The Device Driver Process Injection Rootkit

n resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/

Reverse engineering
November 16, 2010 by Giuseppe Bonfa

New SQL Injection Lab!

Skillset Labs walk you through infosec tutorials, step-by-step, with over 30 hands-on
penetration testing labs available for FREE!

FREE SQL Injection Labs

».Skillset Labs

Part 1: Introduction and De-Obfuscating_ and Reversing_the User-Mode Agent Dropper

Part 2: Reverse Engineering_ the Kernel-Mode Device Driver Stealth Rootkit

Part 3: Reverse Engineering the Kernel-Mode Device Driver Process Injection Rootkit
Part 4:Tracing_the Crimeware Origins by Reversing_the Injected Code

Let’s now take a look at the second driver dropped by the agent. This driver allows for
ZeroAccess to inject arbitrary code into the process space of other processes. Here are the
hashes of this driver:

o FileSize: 8.00 KB (8192 bytes)

MD5: 799CFCOF0F028789201A0B86F06DE38F

SHA-1: 1023B17201063E72D41746EFF8D9447ECF109736
No VersionInfo Available.

No Resources Available.

As with the first driver, in this case we see the presence of debugging symbols upon
disassembly, here is a view of the call graph:

1/11

http://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/
https://resources.infosecinstitute.com/topics/reverse-engineering/
https://www.skillset.com/labs/sql-injection?t=sql-trial
https://www.skillset.com/labs/sql-injection?t=sql-trial
https://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-4-tracing-the-crimeware-origins-by-reversing-injected-code/

#% WinGraph32 - Graph of DriverEntry

File View Zoom Move Help

3| «lal@lw|+| [olem= [N

ﬁ; -p

i Tl metadwin

TP

-
=i :.n,m..-i-m.j-;]

o bt Mt ? Hrti Pt frm
doerd pv- E-?-“E o et s 1004 15|

o e S
e Lttt "ﬂ:'-f-nu

1 urivm
% ¥ Eﬁﬂ-r-ll-ﬂlh-
oh : [lvpm
ol Pl Do bl - Do i -
'] ; D b wwnipndim
i Deiverllgeet

NotifyRoutine
Callback

R

i

TP
FRE
%!“E
R
1.0l
5

s H

gL

DriverEntry() essentially installs a callback. This causes the graph to misrepresent the true
code execution flow, due to the fact that a NotifyRoutine represenst an indirect calling
system. Keep in mind that we have a piece of code actually present that’s not visible. Lets

disassemble the first code block:

2/11

18861259
10081259 push ebp
8e8125a nouv ebp, esp
806125C push esi
0086125D mov esi, [ebp+DeviceObject]
10061260 nov Object, esi
BBB1266 ®xor eax, eax
8081268 push offset HotifyRoutine ; NotifyRoutine
18861260 mov dword ptr [esi+38h], offset sub 1080114C
108001274 nowv [es1i], ax
8081277 call ds:
8061270 lea eax, [ebp+DeviceObject]
10661280 push eax ; DeviceObject
10661281 push 1 Exclusive
10001283 push 0 DeviceCharacteristics
DeB1285 push 22h DEUiL‘.ETyPE
0061287 push offset DeviceName ; DeviceName
1066128C push a DeviceExtensionSize
006128E push esi DriverObject
800128F call ds:
18081295 test eax, eax
10001297 j1 short loc_100012B6
push esi
808129%n call ds:
886120 mov eax, [ebp+DeviceObject]
nov ecx, [eax+8] ; Object
call ds:

e we P o ws ae e -

PsSetLoadlmageNotifyRoutine registers a driver-supplied callback that is subsequently
notified whenever an image is loaded for execution.

NTSTATUS PsSetLoadlmageNotifyRoutine(IN PLOAD_IMAGE_NOTIFY_ROUTINE
NotifyRoutine),

Parameters
NotifyRoutine
Specifies the entry point of the caller-supplied load-image callback.

After such a driver’s callback has been registered, the system calls its load-image notify
routine whenever an executable image is mapped into virtual memory. This occurs whether
in kernel space or user space, and before the execution of the image begins.

To be able to correctly analyze this callback we need to know the prototype of a generic
NotifyRoutine:

VOID

(*PLOAD_IMAGE_NOTIFY_ROUTINE) (

3/11

IN PUNICODE_STRING FulllmageName,

IN HANDLE Processld, // where image is mapped

IN PIMAGE_INFO Imagelnfo

);

The_IMAGE_INFO struct contains information about the loaded image.

100881802 Xor esi, esi

16081604 push esi ; PoolType
106610605 call ds:

100816DB nov edi, eax

100616DD cmp edi, esi

100010DF jz short loc 1681146
188618E1 noy eax, [ebp+Imagelnfol]
100610EL push esi

1006106E5 push L

100818E7 push dword ptr [eax+h]

100016EA push offset sub 188812F9 *—
18061 0EF push offset sub _18086136C
100810F 4 push esil

100810F5 call ds:

1006610FB push eax

108010FC push edi

100010FD call ds:

180861103 moy ecx, DObject ; Dbject
16661189 call ds:

100611 0F push esi

16061110 push 8806h

10661115 push esi

10001116 push edi

10601117 call ds:

1606111D test al, al

1080111F iz short loc 1860601132
10081121 push offset Interval ; Interval
10001126 push L ; Alertable
10081128 push 1 ; WaitHMode
1008112A call ds:

100611380 jmp short loc 10081146

This is an interesting piece of code, here we have an APC (Asynchronous Procedure Call)
routine. An APC found in a rootkit is usually used to inject malicious code into victim
processes.

The APC allows user programs and system components to execute code in the context of a
particular thread and, therefore, within the address space of a particular process. We have
two possible cases of APC usage: user-mode based (which will work if thread is placed in

4/11

alertable status) and kernel-mode ones that can be of two types, regular or special.

In our case, since we are in a device driver, the APC is managed by using KelnitializeApc()
and KelnsertQueueApc() functions.

NTKERNELAPI

VOID

KelnitializeApc (

IN PRKAPC Apc,

IN PKTHREAD Thread,

IN KAPC_ENVIRONMENT Environment,

IN PKKERNEL_ROUTINE KernelRoutine,

IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,

IN KPROCESSOR_MODE ApcMode,

IN PVOID NormalContext

);
And

BOOLEAN
KelnsertQueueApc(
PKAPC Apc,

PVOID SystemArgument1,
PVOID SystemArgument2,

UCHAR mode);

The APC mechanism is poorly documented and kernel APIs to use them are not public (no
prototype presence in the DDK) so here we will give some more in depth explaination to
well clarify how APC works.

KelnitializeApc: As the name suggests, this function is used to initialize an APC Object,
from function parameters you can see that we have a KAPC struct easly uncoverable by
using the method seen at beginning of the post:

5/11

kd> dt nt!_KAPC

+0x000 Type : UChar

+0x001 SpareByte0 : UChar

+0x002 Size : UChar

+0x003 SpareByte1 : UChar

+0x004 SpareLongO : Uint4B

+0x008 Thread : Ptr32 _KTHREAD
+0x00c ApcListEntry : _LIST_ENTRY
+0x014 KernelRoutine : Ptr32

+0x018 RundownRoutine : Ptr32
+0x01c NormalRoutine : Ptr32

+0x020 NormalContext : Ptr32 Void
+0x024 SystemArgument1 : Ptr32 Void
+0x028 SystemArgument2 : Ptr32 Void
+0x02c ApcStatelndex : Char

+0x02d ApcMode : Char

+0x02¢e Inserted : Uchar

By watching successive function parameters you can see that the essential scope of this
function is to initialize KAPC struct.

Calling KelnitializeApc does not schedule the APC yet: it just fills the members of the
_KAPC, sets the Type field to a constant value (0x12) which identifies this structure as a
_KAPC and the Size field to 0x30. Take a look into the ZeroAccess rootkit code
ExAllocatePool, it is exactly 0x30, and is the first parameter. The KernelRoutine parameter is
a pointer to a routine that will be called once APC is dispatched. NormalRoutine considered
in combination with ApcMode will tell us what kind of APC is requested, so let’s take a look
to rootkit code:

100010E1 mov eax, [ebp+Imagelnfo]
100010E7 push dword ptr [eax+4]

6/11

This means that NormalRoutine is non-zero in combination with ApcMode which is 1. We
can correctly say that this is a user mode APC, which will therefore call the NormalRoutine
in user mode.

Rundown Routine: This routine must reside in kernel memory and is only called when the
system needs to discard the contents of the APC queues, such as when the thread exits.

Once the APC object is completely initialized, device drivers call KelnsertQueueApc to
place the APC Object in the target thread’s corresponding APC Queue.

Further details about APC Internals can be found HERE

Now let’s study what happens in KernelRoutine:

10001 80F ebp
108001010 ebp, esp
10001012 ecx
10001613 ebx
1080010814 esi
10081815 ds :Kel

10881818
1088181 D

10881823
108681829
10881829
10001829
1880182C
1088081 82E
186881833

loc_1888102%9:

bl, al
b1, bl

short loc_18001829

cl, cl =
ds: rFIr

Hewlrql

CODE XREF: sub_

esi, [ebp+Basenddr
PAGE_EXECUTE_READW E ; Protect

eax, -1888h
Bdx
[ebp+Allocationsi

AllocationType
ze], eax

ionsize]
AllocationSize
ZeroBits

1006103D esi
1080103E OFFFFFFFFh
10001040 ds :

Basenddress
ProcessHandle

TR TR |

Initially we have an IRQL Synchronization. KeGetCurrentlrgl returns a KIRQL that contains
the actual IRQL in which is running the current thread. Next via KfLowerlrgl, we see a move
to the new IRQL.ZwAllocateVirtualMemory commits and reserves a region of pages within
user-mode virtual address space of the specified process. Let’s take a look at the next code
block:

7/11

http://www.opening-windows.com/techart_windows_vista_apc_internals.htm

£ax, eax
eax, [ebp+arg 4]
short loc_16861652
dword ptr [eax], @
short loc_168861852

loc_10081652:

mou edi, [esi]

push 6 8h

pop ecx

mou [eax], edi

mou esi, offset sub 100681338
rep movsd

pop edi

loc 10881862: ; CODE XREF
pop esi
test bl, bl
pop ebx
jz short loc 106881678
mov Gl ; HewIrqgl
call ds:-KfRaiselr

If allocation fails, execution jumps to IRQL Restore Routine (via KfRaiselrgl) and then
exits. Otherwise we have a memcpy that copies 0x180 bytes from sub_10001338 to
allocated memory. Note that space is allocated with PAGE_EXECUTE_READWRITE
protection, meaning that the call copied by memcpy can be executed.

Due to the fact that this memory commit has EXECUTE rights we need to analyze the block
of data as if it were a block of code, because it will be executed once placed into the
address space of another process. Once reached via xRefs we have to force conversion
from data to code. Moving forward:

8/11

1868681338 sub 1686861338 pProc near : DATA XREF: sub_ 188618BF+4BTo
1686681338 pusha

188681339 mou eax, large fs:18h ; TEB

18868133F mou eax, [eax+30h] PEB

10881342 mou eax, [eax+@Ch] PPEE_LDR_DATA

18881345 1ea ebp, [eax+lCh] InLoad0rderModulelist
100881348 mouv ebx, ebp

18868134A

18881347 loc_168088134A: CODE XREF: sub_18881338+44]
18881340 ebx, [ebx]

18881340 ebhx, ebp

1888134E i near ptr loc_18881415+1 ; Opcode Break
18881354 esi, [ebx+36h]

18881357 edi, edi

18881359 eax, edi

188681358 ecx, 1883Fh

1688681368

168881368 loc 168081366: ; CODE HREF: sub 18881338+3A)j
18881368 ar ax, 26h

106861364 mouz:= eax, ax

18881367 add eax, edi

18881369 mul BCX

18881368 mou edi, eax

188681360 lodsu

18686136F test ax, ax

18881372 i short loc 18881368

Our assumptions were correct, as you can see this is a piece of executable code. We also
at 1000134E a subtle trick to prevent reverse engineering and static analysis, more opcode
scission.

Now let’'s move our point of view from code to hex dump:

“di....TEATE.ih.
L L T e e [l
IA!7...Fa+ LA+,
A _DI°F;Fa+udii .
13E.0!I[.h™D+2bd

E|+h||hn =

EI'\J#'hM.-"
ﬂ.l—l-:bﬂ.#ﬂ

AP
.
i 1
-D.
-8,
JE.

'ﬂ.-"'—kﬂ.b"-d-
+Hhﬂ=ﬂﬂ

ettt o B.ﬁ... iihi
.1h....ED$ a+at
. 0-..70<71.%.0%
HM.Tu 1U$.E.4. ik

As you can see from hex dump, after the starting code (in green) we have a a string marked
by red rectangle, we have already seen this string, behavior is now clear. This device driver
injects the malicious DLL max++.00.x86 into victim process address space.

9/11

Next step is logically to discover what this dll does.

__The Weakness__

While this driver is made to be very stealthy, we can apply some forensic techniques to
discover a weakness in the stealth technology employed by this driver. The main weakness
of this driver is given by PsSetLoadlmageNotifyRoutine. It essentially registers a Callback
via ExAllocateCallBack, a mechanism that is very transparent and easy to find. Existing
callbacks can be reveled by scanning all slots that hosts PEX_ CALLBACK _FUNCTION
type. To inspect these Slots we can use again KernelDetective.

System Notify Callbacks

Callback Type Callback Routine Status
mageload OxFE92A534 ::| l -
Imageload (xES0sENA2 Callback routine exists in unknown m...

EalEFTOCESS 0 Refresh =
CreateProcess 0> =
BugCheckCallback 0 Delete Callback m
BugCheckCallback 0 e

BLIQChECl"-SE’CDI'Id&I’YEUﬂ'I.H O Goto Callback Routine W=
BugCheckSecondaryDum... OxFSBS2A78S :: mssmbios.svs [....
BugCheckSecondaryDum... O0xF8BS2A30 :: mssmbios.sys [....
BugCheckSecondaryDum... 0xFS1FAQD6 :: USBPORT.SYS[...
BugCheckSecondaryDum... 0xFS1F9F66 :: USBPORT.SYS [...

Eh womi™ bom] i e s il wmne FrE0%1 FF3ED o UTRIESARRT oW

ImagelLoad registered Callback of an Unknown Module as should be clear, is really suspect,
this is a strong evidence of rootkit infection.

Next up, in part 4 we can trace the Crimeware Origins by reversing_the injected code!

Posted: November 16, 2010

Author

Giuseppe Bonfa

VIEW PROFILE

Giuseppe is a security researcher for InfoSec Institute and a seasoned InfoSec professional
in reverse-engineering and development with 10 years of experience under the Windows
platforms. He is currently deeply focused on Malware Reversing (Hostile Code and Extreme
Packers) especially Rootkit Technology and Windows Internals. He has previously worked
as Malware Analyst for Comodo Security Solutions as a member of the most known
Reverse Engineering Teams and is currently a consultant for private customers in the field
of Device Driver Development, Malware Analysis and Development of Custom Tools for
Digital Forensics. He collaborates with Malware Intelligence and Threat Investigation

10/11

https://resources.infosecinstitute.com/zeroaccess-malware-part-4-tracing-the-crimeware-origins-by-reversing-injected-code/
https://resources.infosecinstitute.com/author/giuseppe/

organizations and has even discovered vulnerabilities in PGP and Avast Antivirus Device
Drivers. As a technical author, Giuseppe has over 10 years of experience and hundreds of
published pieces of research.

11/11

