
1/4

Qakbot, Data Thief Unmasked: Part I
web.archive.org/web/20110909041410/http://www.symantec.com/connect/blogs/qakbot-data-thief-unmasked-part-i

Updated: 11 May 2010

Shunichi Imano
Symantec Employee

+2
2 Votes
Login to vote

Motive

We recently had the opportunity to revisit a threat that first appeared on our radar back in

May of this year. W32.Qakbot (hereafter referred to as Qakbot) is a somewhat benign worm
that is capable of spreading through network shares, downloading additional files and
opening a back door on the compromised computer, all in aid of its ultimate goal. Benign not
because it is harmless - stealing login details, reporting keystrokes and uploading system
certificates is malicious behavior indeed - but as will become obvious as we describe it in
more detail below, because it moves slowly and with caution, trying not to bring attention to
its presence.

The motive of Qakbot is quite clear, to steal information. Taking a peak under the proverbial
covers, we see that it uses several components to accomplish the task, including the
following:

_qbot.dll
_qbotinj.exe
msadvapi32.dll
_qbot.cb
seclog.txt
_qbotnti.exe
sconnect.js
webfix.txt

We will discuss each of these components briefly as we walk through the various
functionality contained within and methods employed by this nefarious data thief.

https://web.archive.org/web/20110909041410/http://www.symantec.com/connect/blogs/qakbot-data-thief-unmasked-part-i
https://web.archive.org/web/20110909041410/http://www.symantec.com/connect/user/shunichi-imano
https://web.archive.org/web/20110909041410/http://www.symantec.com/connect/user/shunichi-imano
https://web.archive.org/web/20110909041410/http://www.symantec.com/security_response/writeup.jsp?docid=2009-050707-0639-99

2/4

Infection
Qakbot initially spreads via web pages containing Javascript which attempts to exploit certain
vulnerabilities, including Microsoft Internet Explorer ADODB.Stream Object File Installation
Weakness and Apple QuickTime RTSP URI Remote Buffer Overflow (Symantec IPS
detection details here and here) and where those exploits are successful, downloads its
malicious files on to the compromised computer. Once a machine is infected with Qakbot, all
Qakbot-related files are stored in the user profile data directory, which typically is
C:\Documents and Settings\[USERNAME]_qbothome. The first two components the threat
downloads are _qbot.dll and _qbotinj.exe.

The downloaded file _qbot.dll is the main component of the Qakbot worm and is responsible
for collecting certain information from the infected machine and uploading that stolen data to
FTP servers under the control of the creator, the locations of which are frequently changed.
We will talk more about this file later in the article.

Injection

The _qbotinj.exe file acts as a kind of servant to the _qbot.dll file. The file explorer.exe, a

core Windows process and one of the few that runs in memory constantly on Windows
operating systems, is compromised by _qbotinj.exe injecting _qbot.dll into it – that is, into the
instance of explorer.exe running in memory. Similarly, the iexplore.exe process, which many
readers will recognize as the process responsible for operating the Internet Explorer browser,
is also injected.

This creates the illusion that all subsequent actions undertaken by the threat appear to be
the work of these otherwise legitimate Windows processes. This is in fact a trick often used
by many types of threats, as antivirus products, firewalls and other security safeguards are
generally programmed to allow such common Windows processes full access to both the
Internet and other applications on the infected computer.

The above image represents the worm communicating with its command center via the
compromised Internet Explorer process. For all intents and purposes, this simply appears to
be a legitimate browsing instance.

Interestingly however, _qbotinj.exe avoids injecting _qbot.dll into certain processes,
presumably in an attempt to avoid being detected (or in some cases to avoid being
debugged which would likely result in detection so in essence is the same thing), including
the following:

msdev.exe
dbgview.exe
mirc.exe

https://web.archive.org/web/20110909041410/http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=50031
https://web.archive.org/web/20110909041410/http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=50155

3/4

ollydbg.exe
ccApp.exe
R&Q.exe
photoed
outlook.exe
mmc.exe
ctfmon.exe

Survival

_qbot.dll also runs two additional threads: “Watchdog” and “Swatcher”. The Watchdog thread

monitors for instances of Dr. Watson running in memory and terminates any it finds . The
other thread, Swatcher, checks the registry subkeys “Run” and “RunOnce” every 30 seconds
and updates them if necessary. Qakbot does not add a registry value under the “Run” or
“RunOnce” subkeys itself, but instead updates the last entry under those keys to include its
own EXE file, followed by Qakbot’s parameter and “/c” with the original registry value, which
is legitimate.

For example, the last (legitimate) Run key entry might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"Test

Program" = "C:\Program Files\Test Program\testprogram.exe"

Qakbot will modify it to read:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"C:\Documents

and Settings\All Users_qbothome_qbotinj.exe" " C:\Documents and Settings\All
Users_qbothome_qbot.dll" /C "C:\Program Files\Test Program\testprogram.exe"

Qakbot contains several internal commands it uses to do its dirty work. One of them, “getip”,
checks the registry to see if a Citrix product, Microsoft Office or Microsoft Project is installed,
by reading the registry key HKEY_CLASSES_ROOT\Installer\Products. If installed, this
command does nothing further. If none of those products are found, it continues, checking if
it is running on a Virtual Machine. If a VM is discovered, Qakbot sends the VM information to
[http://]hostrmeter.com/cgi-bin/exha[REMOVED] using the POST method, and checks for the
existence of the file c:\irclog.txt. If c:\irclog.txt is found on the compromised computer, Qakbot
uninstalls itself using its own "uninstall" command. We'll touch on this again in Part II.

Spread

Another of Qakbot’s internal commands, “nbscan”, is responsible for its attempts to spread

over network shares. It enumerates network share folders, checking if the share name and
user name are contained in the file "% CurrentFolder%\nbl_[USERNAME].txt". If they are
listed in the file, Qakbot skips that network share. If they are not listed - and before copying
any files to the remote share - Qakbot checks if the files "% CurrentFolder%_qbot[RANDOM
CHARACTERS]" and "%CurrentFolder%\q1.dll" exist on the remote machine. If not, it
downloads them. It then copies "q1.dll" to either [REMOTE COMPUTER]\C$\windows\q1.dll

4/4

or [REMOTE COMPUTER]\ADMIN$\q1.dll, and "_qbot[RANDOM CHARACTERS]" to either "
[REMOTE COMPUTER]\C$\windows_qbot[RANDOM CHARACTERS].exe" or "[REMOTE
COMPUTER]\ADMIN$_qbot [RANDOM CHARACTERS].exe". After copying the files, it
writes the share name and user name to the file "%CurrentFolder%\nbl_[USERNAME].txt"
stored on the local machine. This of course is the list Qakbot checked at the very beginning
of the network share routine, the logic being that it if the names are in the list, that machine
has already been processed (read infected).

The file _qbotnti.exe is used to load the file msadvapi.dll into memory. msadvapi.dll is then
used to hook APIs in every running process. This serves two purposes. Firstly, as a cloaking
mechanism. msadvapi.dll hides file names and registry entries containing “_qbot”, and also
hides Internet connections to destination ports between 16666 and 16669. Secondly, it
enables the threat to capture sockets where the destination port is 21 (FTP), 110 (POP3) or
143 (IMAP), as well as capturing login credentials to predefined web sites contained in the
configuration file named webfix.txt. Qakbot attempts to steal login credentials when the user
visits one of the hard-coded URLs listed in webfix.txt.

We’ll finish this two-part series in a subsequent posting where we’ll look briefly at the
information Qakbot steals and how it goes about updating itself. Stay tuned.

A big thanks to Masaki Suenaga and Takayoshi Nakayama for their analysis.

