
1/9

vx-underground@vxunderground·Sep 14

X
x.com/vxunderground/article/1835141032121389477

Ballin' on a budget: A Quick Guide to Defining Malware with $0, Python3, and Windows

To be blunt: if you've got a bunch of binaries that you know is malware, or suspect is
malware, and want to label it appropriately but don't have the ability to get an expensive
VirusTotal license (or they don't want to lend you a researcher API key), don't have the ability
(or skillset) to setup something like
Polish CERT MWDB
or
Canadian CCCS AssembyLine
, or any other reason not listed here, then this tutorial will show you how to ball out on a
budget. Requirements: - Windows (yes, you read that correctly) - Python3 - Malware
Windows Defender comes equipt with a command line interface designed for Enterprise
Users (maybe? no idea, just making that up) that allows anyone to do a quick custom scan
on a file. The binary is (usually) located in:

plaintext

C:\Program Files\Windows Defender\MpCmdRun.exe

MSDN offers a
pretty good guide
on how to use the command line interface. If you don't want to read, the tl;dr is the the
following command line is absolute gold:
plaintext

MpCmdRun.exe -Scan -ScanType 3 -File "{full_file_path}" -DisableRemediation

https://x.com/vxunderground/article/1835141032121389477
https://github.com/CERT-Polska/mwdb-core
https://www.cyber.gc.ca/en/tools-services/assemblyline
https://learn.microsoft.com/en-us/defender-endpoint/command-line-arguments-microsoft-defender-antivirus

2/9

This will scan a file, print the results onto the console, and do nothing thanks to the
DisableRemediation flag. It looks like this:

The caveat to this command line argument is the -File flag requires the full path to the file
you want to scan. Anyway, here is some Python 3 code that accepts a directory as an
argument. It will programmatically loop through a directory, scan the file, get the output from
MpCmdRun.exe, then display the result on the console using a file path friendly definition
(more on that later).

python

https://x.com/vxunderground/article/1835141032121389477/media/1835136789108916224

3/9

import subprocess
import os
import argparse
import hashlib

def update_defender_signatures():
 """Updates the Defender virus definitions to ensure the latest signatures are
used."""
 try:
 command = r'"C:\Program Files\Windows Defender\MpCmdRun.exe" -
SignatureUpdate'
 result = subprocess.run(command, capture_output=True, text=True, shell=True)
 print(result.stdout) # Directly print the output from the command
 print(result.stderr) # Directly print any errors from the command
 except Exception as e:
 print(f"An error occurred during signature update: {e}")

def calculate_sha256(file_path):
 """Calculates and returns the SHA-256 hash of a file."""
 sha256_hash = hashlib.sha256()
 try:
 with open(file_path, "rb") as f:
 # Read the file in chunks to avoid memory issues with large files
 for byte_block in iter(lambda: f.read(4096), b""):
 sha256_hash.update(byte_block)
 return sha256_hash.hexdigest()
 except Exception as e:
 print(f"Error calculating SHA-256 for {file_path}: {e}")
 return None

def extract_threat_name(output, file_hash):
 """Extracts and prints the full threat name from the Defender output, replacing
special characters."""
 lines = output.splitlines()
 threat_section_found = False
 threat_name_found = False

 for line in lines:
 if "LIST OF DETECTED THREATS" in line:
 threat_section_found = True # Found the section with the threat list
 continue # Move to the next line after detecting the section

 if threat_section_found and not threat_name_found:
 if "Threat" in line and ":" in line:
 # Capture everything after the first colon to ensure the full threat
name
 threat_name = line.split(":", 1)[1].strip() # Get the threat name
 # Replace :, /, and ! with a period
 threat_name = threat_name.replace(":", ".").replace("/",
".").replace("!", ".")
 print(f"Threat detected: {threat_name}-{file_hash}")
 threat_name_found = True

4/9

 break

 if not threat_name_found:
 print(f"No threat detected for file with hash {file_hash}.")

def scan_file_with_defender(file_path):
 """Scans a single file using Windows Defender."""
 # Calculate the SHA-256 hash of the file
 file_hash = calculate_sha256(file_path)
 if not file_hash:
 return # If hash calculation failed, skip this file

 # Define the command to run MpCmdRun.exe to scan the specific file
 command = fr'"C:\Program Files\Windows Defender\MpCmdRun.exe" -Scan -ScanType 3 -
File "{file_path}" -DisableRemediation'

 try:
 # Run the command and capture output, using shell=True
 result = subprocess.run(command, capture_output=True, text=True, shell=True)

 # Parse the result.stdout to extract and print the threat name along with the
file hash
 extract_threat_name(result.stdout, file_hash)

 except Exception as e:
 print(f"An error occurred while scanning {file_path}: {e}")

def scan_directory_with_defender(directory_path):
 """Scans all files in a directory using Windows Defender."""
 # Resolve the full path of the directory
 directory_path = os.path.abspath(directory_path)

 # Check if the directory exists
 if not os.path.isdir(directory_path):
 print(f"Directory not found: {directory_path}")
 return

 # First update signatures
 update_defender_signatures()

 # Loop through all files in the directory and scan each one
 for root, dirs, files in os.walk(directory_path):
 for file in files:
 file_path = os.path.join(root, file)
 scan_file_with_defender(file_path)

if __name__ == "__main__":
 # Parse the command line argument
 parser = argparse.ArgumentParser(description="Scan a file or a directory using
Windows Defender.")
 parser.add_argument("directory_path", help="The path to the directory you want to
scan.")

5/9

 args = parser.parse_args()
 scan_directory_with_defender(args.directory_path)

When you run it against a directory containing malware, the output will look like this:

Cool beans! If you want it to rename the files using the path friendly output you can use the
following code:

python

https://x.com/vxunderground/article/1835141032121389477/media/1835138058477309953

6/9

import subprocess
import os
import argparse
import hashlib

def update_defender_signatures():
 """Updates the Defender virus definitions to ensure the latest signatures are
used."""
 try:
 command = r'"C:\Program Files\Windows Defender\MpCmdRun.exe" -
SignatureUpdate'
 result = subprocess.run(command, capture_output=True, text=True, shell=True)
 print(result.stdout) # Directly print the output from the command
 print(result.stderr) # Directly print any errors from the command
 except Exception as e:
 print(f"An error occurred during signature update: {e}")

def calculate_sha256(file_path):
 """Calculates and returns the SHA-256 hash of a file."""
 sha256_hash = hashlib.sha256()
 try:
 with open(file_path, "rb") as f:
 # Read the file in chunks to avoid memory issues with large files
 for byte_block in iter(lambda: f.read(4096), b""):
 sha256_hash.update(byte_block)
 return sha256_hash.hexdigest()
 except Exception as e:
 print(f"Error calculating SHA-256 for {file_path}: {e}")
 return None

def extract_threat_name(output, file_hash):
 """Extracts and returns the full threat name from the Defender output, replacing
special characters."""
 lines = output.splitlines()
 threat_section_found = False
 threat_name_found = False

 for line in lines:
 if "LIST OF DETECTED THREATS" in line:
 threat_section_found = True # Found the section with the threat list
 continue # Move to the next line after detecting the section

 if threat_section_found and not threat_name_found:
 if "Threat" in line and ":" in line:
 # Capture everything after the first colon to ensure the full threat
name
 threat_name = line.split(":", 1)[1].strip() # Get the threat name
 # Replace :, /, and ! with a period
 threat_name = threat_name.replace(":", ".").replace("/",
".").replace("!", ".")
 return f"{threat_name}-{file_hash}"

7/9

 return f"NoThreatDetected-{file_hash}"

def scan_file_with_defender(file_path):
 """Scans a single file using Windows Defender and renames it based on the threat
and hash."""
 # Calculate the SHA-256 hash of the file
 file_hash = calculate_sha256(file_path)
 if not file_hash:
 return # If hash calculation failed, skip this file

 # Define the command to run MpCmdRun.exe to scan the specific file
 command = fr'"C:\Program Files\Windows Defender\MpCmdRun.exe" -Scan -ScanType 3 -
File "{file_path}" -DisableRemediation'

 try:
 # Run the command and capture output, using shell=True
 result = subprocess.run(command, capture_output=True, text=True, shell=True)

 # Parse the result.stdout to extract the threat name along with the file hash
 new_file_name = extract_threat_name(result.stdout, file_hash)

 # Rename the file with the new name
 file_directory = os.path.dirname(file_path)
 file_extension = os.path.splitext(file_path)[1] # Keep the original file
extension
 new_file_path = os.path.join(file_directory, new_file_name + file_extension)

 os.rename(file_path, new_file_path)
 print(f"File renamed to: {new_file_path}")

 except Exception as e:
 print(f"An error occurred while scanning {file_path}: {e}")

def scan_directory_with_defender(directory_path):
 """Scans all files in a directory using Windows Defender."""
 # Resolve the full path of the directory
 directory_path = os.path.abspath(directory_path)

 # Check if the directory exists
 if not os.path.isdir(directory_path):
 print(f"Directory not found: {directory_path}")
 return

 # First update signatures
 update_defender_signatures()

 # Loop through all files in the directory and scan each one
 for root, dirs, files in os.walk(directory_path):
 for file in files:
 file_path = os.path.join(root, file)
 scan_file_with_defender(file_path)

8/9

if __name__ == "__main__":
 # Parse the command line argument
 parser = argparse.ArgumentParser(description="Scan a file or a directory using
Windows Defender and rename files based on detected threats.")
 parser.add_argument("directory_path", help="The path to the directory you want to
scan.")

 args = parser.parse_args()
 scan_directory_with_defender(args.directory_path)

Before the script is ran, this is a picture of a directory named "rename_this_malware"

This is the output on the console from the script:

Here is the new file contents in the directory:

https://x.com/vxunderground/article/1835141032121389477/media/1835139563355885568
https://x.com/vxunderground/article/1835141032121389477/media/1835139997524967424

9/9

Now we ballin' on a budget. -smelly

https://x.com/vxunderground/article/1835141032121389477/media/1835140206099410944

