De-obfuscating and reversing the user-mode agent
dropper

n resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-
crimeware-rootkit/

Reverse engineering

November 12, 2010 by Giuseppe Bonfa

Part 1: Introduction and De-Obfuscating and Reversing the User-Mode Agent Dropper

Summary

This four part article series is a complete step-by-step tutorial on how to reverse engineer the
ZeroAccess Rootkit. ZeroAcess is also known as the Smiscer or Max++ rootkit. You can
either read along to gain an in-depth understand the thought process behind reverse
engineering modern malware of this sophistication. The author prefers that you download the
various tools mentioned within and reverse the rookit yourself as you read the article.

If you would like to use the malware sample used in these articles, download it here:

[download]

1/15

http://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit/
https://resources.infosecinstitute.com/topics/reverse-engineering/

InfoSec Institute would classify ZeroAccess as a sophisticated, advanced rootkit. It has 4
main components that we will reverse in great detail in this series of articles. ZeroAccess is a
compartmentalized crimeware rootkit that serves as a platform for installing various malicious
programs onto victim computers. It also supports features to make itself and the installed
malicious programs impossible for power-users to remove and very difficult security experts
to forensically analyze.

At the conclusion of the analysis, we will trace the criminal origins of the ZeroAccess rootkit.
We will discover that the purpose of this rootkit is to set up a stealthy, undetectable and un-
removable platform to deliver malicious software to victim computers. We will also see that
ZeroAccess is being currently used to deliver FakeAntivirus crimeware applications that trick
users into paying $70 to remove the “antivirus”. It could be used to deliver any malicious
application, such as one that steals bank and credit card information in the future. Further
analysis and network forensics supports that ZeroAccess is being hosted and originates from
the Ecatel Network, which is controlled by the cybercrime syndicate RBN (Russian Business
Network).

Symantec reports that 250,000+ computers have been infected with this rootkit. If 100% of
users pay the $70 removal fee, it would net a total of $17,500,000. As it is not likely that
100% of users will pay the fee, assuming that perhaps 30% will, resulting $5,250,000 in
revenue for the RBN cybercrime syndicate.

It has the following capabilities:

e Modern persistence hooks into the OS — Make it very difficult to remove without
damaging the host OS

» Ability to use a low level API calls to carve out new disk volumes totally hidden from the
infected victim, making traditional disk forensics impossible or difficult.

» Sophisticated and stealthy modification of resident system drivers to allow for kernel-
mode delivery of malicious code

e Advanced Antivirus bypassing mechanisms.

» Anti Forensic Technology — ZeroAccess uses low level disk and filesystem calls to
defeat popular disk and in-memory forensics tools

o Serves as a stealthy platform for the retrieval and installation of other malicious
crimeware programs

o Kernel level monitoring via Asynchronous Procedure Calls of all user-space and kernel-
space processes and images, and ability to seamlessly inject code into any monitored
image

In this tutorial, our analysis will follow the natural execution flow for a new infection. This will
result in a detailed chronology of the infection methodology and “workflow” that the rootkit
uses to infect hosts. This conceptual workflow is repeated in many other advanced rootkit
that have been analyzed, so it behooves you to understand this process and therefore be
able to apply it to new malware reversing situations.

2/15

Usually, when a rootkit infects a host, the workflow is structured as follows:

« Infection vector allows for rootkit agent reaches victim’s system. (Drive-by-download,
client side exploit or a dropper)

o User-mode agent execution

» Driver executable decryption and execution

o System hiding from Kernel-mode.

o Establishment on the host and Kernel-mode level monitoring/data-stealing.

o Sending of stolen data in a covert data channel.

Our analysis of ZeroAccess is split into a series of articles:

Part 1: Introduction and De-Obfuscating and Reversing the User-Mode Agent Dropper

Part 2: Reverse Engineering the Kernel-Mode Device Driver Stealth Rootkit

Part 3: Reverse Engineering the Kernel-Mode Device Driver Process Injection Rootkit

Part 4: Tracing the Crimeware Origins of ZeroAccess Rootkit by Reversing the Injected Code

Our analysis starts from analyzing the User-mode Agent and finishes at Kernel-mode where
the rootkit drops two malicious device drivers.

Step-by-step analysis

The ZeroAccess rootkit comes in the form of a malicious executable that delivered via
infected Drive by Download Approach. Drive-by download means three things, each
concerning the unintended download of computer software from the Internet:

1. Downloads which a person authorized but without understanding the consequences
(e.g. downloads which install an unknown or counterfeit executable program, ActiveX
component, or Java applet).

2. Any download that happens without a person’s knowledge.

3. Download of spyware, a computer virus or any kind of malware that happens without a
person’s knowledge.

Drive-by downloads may happen when visiting a website, viewing an e-mail message or by
clicking on a deceptive pop-up window by clicking on the window in the mistaken belief that,
for instance, an error report from the computer itself is being acknowledged, or that an
innocuous advertisement pop-up is being dismissed. In such cases, the “supplier” may claim
that the person “consented” to the download although actually unaware of having started an
unwanted or malicious software download. Websites that exploit the Windows Metafile
vulnerability may provide examples of drive-by downloads of this sort.

ZeroAccess has some powerful rootkit capabilities, such as:

3/15

¢ Anti FileSystem forensics by modifying and infecting critical system drivers (disk.sys,
atapi.sys) as well as PIC driver object stealing and IRP Hooking.

« Infecting of System Drivers.

e User-mode Process Creation interception and DLL Injection, from KernelMode.

o DLL Hiding and Antivirus bypassing.

o Extremely resistant to Infection Removal.

Part 1: Reverse engineering the user-mode agent/dropper

The rootkit is obfuscated via a custom packed executable typically called ‘Max++ downloader
install_2010.exe’. The hashes for this file are:

MD5: d8f6566¢c5f9caa795204a40b3aaaafa2

SHA1: dOb7cd496387883b265d649e811641f743502c41

SHA256: d22425d964751152471cca7e8166cc9e03c1a4a2e8846f18b665bb3d350873db
Basic analysis of this executable shows the following PE sections and imports:

Sections: .text .rdata .rsrc

Imports: COMCTL32.dlI

The Import Table is left in a very poor condition for analysis. Typically this means that
additional and necessary functions will be imported at Run Time. Let’s now check the Entry
Point Code:

BB413BCE public start
BB413BCH proc near

BBL13BCSE mou edi,
BOL13BCA push ebp
B8413BCE maow ebp,
BA413BCD xor BCX,
08413BCF mow edx,

Be413BD1 ine edx

BB413BD2 mou eax,

BBL13BDY leave

Be413BDS int 2Dh ; Internal routine for HMSDOS {IRET)
8ak13BD7 retn

Ba413BD7 start endp

The start code is pretty standard, except for an interesting particular, as you can see at
00413BD5 we have an int 2Dh instruction.

The interrupt 2Dh instruction is mechanism used by Windows Kernel mode debugging
support to access the debugging interface. When int 2Dh is called, system creates an
EXCEPTION_RECORD structure with an exception code of STATUS BREAKPOINT as well
as other specific informations. This exeception is processed by calling KiDebugRoutine.

4/15

Int 2Dh is used by ntoskrnl.exe to interact with DebugServices but we can use it also in user-
mode. If we try to use it in normal (not a debugged) application, we will get exception.
However if we will attach debugger, there will be no exception.

(You can read more about this at the OpenRCE reference library
http://www.openrce.org/reference_library/anti_reversing_view/34/INT%202D%20Debugger%
20Detection/)

When int 2Dh is called we get our first taste of ZeroAccess anti-reversing and code
obsfuction functionality. The system will skip one byte after the interrupt, leading to opcode
scission. The actual instructions executed will differ from the apparent instructions that will be
displayed in a dissasembler or debugger.

To continue further we need a mechanism to correctly handle int 2Dh call and mantain the
jump-one-byte feature, and allow us to follow the opcode-splitted code. To do so, we are
going to use StrongOD Olly plugin which can be downloaded here:
http://reversengineering.wordpress.com/2010/07/26/strongod-0-3-4-639/

With StrongOD installed, after tracing over int 2Dh we are presenting with the following
instructions:

KernelMode - Max++ downloader install _2010.exe - [*C.P.U*

@ File ¥iew Debug Plugins Options Window Help

EUIJIHH 48 ¥ +f v/E[mM[T|W[H
HH-H. g“i
"T= HOV EDI,EDI
ﬂaﬂlsﬁsﬁ E2 74010068 CALL Max++_do.B28413BB4
g4 13R48 IRETD
88413041 STI
ga4isn42 32650 C2 ¥OR BL,BYTE PTR £S:[EBP+58]
B804 13R45 AND BL,EH
BB413A47 46 INC ES1
Bo413R48 Al 1RS21CB7 MOV ERX, DWORD PTR DS:[871CE21A]
80413A4D| 6368 D9GAFC4® | ARFL WORD PTR DS:[EBX+48FCBAD9],CH
82412053 CE INTO
BB413A54 B6 92 HoV _DH, 92
B@413R56e CB RETF
B8413A5Y AS DZEI5SAS MOV OWORD FTR DS:[RSSS589D2]1,ERX
B8413ASC CS54A S6 LDS ECX,FWORD PTR DS:[EDX+56]

The most interesting instruction for us here is the Call 00413bb4. Immediately after this
instruction we have garbage code. Let’s enter into this call, and you are now presented with
the following code block:

5/15

http://www.openrce.org/reference_library/anti_reversing_view/34/INT%202D%20Debugger%20Detection/
http://reversengineering.wordpress.com/2010/07/26/strongod-0-3-4-639/

KernelMode - Max++ downloader install_2010.

File VWiew Debug Plugins Options Window Help

Ei_;l_l__l_l__[trﬂﬂil_ﬂ__r

| CALL Max++_do. 8841
| HOV EAX, 3

suB ESI, 9

LODS DWORD PTR DS:C[ESI)
POP EBP

| RETH

Again, we see int 2Dh, which will lead us one byte after the RETN instruction. The next piece
of code will decrypt the adjacent routine, after tracing further, finally we land here:

- KernelMode - Max++ downloader install_2010.exe - [*C.P.LU* -
File View: Debug Plogins Ophions Window Help

[[I I S I T I I A A
ES Glooeonn | MOV EAR, 1

CEEFEEEEE FF CHELEEF Man++ do. B84l 3A48
BE413EF4| SBFF MOV EDILEDI

BE413EF&(~E9 1004FEFF JHMP Max++_do. BE481818

This call will decrypt another block of code, at after that call execution jump here:

= KernelMode: - Max++ downloader install 2010.exe
File Miew Debug Plugins: Options Window Help

x| w0 s] 2] =i L|E[R
BELR1E1E] EdiAl] 1BARRERA. [O ERS G DWORD PTH FS L1a]
bEd@alEiE|] SBd4E 30 MOL. EAX, OWORD PTR D5: [ERM+3AT
HEd4@alazl) SB48 ac MaW ECH,OWORD PTR D5:[CEAX+C]
AR40l624| B2 FUSH EEX

E& FUSH ESI
BE4AIGZE| S2C1 1iC AOD ECH, 1C
aEdaiEze 2EE1 MOw ERX, OWORD FTR O5: CECH]
oEd4@aliEzg) 57 FUSH EDI
BEd4EiEzC ~EB 24 JMP SHORT HMax++_do.B8a4a1a52
bEd4@alE2E|] SBEE 20 Mol EOX, OWORD PTR D5: CEAX+Z261]
HE4@alazl| BF SRDEEFIS Mol EOI, S5&70ESA
HEa4@AlEge| BFEFI2 MOUER ESI, WORD PTR DS: [EDH]
HE4A1639) sBFF 21 IMUL EDILEDI, 21
BE4@a183C) BFEFDE MOUER EBX,5I
BEd@aiEzF|(23FE #“OF EDI,EEX
oEd4@aiagl] 42 IMC EDX
bE4alagz) 42 IMC EDH
bEd4@AlE43) &6 85F5 TEST 5I,5I
HE4@alades) 75 EE JHE SHORT HMax++_do. 864681836
bEad4@alads) 21FF FEDRICED CHF EDI,ED2COAYE
BE4a1a4E |- 74_BC JE. SHORT_Maw++_do. 064@165C

FS:[18] corresponds to TEB (Thread Environment Block) address, from TEB is obtained PEB
(Process Environment Block) which is located at TEB Address + 30h.

PEB+0C corresponds to PPEB_LDR_DATA LdrData.

If you are using WinDBG, you can use this quick hint to uncover the link between structure ->
offset ->involved member by issuing the following command:

0:004> dt nt!_PEB_LDR_DATA
ntdlll_PEB_LDR_DATA

6/15

+0x000 Length : Uint4B

+0x004 Initialized : UChar

+0x008 SsHandle : Ptr32 Void

+0x00c InLoadOrderModuleList : _LIST_ENTRY
+0x014 InMemoryOrderModuleList : _LIST_ENTRY
+0x01c InlnitializationOrderModuleList : _LIST ENTRY
+0x024 EntrylnProgress : Ptr32 Void

+0x028 ShutdownInProgress : UChar

+0x02c ShutdownThreadld : Ptr32 Void

As you can see, the malicious code refers to PEB_LDR_DATA + 1Ch, by checking the
output of WinDbg you can see that ECX now points to InlnitializationOrderModuleList. The
code that follows is responsible for locating Import Function addresses and then from this
information building an ImportTable on the fly dynamically. Next there is a complex sequence
of nested calls that have the principal aim of decrypting, layer by layer, the core routines of
ZeroAccess. We will not describe the analysis of this piece of multi-layer code; it is left as an
exercise for the reader. This section of code is quite long, repetitive, and frankly boring, and
not relevant from a functionality point of view.

Imported Function addresses are successively protected and will be decrypted on fly only
when they are called. Let’s take a look at how an API call actually looks:

ES S&0%FEEFT CHELE Han++_do Bedal iz
8041 27YEC) FFE@ JHMECERE
BR4137YEE| C3 RETH
BE4137EF| ES 15088888 CALL Max++_do. BE4132689
BE4137F4 | B2 FUSH EDX
BE4137F5(~7F4 &L JE SHORT Max++_do. 884123262
BE4137FF(49 DEC ECH
BE4137F2| &E ouTS DX,.BYTE PTR ES:[CEDI]

BE4137F3) &974EE 6E 69536l IMUL ESI,DWORD FPTR. 55: [EEF+EDH#Z+5E], 646F6369
Ba4lz281| 65:53 FUSH EB®

Call 00401172 decrypts and return the API's address in EAX. In the above code snippet, the
API called is VirtualAlloc. Allocated memory will be used in future execution paths to decrypt
a number of different blocks of instructions. These blocks will eventually constitute an
executable dropped by the original infection agent.

Main executable (the infection vector we are also referring to as the Agent) builds and drops
various files into victim’s hard disk and as well as in memory. Whether on disk or in memory,
the pattern used is always the same:

7/15

gg:gig;g SE?EFES EEHRES?FEUDRD FPTR SS: [EEF=1D1] T I
srgEm
BE4G1E70| BFEEGE FOUZH EEH, BYTE PTR DS:[ESI] Decrypt 1
BO461EC0| SS8400 E4FDFFFF|MOU EVTE PTR S55: CEBP+ECH-2101, AL
BO4BIEE?| SACE HOL L,
Bo4aieEa| PECE
aa4als=se| 4E DEC ESI
gR4als=Cc| =24C9 TEST CL,CL
BO481ESE|~75 ED JNZ SHORT Man++_do.B04@1C70 ee———
BO4B1EDE| SETE Fa MOL ESI, DWORD FTR &St [EEF—21
BB4a1Eaz| £Q 40 PUSH 48"
BO481E5E POP ECH
BER4als9E| Fa:iRS REEF HMOLS DWORD FTR ES: [EDI],DWORD FTR DS:[ESI]
eaqalsss| I2ZCo H“OR CL,CL
BE4B1500| CEds FF @@ MOL EYTE PTR S5:[EEFP-11,8
S3Fe HOR ESI.ESI
EE @3 JFF SHORT Hao++_do. 88481565
SA40 FD HOU CL,EYTE PTR 551 LEBRP-5] ——
BFEE4S FF (0 Mot TN Y T D £ 2
gl 1 S-S o 3 H =
Bo4B1EAC| SET MOW EDI, DWORD FTR S5: LEEF-18] ecryp
Ba461EAF| SDS485 E4FEFFFF|LER EAX.DWORD FTR 55: [EBP+EAR—11C]
Bo4615EE| Beas ADD CL,BYTE PTR DS LEAR]
BO4015EE| SALE HMOU OL.B¥TE PTR Oo:[EA%]
egaq4alseER| =240 FD MOl EVTE FTR SSi[EBF=3],CL
BE4a1EE0| BFEEC MOWZH ECH, CL
BE4a1ECA| SOSCE0 E4FEFFFF|LER ECH,DWORD PTR S5:[EBP+ECK—11C]
BE4BIECT| SE5E FE AGL BYTE TR S5: (EEF—21.0L
Bo481Ech| SAL MOU DL, BYTE PTR i
Ba4A1SCC| S=1A HOL BYTE FPTR OS:CERX],OL
B4Rl ECE| =RAEE FE MO DL,EBYTE FTE SSI[EBP-E]
eEda1E01| 8211 MOU EYTE PTR DS:LECHI, DL
BE4E1E0S| BFESES MOUZX ECH, BYTE PTR DS+ LECK]
BE4HIE06| BFEEEE HOLZS EFs.EYTE FTR DS [EA]
Be4a1E09 Ca ADD ECH, EAR
gad4al=0E| =21E1 FFE2AREA AMD ECK, 8FF
aad4alEE] 2re480 E4FEFFFF|MOY AL,BYTE FTR S=2i [EEF+ECK=11C]
Ba4O1EES| SD143E LEA EDX, DWORD FTR DS:LESI+EDI]
BO4B1EEE| Soas S0R BYTE PTR DS:CECX], AL
BO4B1EED| 46 THE ESI
BO401SEE| SBFE EMF ESI,EEW
LT TR |he B e
G0415F7| 2087 FFEGEReR |LEA EAX.OWORD PTR DS:[EDI+FF] Last Cycle
BO4B1EFD| EB4D EC HOU_ECHIDUORD PR S5: (EBP-14]
BO4A1E00| BFEEAEH tx PTR D& [ECH+EAR]
BO4G1EG4| SBEE Fa Moy B0 EHORD PR 523 FEBR AT
agqaleay| sAacil MOL CL,BYTE FTR D2: [ECH=+EDH]
Bo401EE0| SO0S MOU EYTE PTR DSt CERNI, CL
BO4E1E6C| SECE MOU ECH. EST
BO461E0E| 4E DEE EST
BO4B1EOF| 48 DEE Efn
Bo4aiein| SEC9 TEST ECx, ECx
gad4alslz|~7Fs E9 SHDHT Mar++_da. aB4a15F0D
BO4B1E14| @150 Fa BOD DUORD PTR S5 rEBP-81,EEX
BO4B1E17| EB4E FS MOW ERR. DWORD FTR So:[EEF-21
BO4B1E1A| 2950 EC SUE DWORD PTR 55: [EEE—141, EEX
BB4B1EI0| BEFE ADD EDI, EEN
BB4B1E1F| 8970 Fo MOU CWORD PTR S%:[EEP-181,EDI
gad4alszz| B4 E4 CHF ERX,DWORD FTR =5S5: [EEF=1C
PO401625 | ~@FS2 4DFFFFFF | JB HMau++_do.B@481573 Next Block
| god01e28| Fr7 PUSH DUORD PTR 5S¢ (EEP+8)

Next, let’s try to determine what is being decrypted in these blocks. We place a breakpoint at
0040162B, which is immediately after Next Block jump. The end of the Next Block
corresponds to the end of decryption process, we will see in allocated memory the familiar
‘MZ’ signature, letting us know the executable is ready to be used. Before proceding we
recommending dumping onto the the hard drive the full executable using the Backup
functionality of Ollydbg.

The next block of code is protected with a VEH (Vectored Exception Handler) by using
RtlAddVectoredExceptionHandler and RtIRemoveVectoredExceptionHandler. Inside this
block we have a truly important piece of code. This block is loaded via the undocumented
native API call, LdrLoadDIl. A system DLL is called, 1z32.dll, as well as the creation of a
Section Object.

@4a11
aa4 1

kT Rup by ey -h-l-‘-

EB ADBZEaRE

41 2BB0 128881

8555 E&

2951 2C
ca

C2 @408

CALL MaH++_do. @O4a14Fs

MOU ECH, DWGRD TR FSlEiQJ

HMOL - ED DNDHD : [EEF-1&1
HDU DEG&D FTR DS EECx+EEJ ED

#E SHEHT HaH** do. 28248l 1&6

-2
H DWORD PTR S9: [EEP-1C1

®OR EAX, EAX
LEA ESF,.DWORD PTR S5: [EEP=281
FOF EDI

222, R3CE4FE

8/15

A Section Object represents a section of memory that can be shared. A process can use a
section object to share parts of its memory address space (memory sections) with other
processes. Section objects also provide the mechanism by which a process can map a file
into its memory address space.

Take a look at the red rectangle, calling the value 003C24FB stored in EAX. As you can see
this belongs to the previously loaded 1z32.dll. Because of this call, execution flow jumps
inside the 1z32.dIl, and which contains malicious code decrypted by the rootkit agent.

This is what the code of 1z32.dIl program looks like:

T EETC24TAEFE
HE3C2EEE| -~ FE A5
BE3C2E62) ES D4FEFFFF
BEICZEAT) BE @1
BEIC25E3) C2 BCog

If we trace into the Call 003C23DB, we have a long routine that completes infection, and
more precisely we have the kernel mode component installation phase. We will see a series
of creative routines specifically written to elude classic Antivirus checks, such as the usage
of Section Objects and Views placed into System Files.

CHEZOWORDTRTRESSILESR+ET, =2
JHE SHORT lz32.883C25067
CALL lz52.8R3C220B

MO AL, 1

RETH BC

Now, let’s take a look at the core routine of the Agent, which we will analyze piece by piece:

9/15

[EEEEE]
BRSC23FD
BRSCESFE
BaECz2433
pEacE4es
pascI4En
BRASCE410
BRaECz2415
pRIca4ly
pascz41B
pRsCE41c
BEECE42]1
pastad2s
PRA3C2427
BRSCE428
BRSCE420
pEztad2
BRSCE433
BRABCZ435
BE2CZ2439
pEst242E
BRASCE43F
BRAECZ2445
pRIca440
pRzc2d4F
BRSCE458
BREC24E6
BEIC24ER
pEsca468
BRASCE4E51
BREC2455
BRIC245E
BRsCa4EF
BRSCE4TE
BAEC247E
QEICI47I
RA3C247A
BASCEATF
BR3C2424
pRIca429
pasCa48E
BASC2493
aaac2498
pasce470
pascE4R2
BRSCZ4AT
BEIC2488
BRICI4A3
BRSCE4RE
BRAECZ4E8
BRICE4E]
pasca4B2
BRASCE4ET
BRABCZ4ER
pRIC24ED
pRsc24ED
BRSCE4BE
|RaC24C2
gRIca4cs
QEsc24Ce
BRSCE4CE
993C24CD

EF1E Eglasnas
354424 24

E& '26EDFFFF.
E= BEEDFFFF

EE5CE
«BF 84 E4B00800
£8 OOAGEA16S
EH @7
SD4424 24
BF SO213000
57
EE ©0001888
BD4424 28
=]
FFIE DC1@s0es
ZECS
g94424 18
“FC_9A
FE7d24 14
FF1E E41@2008
B17C24 18 F10920
«7E @7
53
FFIE 4103008
EE 7OBEE00E
20 PBF3Ccop
ES CEFTFFFF
EE FYFCFFFF
E04424 24

Ed
ES SEFOFFFF
S04424 24

ES SEBFDFFFF
&8 SBAD3Ce8

65 BEZABEEE
az

2 92212088
254424 a8

=14

=)

204424 3C

=]

FF1E 74182000
SEF@

SBF3
~7C BA

———iem a4 a

CACL BHORDTFTR OSTLS018ES]
LEA EAX,OWORD PTR S5:[ESP+241
FUSH ERAX

CALL l=z32.0032C112%

CHLL Llz32.LECopy

TEST ERX,ERHX

JE lz32.883C24F4

PUSH 1aaaa

I.EFI EFIH DWORD FTR S55: [ESP+24]
MOU EDI, Lz32.00302158

FUSH EDI

QEU ESI, legaga

PEE EEH , OWORD PTR S5: [ESP+2321]
CALL DWORD FPTR DS:[30180C]
CHF ERX,EEX

MOU OWORD FTR 551 CESF+181, EAX
JL SHORT 1222, BRZCE44E5

FUSH DWORD FTR SS:[ESF+14]
CALL DWORD PTR D%:[2018E4]

CHMF DWORD FTR SS5:[ESF+18]1, CRABRAZY]

JME EHDET lz22. 88202456

FUSH EE
CALL OWORD PTR OS: [201004]
MU ERX, L22Z2. 8820AE7EA

SUE EAY, Lz22. BRICEFED

FUSH EAX

CALL lz=2. aasciczc

CALL lz52.882C2

LEA ERAH, DWORD F'TF: 55: [ESF+24]
FIUSH EA%

CALL lz&2.002C21A7
LEA EAX,DWORD FTR 551 [ESP+241
FUSH EA¥

CALL lz232.@03c220n

FUSH |23%2.B@03CA0SE

FUSH |z32, 00303168

HoU ERX, 1232, ga3C2540

CALL lz&2. BESC1EES

EsH |235: 92 cres

FUSH |z32.00302150

MOL EAX, L2322, BASCADSE

CALL lz&2,BBSC1EES

FLSH EEK

PUSH EBX

PUSH Zedo

FLUZEH EEX

EE¥X
FUSH lz32.88303193
LEA ERX,DWORD FTR S5S: [ESF+381]
FLUSH EH K
FUSH EDI
FUSH ESI
IEEE EFIH DWORD PTR S5: [ESP+3C]
CALL DNDRD FTE DS: [201674]
MOU EST,ERX
CHP ESI,EBX
JL_SHORT 1232, 00302409

ntd UL RELAdIusERs iV lege

UMICODE " =zz=g:%"

ntdll.ZwlpenFile

ntdll.ZwClose

kernel32.Ex ltProcess

ntdll.ZwCreateFile

During the analysis of complex pieces of malware it's a good practice to leave open the

HandleView and ModuleView panes within OllyDbg. This will help you keep track of what is
loaded/unloaded and what files/objects/threads/etc. are opened. Let's see what happens in
Call 003C1C2C at address 003C2461.

At first, we see the enumeration of Drivers placed into system32drivers, and next we have
the following piece of code:

10/15

ARZCIEZ2
AEZCIEDS
BRACIESF
BEZCIE42
AEZCIE4S
AR3SC1E4E
AESCIE4C
AEZCIE4F
BAZCIEEL
AEICIES4
BRACIEE?
BEACIESS
AEzClESD
AR3C1ESF
AEZCIERL
AEZCIERS
AR2C1ERG
AEACIESS
BRACIESC
BEZCIESD
AEZCIEEF
AR3ZCIETS
AESCIEY?
AEZCIETS
BA2CIEFE
AEICIESS
BRICIES4
BEZCIESA
aEzClESD
AR3C1ESE
AEZCIERE
AEZCIERS
ARZCIEDE
AEICIEDS
BRACIERD
BEZC1IEAR
aEzC1ER4
ABZC1IERS
AEZCIEAC
AEZCIEAD
AEZC1IER2
AEZC1EBS
BEIC1EER
BE2C1EBE
BEZCIECT
AR3CIEC2
AEZECIECS
AEZCIECY
ARZCIECC
AEZC1IECE
BEICIEDE
BE2C1IEDZ
aEzClEDS
AR3C1EDS
AEZCIEDS
AEEC1EDF
AE2C1IEE4
AE2C1EES
BEACIEER
BE2C1EED

BEZCIEEE]

-BF34 SAR2BRGEE
FF1& EEIBSDBB

2045 B4
FF15 C41@83068
Es

F77S DA
SE45 EC
£ERE
£6:295E 14
~74 @7
SECA
4R
£EC9
~74 @9
S1CE " 10016686
43
~75 EA
GFET45 1A
S07C3E 1C

57
2035 BEFEFFFF
ES 22163088

5]

FF1E Ba1130&E

2204 ac

&H ZE

57

ES BFED&@ER

&r

ag18

EZ FEECAEEE

22C4 ac

204486 64

ES 17EDBBEa

5965 83

57

&2 QB 162088

FFEVE @32

FE15 B@11306E
& ac

22c4 ac

5945 C4

33CH
£2 BEEEAEES
2070 C2

&A B4

2045 C4

5a

FF7S 83

S0BS 3CFFFFFF
EZ ZE8c8888
=1

&2 1FEaaFaa
2045 Ca

=]
FF15 A@1A30EE
BSCPRE

JE 123288202003

CHAHLL DWORD PTR O5: [3018E2]
MOU DWORD PTR 55: [EBP—4C1,ERX
LEA EARX,OWORD PTR S5:[CEEP-4C1
FUSH ERX

CALL DOWORD PTR D5:[301AC41
MOU ESI,ONORD PTR S5:[CEEBP-431
#0R EDX, EDx

DIV DWORD PTR S5:[EBP-2@1

MO ERX, OWORD PTR SS:L[EEP-141
MOU ERX, OWORD PTR DS:[EAX]

CHMP WORD PTR DO5:[ESI+141,BH
JE SHORT lz32.883C1EEE

MO ECH,EDR

DEC _EDX

TEST ECX,ECH

JE SHORT: lz322.AB3C1IEGF

HODO ESI, 11C

OEC ERX

kernel32.6etTickCount
ntdl l.Rt lRandom

Generafe a random

number

JHZ SHORT lz22.@@3C1EST hﬂalance rnd val
MOUEE EAM.WORD PTR DS: [ESI¥1A]

LEA EDI,DWORD FTR DS:L[EAX+ESI+IC]
FUSH_EDI

LER EAR,DWORD FTR 55:[EBF-4421
FUSH Lz22. 88301692

FUSH EAX

CALL DWORD PTR DS:C3D1188]
ADD ESF, BC

FUSH ZE

FUSH EOI

CALL [z32.@0300EA4

FUSH EDI

HOU BYTE PTR DS:CERXI.EL
CALL lzg2.Pa30aEss

AOO_ESF, B

LEA ERX,DW0RD PTR OS5: [EAX+ERN+4]
CALL lz52.@R300ECE

HOW DWORD PTR 55: CEEP+31,ESP
FUSH EDI

FUSH [z32.80301608

FUSH DWORD PTR S5z [EEP+S1
CALL DWORD PTR DS:[SD11G681
HOW ER.OWORD PTR D5:[ESI+C]
ADD ESF, BC

FUSH EES

HOW DWORD PTR S5: [EEP-3C1,EAX
#OR ER%,EAX

FUSH SoSEEEE

LER EDI,DWORD PTR S5:[EEP-221
STOS DWORD PTR ES:[EDII

FUSH 4

LEA ERX,DWORD PTR 55:[EEF-2C]
FUSH EAS

FUSH OWORD FTR 55z [EEF+5]

LER ESI,DW0RD PTR 55: [EEF-C41
CALL lz52. BRSC25EC

FUSH EAX

FUSH BFEB1F

LER ERY,DWORD PTR 55:[EEP—481
FUSH EAX

CALL OWORD PTR DS:[3016AE]
TEST ER:.EAR.

UMICODE "5

ntdll.swprintf

JHP to ntdll.strrche

JMP to ntdll.strlen

UNICODE "™. x5

ntdll.swprintf

J

\. driver name

ntdll.ZwCreateSect ion

= i
G]

We have an interesting algorithm here, after driver enumeration a random number is
generated, next fitted within a range of [0 — OxFF] and used to randomly select from the
driver list a file to be infected. Finally the string formatted as:

._driver_name_

Now let’s watch what is going on in HandleView:

11/15

1:! Handle

Handle |T |[Refs |Access [T |Info Name
Bﬂﬁﬂmaciﬂgsktm 1Z21. | B9BFBLFF | ~Default
88808883 | Directory &2, | BOBBEBES | ~KnownOl ls
Bagaeal4 | Directory 30, | POBFPABF | “Windows
Bageaez4) Directory 263, EHHBEEEIBFl ~BaseNamedObjects
82088824 Event 2. | B81Feass
PABReAAC File (dir) 2. EHEIIEIBBEE. c:~Tools
Bﬁ&ﬂﬁ'ﬂlelf-‘tle (dir) 2. | Bal00a2a| c.\NIHDDNﬁWmSuS\aEE Hicrosoft.Wi
BBBB%Em 2. | BOBFBASF| HKEY_LOCAL_MACHINE
Ba800064 | KeyedEvent 28, | B08F88a3 | “Kerne lObjects~CritSecOutOf HemoryE
BEEIEBB!.B;P-:-N 3. | B@1F@001 |
Bagaaal 2ot 27. | BoBFealF|
B002024E 3. | GOOFEA1F| ~.usbhub ;
31. @O1FPGO3| |Count 4. of b= dObjects shel L. (R4EF 1A32-1
BBB‘B%E‘B Mmdauﬁtat ion 49, | B0BFB3TF | sWindowssllindowStat ions~WinStad
%Bﬁ&ﬂ%ilﬂmd@uﬁtat ion 43, | BRBFBA3TF sindowssWindowStat ions~WinStag

As you can see a Section Object is created according to the randomly selected driver file,
and next will be opened as View inside this Section.

The access values for this section are set to OxFOO1F. Let’s first talk about why this is
important. During a malware analysis session, much like a forensic investigation, is
fundamental to know what the access potential the various components have, so we can
direct our investigation down the right path. This can be determined by checking the access
rights assigned to various handles.

Let’s lookup what the access right of 0xFOO1F corresponds by looking in winnt.h:
#define SECTION_ALL_ACCESS 0xf001f

SECTION_ALL_ACCESS means the handle has the ability to Read, Write, Query and
Execute. This is the optimal environment to place a malicious portion of code. Now, lets
analyze further:

12/15

BOEE ECFOFFFF
62 EQ143000

L=l
FF IS0 120
8204 eC

LER ERX,DWORD PTR S5t [EBP=234)
FUEH 1z32. eaa0i4E8

PUSH ERX
CRUL DHOROTETR. DS L300 1BAT

EDT
LER EE-"LMHD PTR 55:[EEP-294)

PUEH

LEA ESI,DWORD PTR S5:[EBF-541
CHLL 1z32, 88302880

FUEH EAX

BFBRzF
LEA EAX,DWORD PTR 55: [EBP-81
FUSH ERAM

CHLL. DHORD PTR D35:03D112C]
TEST ERx, ER

lz32. Bzt 1636

noy ESL, DWORD PTR O5: (3018331
FUZH 4

POP EBX
FUSH EBx
LEA ERX,DWORD PTR 55: [EBF-181

2

=

noED
e 2

2. 301550
FTR 581 [EBP=81]
FTR 58: [EEF=18],1

2

Bmm
Eu:lm
o

,DMORD PTR 55: [EEF-181

EREn

=

. 3015
PTR S8:[EBP-81]
DWORD FTR 5S: [EBP=18],2

E

gF
o

PUSH 1232, 88301554
FLIEH

1
FUEH 1232, 88a0iser
Egliﬁ:l PTR 55:[EBP-81]

i

£

UHICODE *"registry HACHIHENSYSTEM CurrentControlSet services ds”
Inedll sopeEing#

ntdl . Zwlreatekey

nedll.2wEetla luekey

UHICO0E "™

This block of code takes the driver previously selected and now registers it into:

registryMACHINESYSTEMCurrentControlSetservices

The services entry under CurrentControlSet contains parameters for the device drivers, file
system drivers, and Win32 service drivers. For each Service, there is a subkey with the
name of the service itself. Our registry entry will be named ._driver_name_

Start Type has 0x3 value that means -> Load on Demand

Type: 0x1 -> Kernel Device Driver

Image Path -> *

HH=ECTHED
BAICIAZ0D
BEICIA42
AEAC1IA4E
BEIC1IR4E
AEIC1IA4C
BEICIA40
AEICIA4F
BEIC1IAEY
BEICIAES
BEAICIAEC
BERICIASD
BE3C1IASE
BEIC1IASE

HEIC1AES

BEICIAEC
BA2C1AEF
BRICIATYS
BEICLIATE
BEICLIATE
BEICLIATY
HAESCIATS
BE3C1A7A

AASCLAGH]

BBICIAGY|

=L
FELE OC1a2066
25Ca

~BF2C B2EEEREE
=T

=T

&R a2

&2 ACZ13D6ER
&2 4ACHADEA
ED4E cC

45 Eg
£2 BREGROGS
EZ

E7

EF

EA 86

EG

FELE AB163008

FU=H EHX

CALL DWORD PTR DS:C201@0C]
TEST: ERX,ERX

JL lz32.8R3C 1632

FUSH EDI

PUSH EDI

g
FUSH [z52.PB3031AC

PUSH SC048

LEA EAX, OWORD PTR S5: [EEP-241
PLSH EAS

PUSH EDI

PUSH EDI

PUSH EDI

PUSH OWORD FTR 55: LEEF-CI

B W 11 W i =T T
PUSH OWORD PTR S5:LEBP—CJ

LEA EAH,OWORD PTR S5: [EEP-181
PUSH Zo8B68E

PUSH EEX

PUSH EDI

PUSH EDI

FUSH &

EAY
CALL OWORD FTR DS:C2018AE]

ntdll.ZwlpenFile

ntdllEwEsControlFile

ntdll.ZwCreateSection

13/15

The same driver is always opened. Next, its handle used to send, via ZwFsControlCode, a
FSCTL (File System Control Code). Taking a look at the API parameters at run time reveals
that the FSCTL code is 9C040. This code corresponds to FSCTL_SET_COMPRESSION. It
sets the compression state of a file or directory on a volume whose file system supports per-
file and per-directory compression.

Next, a new executable will be built with the aforementioned decryption scheme and then
loaded via ZwLoadDriver. This process will result in two device drivers:

1. The first driver is unnamed and will perform IRP Hooking and Object and
disk.sys/pci.sys Object Stealing (we will analyze this in greater detail later)

2. The second driver, named B48DADF8.sys, is process creation aware and contains a
novel DLL injection system (we will also analyze it greater detail later)

Once the driver infection is complete we land in an interesting piece of code:

) PUEHFEST =
=0Ea PUEH |z32. 98201308

Lledz| 62 ABL3 UHICODE "fmifs"™
Ba3CI&673| FFIS 18103088 |CALL DWORD PTR DS:[3D1812] kernel32. Loadl ibraryl

ac1 BEFQ HOU ESI,EAX
Ba3Cissd) BEFE TEST ESI1.ESI
BaaCicgz| 74 23 JE SHORT 1z32.082C16E7
BE3CIE84| 62 AC1330SE FUSH 1z32.082013AC RSCII "FormatEx"™
Ba3Ci1&89| 58 PUSH ESI
aa3Ci&8a| FFI1S 14185028 CRLL DWdRD PTR D=S:C3D18141 kernel 32, et ProcRddress
Ba3Cicoa| BECD TEST ERM,ERX
Ba3CIesz|~74 1T JE SHORT 1z32.002C16ED
BA3CI694| 68 &D163CHA PUSH lz32.082C1680
BAa3CI&93| &R B8 PUSH @
BRICIS9E| &R Al FUSH 1
Ba3CisoD| &2 E8132D88 FUSH |z32.082D1388
ga3CicAz] &2 BC133Do8 FPUSH lz32.002D13EC UHICODE "HTFS*"
8a3CI&AT| &A BB FLUEH B8
Ba3CIsAY| &2 CER1ZEDESE FUSH lz32.88=013C8 UHICODE " sYSC2CA0972a4a7924F dEsResDeRD34CC1 21874
BEICISRE| FFD@ CRLL ERY
ea3CicEn| 56 FUSH ESI ’
e23CI&E1| FFI1S 90193089 |CALL DWORD PTR DF: (3010093 kernel 32, Freel ibrary
B23CI&BYT| SE POFP ESI
easciess| c3 RETH ___

Here, we see the loading of fmifs.dll. This DLL is the Format Manager for Installable File
Systems, and it offers a set of functions for FileSystem Management.

In this case the exported function is FormatEx. A bit of documentation on FormatEx follows:

VOID

STDCALL

FormatEx(

PWCHAR DriveRoot,
DWORD MediaFlag,
PWCHAR Format,

PWCHAR Label,

BOOL QuickFormat,
DWORD ClusterSize,
PFMIFSCALLBACK Callback

);

14/15

This function, as the name suggests is used to Format Volumes. In our case the DriverRoot
is 7C2CAD972#4079#4fd3#A68D#AD34CC121074 and Format is NTFS. This is a
remarkable feature unique to this rootkit. This call creates a hidden volume, and the volume
will contain the driver and DLLs dropped by the ZeroAccess Agent. These files remain totally
invisible to the victim (something we teach in our ethical hacking course).

The next step the Agent takes is to build, with the same decryption routine previously
described, the remaining malicious executables that will be stored into the newly created
hidden volume. These two files are:

o B48DADF8.sys
e max++.00,x86.dll

Both located into the hidden volume, ?C2CAD972#4079#4fd3#A68D#AD34CC121074L. We
now we have a good knowledge of what user-mode side of ZeroAccess does, we can focus
our attention to Kernel Mode side, by reversing the two drivers and dropped DLL.

Let’s continue to follow the workflow of the rootkit. If you are reversing along with us, analysis
will logically follow the order of binaries dropped by the Agent. Our first driver to reverse will
be the randomly named one, which will be in Part 2 of this tutorial.

Posted: November 12, 2010

Author

Giuseppe Bonfa

VIEW PROFILE

Giuseppe is a security researcher for InfoSec Institute and a seasoned InfoSec professional
in reverse-engineering and development with 10 years of experience under the Windows
platforms. He is currently deeply focused on Malware Reversing (Hostile Code and Extreme
Packers) especially Rootkit Technology and Windows Internals. He has previously worked as
Malware Analyst for Comodo Security Solutions as a member of the most known Reverse
Engineering Teams and is currently a consultant for private customers in the field of Device
Driver Development, Malware Analysis and Development of Custom Tools for Digital
Forensics. He collaborates with Malware Intelligence and Threat Investigation organizations
and has even discovered vulnerabilities in PGP and Avast Antivirus Device Drivers. As a
technical author, Giuseppe has over 10 years of experience and hundreds of published
pieces of research.

15/15

http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/
https://resources.infosecinstitute.com/author/giuseppe/

