
1/6

blog.mggross.com
/intercepting-syscalls/

Unknown Title

Reliable system call interception.

Posted on 2025-01-05

Historically, intercepting Linux system calls was done with ptrace. While ptrace is more commonly known for
debugging purposes, one could easily monitor system calls by using PTRACE_SYSCALL (or even
PTRACE_SYSEMU) to wait for the traced process to make a system call, then send off PTRACE_GETREGS and
PTRACE_SETREGS to read and write the registers associated with the system call.

So while the Linux kernel always had the facilities to monitor, fake, modify and restrict system calls, the
glaring problem with ptrace is that it is very slow, as it stops twice for every system call (unless
PTRACE_SYSEMU is used) and there is no way to natively filter for a specific set of system calls. It gets
worse, because reading and writing to the registers is incredibly cumbersome and one quickly encounters
architecture-specific quirks.

This is where seccomp user notify comes in, where recent advancements by Christian Brauner have made it
possible to intercept system calls in a much more elegant way. Due to the addition of BPF it can be
programmed to yield back only for the desired system calls, which significantly reduces the performance
penalty and unaffected sections of the traced program run almost as if no tracer was attached at all. This is
also similar to what strace is doing with the --seccomp-bpf option as a means for lessening the performance
overhead, although it still uses ptrace for the main functionality.

Usecase

A few years ago, I wrote a tool called copycat that uses this mechanism to dynamically intercept all open()-
style system calls made by a supervised process and returns, depending on some rules, either the
requested file or a completely different faked file. This can be very useful in some situations, for example
when a program is hardcoded to use one specific location for a configuration file, but you rather want to use
a different location.

The replacement of the opened file is completely transparent to the application and can easily be configured
with simple environment variables. For example, the following snippet will trick cat into outputting /tmp/b
instead of /tmp/a:

COPYCAT="/tmp/a /tmp/b" copycat -- cat /tmp/a

https://blog.mggross.com/intercepting-syscalls/
https://man.archlinux.org/man/syscalls.2
https://man.archlinux.org/man/ptrace.2
https://nullprogram.com/blog/2018/06/23/
https://man.archlinux.org/man/seccomp_unotify.2.html
https://people.kernel.org/brauner/the-seccomp-notifier-cranking-up-the-crazy-with-bpf
https://docs.kernel.org/networking/filter.html
https://archive.fosdem.org/2020/schedule/event/debugging_strace_bpf/
https://github.com/vimpostor/copycat

2/6

What happens behind the curtains, actually involves a lot more detail than just intercepting system calls. For
one, it is also necessary to inject file descriptors directly into the file descriptor table of the traced process, as
otherwise the faked file would only be valid in the tracer process.

seccomp unotify

Originally seccomp user notify was intended for container usecases, but we can use it just as easily for
normal processes by adopting the age-old fork+exec pattern. The child process simply registers a seccomp
filter with SECCOMP_SET_MODE_FILTER and then executes the target application, while the parent
process acts as the supervisor and repeats an ioctl loop with the special SECCOMP_IOCTL_NOTIF_RECV
flag, which will yield any time the supervised process attempts a matching system call.

A few special prerequisites have to be met to make this work. First the child process needs to drop all
privileges.

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

This is necessary, as otherwise an unprivileged process could execve a setuid program with a malicious filter
attached.

Such a malicious filter might, for example, cause an attempt to use setuid to set the caller's user
IDs to nonzero values to instead return 0 without actually making the system call.

On the supervisor side we have to make some extra checks due to a kernel bug that does not notify the
supervisor when the supervised process exits. Since Linux 6.11 the bug is resolved, so in that case the
SECCOMP_IOCTL_NOTIF_RECV loop is sufficient and will return with ENOENT, when the child terminates.
However on older kernel versions that ioctl would hang forever, so an easy workaround is to install a
signal handler for SIGCHLD with sigaction. Just keep in mind to do the old Unix dance of just using async-
signal-safe functions inside of it, in particular no allocations or locks. Alternatively it is possible to epoll the
file descriptor returned when registering the BPF filter.

Finally when the supervisor handles an intercepted system call received by SECCOMP_IOCTL_NOTIF_RECV,
the struct seccomp_notif *req contains all the system call's arguments as part of its data.args
array. Except that is not the whole truth, because while arguments fitting into one register are usually directly
visible there, larger arguments (such as the file name to open) are passed as a pointer. Thus, all information
that we then get at this stage is a useless pointer pointing into the memory of another process.

long syscall(SYS_open, const char *pathname, int flags, mode_t mode)

So we end up having to open /proc/$PID/mem just to read the pathname. Luckily we do not get any
problems with yama security policies, as the seccomp operations already require us to have a predefined
relationship between the supervisor and supervised process anyway, which in this case means one is the
parent of the other. If you feel this is hacky, wait until you think about all the TOCTOU opportunities when we

https://lore.kernel.org/all/20180906152859.7810-2-tycho@tycho.ws/
https://man.archlinux.org/man/seccomp.2#SECCOMP_SET_MODE_FILTER
https://man.archlinux.org/man/ioctl.2
https://man.archlinux.org/man/seccomp_unotify.2#SECCOMP_IOCTL_NOTIF_RECV
https://man.archlinux.org/man/execve.2
https://man.archlinux.org/man/setuid.2
https://lore.kernel.org/all/20240628021014.231976-2-avagin@google.com/
https://man.archlinux.org/man/sigaction.2
https://man.archlinux.org/man/signal-safety.7
https://man.archlinux.org/man/epoll.7
https://man.archlinux.org/man/ptrace.2#/proc/sys/kernel/yama/ptrace_scope

3/6

read the memory referred to by just a PID. Here seccomp can help us out: As long as we read it before we
continue the syscall and confirm the notification ID is still valid with SECCOMP_IOCTL_NOTIF_ID_VALID,
we are safe.

Now that we have all the system call arguments, we can decide if we want to allow it or modify it and return it
with a different file. In both cases we need to use the struct seccomp_notif_resp *resp parameter .
If we want to allow the system call normally, we can just set its flags field to
SECCOMP_USER_NOTIF_FLAG_CONTINUE and send back the response with
SECCOMP_IOCTL_NOTIF_SEND.

resp->flags |= SECCOMP_USER_NOTIF_FLAG_CONTINUE;

resp->error = 0;

resp->val = 0;

ret = ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, resp)

However, it becomes slightly more involved if we want to modify the system call arguments. In that case we
need to open the faked file on the supervisor side, pretend like the originally intended system call worked
and return the file descriptor number of the faked file to the traced process. Except there is the huge problem
that the file descriptor will obviously not be valid in the target process.

The curious reader might wonder why we do not just rewrite the system call arguments to the
faked file, and then let the process continue the system call normally. Again, the argument points
to memory inside the traced process. Rewriting memory is not transparent to the process, but
injecting file descriptors is.

This is where SECCOMP_IOCTL_NOTIF_ADDFD comes in. It will atomically both install a file descriptor
directly into the file descriptor table of the target process and return it as part of the system call.

struct seccomp_notif_addfd addfd = {};

addfd.id = req->id;

addfd.flags = SECCOMP_ADDFD_FLAG_SEND;

addfd.srcfd = ret;

resp->error = 0;

resp->val = ret

ret = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);

close(addfd.srcfd);

After we have injected the file descriptor, we can simply close it on our side.

BPF filter

For the most part now we have overglossed the most important detail, which is the BPF filter that decides if
we want to intercept a system call. We can always continue a system call normally from our handler with

https://man.archlinux.org/man/seccomp_unotify.2.html#SECCOMP_IOCTL_NOTIF_ID_VALID
https://man.archlinux.org/man/seccomp_unotify.2.html#SECCOMP_USER_NOTIF_FLAG_CONTINUE
https://man.archlinux.org/man/seccomp_unotify.2.html#SECCOMP_IOCTL_NOTIF_SEND
https://man.archlinux.org/man/seccomp_unotify.2.html#SECCOMP_IOCTL_NOTIF_ADDFD

4/6

SECCOMP_USER_NOTIF_FLAG_CONTINUE, but a BPF filter is crucial for skipping this expensive roundtrip in
the first place.

While eBPF has made some fame in the tracing and profiling scene lately, seccomp uses the original
unextended Berkeley packet filter. Both instruction sets are quite similar and the Linux kernel actually
internally translates BPF to an eBPF representation. Since BPF filters run in kernel space, static checks are
done to make sure that they do not crash and that they terminate. There is no difficulty in solving the halting
problem for circle-free programs, so the eBPF verifier uses a simple DFS to check that, i.e. loops are not
allowed. For most architectures, the kernel can also JIT compile eBPF to native machine code.

Essentially the BPF instruction set has two registers, A and X, but the kernel C definitions refer to them as
BPF_K and BPF_X. We can load into these registers with the BPF_LD instruction (e.g. 32-bit wide with
BPF_W) and BPF_JMP instructions allow us to jump based on comparing a register value with a given value.
For example BPF_JUMP(BPF_JMP+BPF_JGE+BPF_X, 42, jt, jf) will increase the instruction pointer
by jt, if the value in the X register is greater or equal to 42. Otherwise it will increase it by jf. The
instruction pointer will also further be increased by one after each instruction.

With the BPF_RET instruction we can finally return a value, which the kernel then will use to decide what to
do with the system call. So a BPF filter to intercept a certain set of system calls nrs of length len would look
a little something like this:

int trap_syscalls(const int *nrs, size_t len, unsigned int flags) {

	 struct sock_filter filter[MAX_FILTER_SIZE];

	 int i = 0;

	 filter[i++] = BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct

seccomp_data, arch));

	 filter[i++] = BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, AUDIT_ARCH_X86_64, 0,

2);

	 filter[i++] = BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct

seccomp_data, nr));

	 filter[i++] = BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, X32_SYSCALL_BIT, 0, 1);

	 filter[i++] = BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL_PROCESS);

	 for (int j = 0; j < len; ++j) {

	 	 filter[i++] = BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, nrs[j], len -

j, 0);

	 }

	 filter[i++] = BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW);

	 filter[i++] = BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_USER_NOTIF);

https://docs.kernel.org/bpf/classic_vs_extended.html
https://github.com/bpftrace/bpftrace
https://github.com/open-telemetry/opentelemetry-ebpf-profiler
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://lore.kernel.org/netdev/1396029506-16776-1-git-send-email-dborkman@redhat.com/
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/verifier.c?id=ab75170520d4964f3acf8bb1f91d34cbc650688e#n16210
https://docs.kernel.org/bpf/verifier.html

5/6

	 struct sock_fprog prog = {

	 	 .len = (unsigned short) i,

	 	 .filter = filter,

	 };

	 return seccomp(SECCOMP_SET_MODE_FILTER, flags, &prog);

}

There is a lot to unpack here, so let's go through the individual BPF instructions one by one.

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct seccomp_data, arch))

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, AUDIT_ARCH_X86_64, 0, 2)

The first two instructions load the architecture and check that it matches our expectations. To understand
why this is important, we can refer directly to the common pitfalls section in the official documentation:

On any architecture that supports multiple system call invocation conventions, the system call
numbers may vary based on the specific invocation. If the numbers in the different calling
conventions overlap, then checks in the filters may be abused. Always check the arch value!

The next two instructions check for something similar:

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct seccomp_data, nr))

BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, X32_SYSCALL_BIT, 0, 1)

The arch field is actually not unique for all calling conventions. For example, both the x86-64 ABI and the
x32 ABI use AUDIT_ARCH_X86_64, so the only way to tell them apart is by checking if the
__X32_SYSCALL_BIT is set. Furthermore, if system calls are denied only based on its exact nr, then a
malicious program could simply set __X32_SYSCALL_BIT to bypass this filter.

If any of these checks fail, the jump location is the following BPF instruction, which results in immediate
termination of the process that made the system call.

BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL_PROCESS)

Now with all the fun boilerplate done, we can finally insert BPF instructions for all passed system call
numbers, that check if we want to intercept or just pass-through that specific system call.

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, nrs[j], len - j, 0)

This jump to the intercept instruction is a rats nest of off-by-one errors: The jump-true branch is actually
more like (len - 1) - j + 2 - 1. The intercept instruction is the second instruction after the for loop,
so we have to jump to the end of the for loop (which has index len - 1) relatively from the current index j,

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html#pitfalls

6/6

then jump to the second instruction, but subtract one again, because BPF automatically increments the
instruction pointer by one after each instruction.

Then the final instructions are the jump targets from all the previous checks.

BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)

BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_USER_NOTIF)

The first one is reached if none of the checks in the for loop match and simply allows the system call
normally. The second one kicks off interception of the system call and will return back to our userspace
handler that waits in an ioctl() loop with the SECCOMP_IOCTL_NOTIF_RECV flag. For installing the BPF
filter we simply use SECCOMP_SET_MODE_FILTER at the end. For a more complete picture have a look at
the source code yourself, specifically seccomp_exec.c for handling the system calls and seccomp_trap.c for
registering the BPF filter. There is also a smaller sample in the Linux kernel source tree to get started.

Finally it should be emphasized that seccomp unotify should never be used to implement security policy
decisions. The TOCTOU attacks alone hidden here make this impossible, for example if the supervisor
signals SECCOMP_USER_NOTIF_FLAG_CONTINUE, the system call will in fact continue, but the process still
has a small opportunity window to rewrite the system call arguments before it actually runs. However, it is
still a great tool to intercept system calls with minimal performance impact.

https://man.archlinux.org/man/seccomp.2#SECCOMP_SET_MODE_FILTER
https://github.com/vimpostor/copycat/blob/master/src/bin/seccomp/seccomp_exec.c
https://github.com/vimpostor/copycat/blob/master/src/bin/seccomp/seccomp_trap.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/samples/seccomp/user-trap.c?id=ab75170520d4964f3acf8bb1f91d34cbc650688e
https://man.archlinux.org/man/seccomp_unotify.2.html#Design_goals;_use_of_SECCOMP_USER_NOTIF_FLAG_CONTINUE

