.x-4.x, the malware would essentially
reinstall, and often chose a different name than previously. It's likely the authors of Alina
wished instead to chose a random name originally, and then stick with it for the remainder of
the malware's existence. In version 5.x, Alina has increased its pool of potential malware
names to eleven. Additionally, instead of randomly choosing them every time, Alina utilizes

4/8

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/41d4a077-8fc0-44d3-8ba6-329d49ad3aca.html;%20charset=utf-8

the victim's volume serial number to decide which name to choose. This ensures a random
name to begin with, but also ensures that it is consistent every time the system reboots.
The following pool of potential malware names is utilized:

o defender.exe
e explorer.exe
e svchost.exe
e scvhost.exe
o ctfmon.exe
e rundll32.exe
e cmd.exe

e Csrss.exe

e dasHost.exe
e services.exe
o Taskmgr.exe

Protections

Looking at how the protections for Alina have evolved over time has been quite fascinating.

It's quite common to see malware that targets Point of Sale devices not employ common
techniques seen in the wild, such as packing, crypting, and anti-debugging. As we look at
Alina over the course of a few months, it becomes clear that the authors attempted to
combat some threat that we can only speculate towards. It's possible that Anti-Virus began
detecting the samples, which led to them adding protections. Additionally, they may have
been fearful of reverse engineers gaining insight into the inner workings of their malware,
which prompted them to make changes.

5/8

Protections Owver Time

5.5
5.3
5.2

4.0
3.5

3.4
Alina
Version 3.3

3.2
3.1
2.1
2.0
1.0
0.1

R T -
L A T N = N N =Y
Y T]
O L C S C R R

Creation Date

UPX

I'm sure a number of the people reading this blog are familiar with UPX, or the Ultimate
Packer for eXecutables. UPX is one of the most popular, if not the most popular, packers on
the market. Given the fact that it's so popular and (somewhat more importantly) free, it
makes complete sense that the authors of Alina chose to pack their malware using this
product. Not only does it reduce to overall file size of the malware, but it also prevents
simple detection mechanisms, such as searching for strings within the binary. UPX began
being used with versions 2.1 and above.

Visual Basic Crypter

Starting with version 5.2, we begin seeing a large leap with regard to protections.
Specifically, we begin seeing a crypter written in Visual Basic being thrown on top of Alina.
While packers have historically been created with the primary purpose of speeding up
executables, crypters main purpose in life is to make my life difficult. In other words,
crypters were built primarily to obfuscate binaries. One of the interesting side-affects of
utilizing a crypter is that in some cases it will actually increase the rate of detection by the
Anti-Virus community. An Anti-Virus company may not have a specific detection in place for
a given family of malware, but they may have a signature in place for a crypter that is
typically utilized for malicious purposes.

As an example, Alina version 2.0, which is not packed at all, is only detected by 30 Anti-
Virus companies (VirusTotal). Conversely, Alina version 5.2, which makes use of the crypter
is detected by 33 Anti-Virus companies (VirusTotal). This isn't a comprehensive test of

6/8

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/7593381f-abe9-4198-8eb5-de625df114d4.html;%20charset=utf-8
https://www.virustotal.com/en/file/8782d38bc326d3127dcbd4f6f9a4342a503517cc8504920ac5db4e4dfb16e046/analysis/
https://www.virustotal.com/en/file/442da19c353f3de27bc096f8cdfdb6e7e76cb24eb7fbffabdaea12a38ed305d2/analysis/

course, and there are a number of reasons why version 5.2 may be detected more than 2.0,
but I'm simply using it to illustrate my point.

UPX Protector

UPX Protector is a utility that was developed to hinder UPX from being easily unpacked.
Utilizing a simple command-line utility, UPX can be trivially unpacked. UPX Protector
attempts to prevent this by corrupting the header (thus the reason we were unable to get a
PE timestamp in version 5.5 in the previous blog post), cloaking sections, modifying the
entry-point, etc. This protection was put into place starting with version 5.5.

Aggregating Track Data

For the most part, the task of aggregation of track data was fairly consistent for most of
Alina's history. Up until versions 5.x, the process looked like this:

Create an array of processes to look at via calls to CreateToolhelp32Snapshot(),
Process32First(), and Process32Next(), ignoring processes in the following blacklist:

e explorer.exe
e chrome.exe
« firefox.exe
¢ iexplore.exe
e svchost.exe
e smss.exe

e Crss.exe

e wininit.exe
o steam.exe
e devenv.exe
¢ thunderbird.exe
o skype.exe
e pidgin.exe

o Loop through every process, and read pages of memory via calls to VirtualQueryEx()
and ReadProcessMemory(), targeting RAM with read/write privileges.

o Apply a number of regular expressions against this read memory, targeting Track 1
and Track 2 data.

» Exfiltrate any data discovered and begin this process from the beginning.

Starting with version 5.x, the authors decided to spawn a new separate thread for each
process they targeted. This meant that each process was constantly having its memory
read, which decreased the chance that the authors would miss any track data being
processed. The downside to this, however, was that it made the malware extremely noisy

7/8

and increased the chance of detection on the victim. This is just one example of how the
authors weighed the consequences of their decisions and determined that it would be better
to have a higher rate of success versus a greater chance of detection.

Random Thoughts / Points of Interest

Overall it's been very interesting to see Alina grow over the months in many different ways.
As | mentioned originally in my first blog post, memory dumpers targeting POS devices are
nothing new, however, the trend towards automation and C&C has been interesting to say
the least. Looking back, | find it very interesting to see some of the processes in the
blacklist, such as steam.exe, skype.exe, pidgin.exe, etc. If | had to speculate, I'd argue that
seeing these processes demonstrates a lack of sophistication on the author's part. |
wouldn't be surprised to discover that the author was running these programs in his
development environment, and decided to add Steam, Pidgin, Thunderbird, etc. to the list in
order make things easier on their end. Alternatively, I've heard reports of Alina showing up
on a number of end-user machines (as opposed to POS devices), and it's certainly possible
that these processes were added simply because they are commonly found on end-user
devices. However, these are only sporadic rumors. | can only say for certain is that
Trustwave has encountered Alina on a number of forensic cases affecting the Food and
Beverage industry. It is very likely that this malware is being used for attacks on other
industries as well; simply due to the way the malware works.

Per some comments we've received from the prior posts—I'd like to emphasize that Alina is
very generic in nature. While it targets track data, and is most likely found on POS devices,
it isn't limited to these machines, or any POS vendor in particular.

At this point I'm going to wrap things up as I've once again made this post longer than |
anticipated. | hope you've enjoyed reading about Alina as much as | have reversing it.
Thanks for reading!

8/8

