Caphaw attacking major European banks using webinject
plugin

=3 welivesecurity.com/2013/02/25/caphaw-attacking-major-european-banks-with-webinject-plugin/

February 25, 2013

Analysis of malicious code dubbed Win32/Caphaw (a.k.a. Shylock) attacking major
European banks, with ability to automatically steal money when the user is actively
accessing his banking account.

25 Feb 2013 - 01:13AM

Analysis of malicious code dubbed Win32/Caphaw (a.k.a. Shylock) attacking major
European banks, with ability to automatically steal money when the user is actively
accessing his banking account.

Malicious code dubbed Win32/Caphaw (also known as Shylock) has been attacking major
European banks for more than a year (it started to spread in the fall of 2011). Caphaw
caught my attention at the beginning of 2013 and | started tracking this threat closely. In this
blog post I've collected the more interesting observations made over this time period,
including the fact that this is one of the few pieces of malware that can automatically steal
money when the user is actively accessing his banking account. (Earlier | published
detailed analysis regarding attacks on Russian banks and cybercrime group activity in the
Russian region:Carberp, Ranbyus, Hodprot, and others.)

The most common regions for detecting Caphaw are the United Kingdom, Italy, Denmark
and Turkey. According to ESET detection statistics, the period when it was most actively
spreading was during the last months of 2012. ESET Virus Radar statistics show the
regions most affected by Caphaw infection during the last week.

1/12

https://www.welivesecurity.com/2013/02/25/caphaw-attacking-major-european-banks-with-webinject-plugin/
https://www.welivesecurity.com/search/?s=russian+banks+matrosov&x=0&y=0
http://www.virusradar.com/en/Win32_Caphaw/map

Win32/Caphaw [Threat Name] go to Threat
| 0%]

Last Day | LastWeek Last Month

The Bot

Win32/Caphaw has functionality typical of banking malware and in this part of the blog |
describe only its more interesting traits. This threat has many techniques for bypassing
security software and evading automated malware samples processing. Caphaw injects its
body into all running processes and has multithreading event based architecture for the
execution of C&C tasks. Injected malicious code can use inter-process communication
(IPC) mechanisms via a named pipe.

int __usercall create_IPC_thread<eax>{int result<eax>, int a2<esi>)

4
if { result)
{

*32 = result;

result = call_EreatEThread{IPE_uia_PIPE_thread, a2i;
x{a2 + 4) = result;
¥

return result;

e

Caphaw sets many hooks for system functions and one of the most interesting intercepted
functions is Initiate SystemShutdownEx(). This hook makes it possible to control the
reboot/shutdown process and makes it possible for the malware to restore itself after some
antivirus cleaning procedures have been carried out.

2/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/capshaw-on-virusradar.png
http://www.virusradar.com/en/Win32_Caphaw.K/description
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376874(v=vs.85).aspx

int _ cdecl hooked_InitiateSystemShutdownExU(}

{
void =uil; f/ [sp+Bh] [bp-4h]E8

if | t*(global_data + Bx124) }
{

SetEvent{ul)};
if { dword_L4A43C14)
1
if { ={global_data + Bx11C) == 1)
install_itself{8);

h

else

{
InterlockedExchange();
b

¥
while (torig_InitiateSystemShutdownEx¥)

call_Sleep(18);
return orig_InitiateSystemShutdownExW(};

h

All string constants in the Caphaw body are encrypted by a simple custom algorithm:

void __cdecl decrypt_str{unsigned int encoded, int key)
i
int v2; // ecxlE8
char v3; // dl@2
char vh; f/ al@2
bool v5; f/ zf@3

if { w2)
{
while { 1)
H
vl ®2;
vl encoded
*y2 = ylh;
if (key == 1)
H
vt = vl == @;

®y2;

o

e return string.c e("utf-8")
. \
1L key) python code

goto LABEL_7;
ub = uv3 == B8;

H
if (vs)

decompiled assembly code

encoded = (03240 * encoded + O0x24%1) % O2FFFFFFFF;

Caphaw provides indirect checks for execution under popular virtual machine environments
(VMware, VirtualBox and VirtualPC). Caphaw detects virtual machines based on names of
active processes and drivers. All those names are stored in the custom hash values by
following algorithm:

3/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/shylock-4-5.png

int _ cdecl calc_hash{int al}

{

int vi; /7 esi@f
int i; /7 edx@1
int v3; /7 eax@2

vl = al;
For { i

{
ud = *=pl++;
if { tud)
brealk;
b

return ij;

loc_42AF53:

dword ptr [eax]

chav_upper_and_calc_hash

ECX
eax,
short loc_42AFBS
eax,
short loc_42AFBS
eax,
short loc_42AFBS
eax,
short loc_42AFBS
eax,
short loc_42AFBS
eax,

short loc_42AFBS
esi

esi, [ebp+var_8]
short loc_42AFL49

loc_42AF8B:

check_process_by_hash
ECX

eax, eax

short loc_42AFBD

check_process_by_hash
ECX
eax, eax

turn result

python code

decompiled assembly code

This is what some example code for VMware detection looks like:

CODE XREF: check_for_UHuware+397j

umscsi.sys
vmhgfs.sys
Umx_svga.sys
vmznet.sys
UMMOUSe .sYs

vmdebug.sys

CODE SREF: check_Fur_UMware+32?j
UHwareTray.exe

UHwarelser .exe

These tricks make it possible for Capshaw to bypass automated sandbox analysis. And
every few hours dropper files on the C&C server are repacked by a custom polymorphic
cryptor service in order to bypass static detection by antivirus signature. Drive-by URLs with
repacked droppers look like this list:

4/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-8.png

D ~=388 77330

éu/flleﬁ/mim—update Sﬁumﬁd/UH 4 xcu exe’t 1923@286?8
.susfiles/010-update—-8suvled UK—4_xcu.exe?r=2094220298
.su/flleﬂ/ﬂim—update cgjud5bu2d? s UK—4_xcu.exe?r=34928574

A0ukrhlvhd??y . — WA iles/0l0—update—7?2z5%0/netl _xcv.exe?r=4721221697
//yy4et4’781olg - susfiless0l0—update—rzupbt?g/UK-4_xcv.exe?r=133772534
! .ou/flleﬂ/mim—update 1n513cebabrruj s UK—4_xcv.exe?r=2867624766
http: /76d50dm3 . _ .suwsfiles/010-update-1n513cebabrrujsUK-4_xcv._exe?r=2867624766

The URLs have the following format:

https://[random subdomain].[domain]/[DIR)/[DIR-random string]/[dropper file]?r=[random
number]

At first glance this may look as if random numbers in URL are created by a special
generation algorithm. But this is not the case, and it's possible for the malware to use any
random numbers. In Caphaw’s body the random number generation algorithm looks like
this:

int _ cdecl get_random_number{signed int init_state)

4
int vi; /7 eax@El

vl = rnd_num;
if { *rnd_num)
v1 = call_GetTickCount();
rod_num = Bx343FD = u1 + B=269EC3;
return {({{rnd_num >> 16) & @=7FFF) / 32767.8 = init_state);

The URLSs for requesting additional modules, webinjects, configuration files and transfer of
data to the C&C are in the following format:

ttpsAsrrtgrrombasdb km -susping - htm

http:- - -6d50dm3 . _ _-swsping .. html
http:=-~umbul3?17 | | -su/ping . html?»=1352025537
http: /»z0i?xzvibrkl4738q. W suwsping . html

http:=-~Suyuihd. -uU/Pl“H html
http:~»2ae?huwldstlghg?Iwd o suwsping . html?r=34461279
http:--2ae?hwd5t 1gbg?3wd _ __.su/ping.html

Here’s an illustration of how a bot configuration file request from C&C is built according to a
special pattern:

http://[URL format]/[key]&id=[bot id]&inst=[master or slave]&net[botnet id] &cmd=cfg

A response from the C&C side looks like this:

_ .ﬂu/flleu/cr hellu Jpg?r=210334243
ttp:/r2aePhwdbht lgbg?3wd W, i s 1lesshidden? 710777 . jpg?r=204075527

ttp: A hhdsobshluz . (e .cc/files/cr_hellu.jpg?r=1129m2942
ttp: //e43ﬂﬂgua9e4ult38h8. pomm e .ccA/filesscr_hello. jpg?r=29671222°72
ttp: A ymbe 13217 .0pm mm w0’ swstf iles hidden 7770777 . jog?r=147204120

5/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-9.png

Such responses have the following structure:
http:// [random subdomain].[domain]/[DIR]/[file_name.jpg]?r=[random number]

The bot configuration file is encrypted by an RC4 stream cypher. The encryption scheme
has following structure: Base64(RC4(cfg_data)). After decryption the configuration file has
XML code like this:

ver wrl="https:/ /N .cc/ping.htnl" >
ver url="https: «susping.html"s>

<url_server url="https:// [B-su/ping.htnl"/>
{surls_server>

<archiver url="https:// [V I-swfiles/rar.exe” cmd="a —dh —ep2 —uS00k"/>

<url_update md5="daeelade@7hc4dec5867ae2d5aea3??ad" url="sfiles/010-update—ir3hn3 UVK-4_xcuv.exe' updating=""off line" >

{wnc urldll="https: [| I-susfiles/unc.d11l” urldl]l_nd5="62972971lcecc133acBe893762485e308" url="https:// -] i88920" value="off"/ >
Cuninstall value=" —

<httpinject valuw r1="/Files /hidden??70777.jpg" md5="556fd1e5d148bbifa?842fhf26eeebc?" />
{cookies value=" (s
<solfiles value=

<oskill value="off"/>

<plugins>
<plugin name=""BackSocks" url=""/files/010-update-ir3hnd /Bot.d11" value="1load" cmd="eprotections.cc:19782" />
<plugin name="Disk8pread" url="/files/Bl0-update—ir3hn3d /dsp.psd"” value="off" cnd="usa_xcuv.exe' />
<plugin name="ftpgrabher" url=""/files /010-update-ir3hn3 ffile._d11" value="on" cmd="/ping._htnl" ,>
<plugin name="MessengerSpread” url="/files-Di0-update—ir3hn3 msg.gsn"” value="off" cmd="" />

</plugins>

shijackefg)>

Inside configuration file we find the name of the botnet, C&C addresses and request format
for downloadable plugins.
Plugins

Win32/Caphaw has functionality for downloading and executing additional plugins. All the
downloaded plugins for the whole period where we’ve been tracking this botnet are
described in the following table:

plugin name detection name Description

BackSocks Win32/Caphaw.N back-connect proxy based on SOCKS5

ftpgrabber Win32/Caphaw.N collecting FTP passwords and search
information in MS Outlook email’s
format (.pst files)

VNC Win32/Caphaw.N standard VNC functionality like plugin
from Zeus

DiskSpread Win32/AutoRun.Caphaw.A worm functionality that spreads via
shared folders and removable media

6/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-13.png

MessengerSpread Win32/Caphaw.M worm functionality that spreads via
Skype messages

Rootkit Win32/Wolcape.A MBR bootkit component replacing user-
(driver)Win32/Wolcape.B mode trojan by request
(dropper)

VideoGrabber Win32/Caphaw embedded plugin in main bot body for

recording stream video and send to
C&C in rar archive

A plugin that distributes Win32/Caphaw through Skype for the first time was tracked in
January 2013 by Yurii Khvyl and Peter Kruse from CSIS (Shylock calling Skype). The next
interesting plugin is an MBR-bootkit module (detected by ESET as Win32/Wolcape.A)
which is downloaded to infected machines by special request from C&C. This bootkit is
based on MBR modification and provides manual loading for an unsigned driver. The

malicious int13 handler (this interrupt reads sectors from the hard drive) in the infected MBR

looks like this:

712

http://www.csis.dk/en/csis/blog/3811/
http://www.virusradar.com/en/Win32_Wolcape.A/description

new_int13 proc far

ah,
short loc_128
ah,
short loc_128

loc_123:
old_int13

loc_128: ; CODE XREF: new_int13+471j
; new_int13+97j
moy byte ptr cs:loc_13A+1, ah
popf
pushf

call dword ptr cs:loc_123+1 ; execute original handler
jb short locret_17E

pushf

cli

push

pusha

mou ah,

cmp ah,

jnz short loc_145
lodsw

lodsw

les

a?7?CWindowssyst:
» AVTTAL:AUindows\System32\RB2D.jiu>,8

The driver module is encrypted by RC4 cipher with a key length 256 bytes, but originally the
entropy of the key is 4 bytes due to expansion of 4-byte constant “KuKu” (this constant fills
the range with 256 bytes). Here’s the call graph for the routine that loads the malicious
driver :

8/12

load_driver

rc_.4 Fix_reloclinit_import

get_api_by_hashWyfix_relocation§calc_hash

The malicious driver hooks typical system functions for hiding files and processes. The
most interesting hooks are implemented to intercept \\Driver\nsiproxy and \\Device\Tcp
objects in order to monitor/modify network traffic on an infected machine. The bootkit
module configuration file has the same encryption scheme as user-mode Win32/Caphaw.
The decrypted configuration file has the same XML structure as Win32/Caphaw, as
presented here:

t

{<botnet name="15aug" />

<urls_serveprr
{ur rver url="https://, | | -at/house .html"/>
{url_server url="https:/-_ I #house . html"/>
{url server url="https:= - A -cc/house. html" >

{/urls_server?

{startup_processes>
{startup_process name="explorer.exe" >
{s/sztartup_processes>

{url_update md5="¢dynamic valuex" url="https:/~ L. ~cc/files rootkit_1Smay_exe" >
<timer_ping value="600"~>

{uac_block_state value="off"/>

{avr_block_state value="off"/>

srootkit>

Webinjects and money stealing scheme

Downloaded webinjects take the same form as configuration data, but the encryption
algorithm is different. This first compresses with zlib in deflate mode and subsequently
encrypts with the same algorithm with string encryption. Decrypted webinjects look like this:

9/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-16.png
https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-17.png

Lunit >
Lurl domain="https:- %" method="POST" save=""true'' >

Lurl domain="'=*=cy—library.co.uk*" zsave="true'" >
CAundt

; Leus inject converter
; convert to hijack format
; Loads from Sell Trafffs

i domain=""*hancopostaonline_poste_it="" />
i domain=""*hancopostaclick.poste.it="" ~>

i domain=""*online-retail.unicredit.dit="" >
i domain="#_cedacpi.it="" >

i domain=""=*fineco.it'" >

i domain="*hank.barclays_co._.uk=" />
i domain="'#petail.santander.co.uk='" -
i domain=""*business.santander.co.uk=*" ~>

CAundt

Here is a list of attacked banks from the latest configuration files with webinjects:

region attacked banks

United Kingdom hsbc.co.uk
barclays.co.uk
santander.co.uk
bankofscotland.co.uk
firstdirect.co.uk
natwest.co.uk
rbs.co.uk

Italy poste.it
unicredit.it
cedacri.it
fineco.it

One of the interesting details in the code injected into a bank’s web page is the substitution
of all phone numbers with fake numbers owned by the attacker (Merchant of Malice:
Trojan.Shylock Injects Phone Numbers into Online Banking Websites). This substitution is
based on a special configuration of webinjects and has a unique structure for the web page
of each bank attacked.

10/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-18.png
http://www.symantec.com/connect/blogs/merchant-malice-trojanshylock-injects-phone-numbers-online-banking-websites

url domain="#natwest.comn" regueszt="rglobal-contact—us_ashx*'" >
url domain="*natwest.com" regquest="rsglobal-security-security—advice=" >
url domain="*natwest.com" reguest="Scommercial/planning-g2/security-advice-centre=" />

data>

begin mask=""="}

div class="contentPod podhH"
shegin’

inject>

id=?genera1Phunes" rel="v4n"

shegin;
inject>
Aspan >

Ainject>

Win32/Caphaw is an interesting financial malware family: one of the few that has autoload
functionality for automatically stealing money when the user is actively accessing his
banking account. An infected user can’t recognize that his money is being stolen, because
he sees fake data on the banking web page based on the webinjects’ rules. (Autoloads
bypass one-time password security checks.) The same functionality was tracked in the
Carberp (Carberp Gang_Evolution), Gataka (Win32/Gataka banking_Trojan — Detailed
analysis), Win32/Spy.Ranbyus (Win32/Spy.Ranbyus modifying_ Java code in RBS Ukraine
systems) and Tinba malware families. Just for the record, ESET antimalware does detect all
of these threats.

Special thanks to my colleagues Anton Cherepanov and Yurii Khvyl (CSIS)
Aleksandr Matrosov, Security Intelligence Team Lead

SHA1 hashes for analyzed samples:

1 Win32/Wolcape.A (driver) 766da148d74f7ea9acab692246a945bd70da6cf18

1 Win32/Wolcape.B (bootkit dropper) f8da98763e345f42c62db02e51bf5d80342cd4d2

11/12

https://www.welivesecurity.com/wp-content/uploads/2013/02/win32caphaw-trojan-19.png
https://www.welivesecurity.com/2012/05/24/carberp-gang-evolution-at-caro-2012/
https://www.welivesecurity.com/2012/08/13/win32gataka-banking-trojan-detailed-analysis/
https://www.welivesecurity.com/2012/12/19/win32spy-ranbyus-modifying-java-code-in-rbs/

1 Win32/Caphaw.N (VNC) b408c56af46237d04e23f77b40c0c6367f3adee7

1 Win32/Caphaw.N (ftpgrabber) 1cc0ce07950f508589344977115e2409a819efb9

1 Win32/Caphaw.N (BackSocks) 43a6ff8c6e17e188e4650316d0627ebb110073d5

1 Win32/Caphaw.M
(MessengerSpread) aef115814e5b6af49187d07f3068130c5¢c910d84

1 Win32/AutoRun.Caphaw.A
(DiskSpread) 5da3dc57836¢351d80653fb09a78a8a8dad87317

25 Feb 2013 - 01:13AM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis — Digital Security Resource Center

Newsletter

Discussion

12/12

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

