
1/91

onlinelibrary.wiley.com
/doi/full/10.1155/2023/8227751

Unknown Title
⋮ 9/2/2023

Abstract
The competing landscape between malware authors and security analysts is an ever-changing battlefield
over who can innovate over the other. While security analysts are constantly updating their signatures of
known malware, malware variants are changing their signature each time they infect a new host, leading to
an endless game of cat and mouse. This survey looks at providing a thorough review of obfuscation and
metamorphic techniques commonly used by malware authors. The main topics covered in this work are (1)
to provide an overview of string-scanning techniques used by antivirus vendors and to explore the impact
malware has had from a security and monetary perspective; (2) to provide an overview of the methods of
obfuscation during disassembly, as well as methods of concealment using a combination of encryption and
compression; (3) to provide a comprehensive list of the datasets we have available to us in malware
research, including tools to obfuscate malware samples, and to finally (4) discuss the various ways Windows

https://onlinelibrary.wiley.com/doi/full/10.1155/2023/8227751

2/91

APIs are categorized and vectorized to identify malicious binaries, especially in the context of identifying
obfuscated malware variants. This survey provides security practitioners a better understanding of the nature
and makeup of the obfuscation employed by malware. It also provides a review of what are the main barriers
to reverse-engineering malware for the purposes of uncovering their complexity and purpose.

1. Introduction
Digital resources and infrastructure have become some of the most crucial concerns in the field of cyber
security. As we encourage a greater use of the Internet to delegate the tasks of everyday life, we expose
ourselves and our information through potential exploitation by malicious actors. The biggest culprit is
malware, a portmanteau for malicious software. Malware takes on many forms, but put simply, the ultimate
goal of malware is to carry out a series of actions for nefarious purposes. Whether the end goal is
espionage, disrupting services, or exploiting systems for financial gain, the costs associated with inaction are
increasing every year as new malware variants are deployed on unsuspecting enterprises and victims. Every
year several antivirus (AV) vendors publish their annual white papers regarding the current state of malware
worldwide. From a research standpoint, researchers are concerned about three aspects of malware
behavior: the ability for malware to disguise its own structure to avoid detection; modification and/or
utilization of the host operating system (OS) resources; and the communication malware aims to establish
externally [1] to so-called command and control servers (CnC). These aspects of malware behavior can be
summarized as follows:

 

Obfuscation: Malware employs the use of various obfuscation techniques, such as packing and
encryption, in order to avoid signature-based detection methods. Obfuscated malware also makes it
cumbersome to disassemble and produce accurate control-flow graphs (CFG) when reverse
engineering.

 

Resources: Malware will utilize various resources of the host operating system in order to carry out its
predefined objectives. Malware will call several Windows application programming interfaces (APIs),
make changes to the registry, read and write to the file system, as well as create and spawn new
daughter processes and threads.

 

Network: Malware will attempt to communicate with an outside command and control (CnC) server in
order to relay information. Communication may be used to serve a greater botnet network and relay
personal confidential details obtained from surveillance of the target operating system (OS) or used in
detecting the presence of a sandbox environment in antiemulation and stealth malware.

The scope of malware worldwide is widespread and includes infections in both Macintosh and Windows OS,
affecting businesses, governments, and individuals alike. A total of 20% of individuals have experienced a

3/91

malware attack in one form or another, a 14% increase from 2018 [2]. Estimates obtained for 2019 identified
24 million Windows and 30 million Macintosh infections being recorded [3], with Kaspersky noting over 24
million unique malicious objects being detected in 2019 alone [4]. While infections recorded span several
different types of OS, approximately 94% of malware developed is, in fact, Windows targeted [5, 6]. Malware
takes on many shapes and sizes and includes archetypes such as Trojans, adware, spyware, viruses,
worms, ransomware, rootkits, exploits, cryptojackers, and keyloggers. These all carry out some form of
invasion, damage, or disabling of systems for the direct or indirect benefit of the malicious actor. More
recently, the availability of free and open source software distributions has posed significant risks, as so-
called “script kiddies,” which are users who have little to no experience in writing software themselves, have
made use of these tools for nefarious purposes. The readily available access to distributions such as
Remnux and Kali Linux (Offensive Security, New York City, NY) has made it even easier for users to deploy
various forms of reconnaissance and penetration testing tools with out-of-the box software. As natural
language processing (NLP) tools become more sophisticated, chatbots such as ChatGPT can act as
personal advisers in red-teaming and blue-teaming drills, which can also subsequently be used by black hats
for their own vulnerability campaigns.

Businesses are some of the most susceptible recipients to malware attacks, as they are potential victims to
ransomware attacks for monetary gain and experience service downtown due to denial of service (DOS)
attacks. For example, in late 2019, the average downtime for a ransomware attack was 16.2 days and the
average ransom payment was 81,116 USD, almost doubling from 41,198 USD seen earlier in 2019 [7]. The
average cost of a data breach to a business was estimated at 3.8 million USD [8], and the average cost of a
DOS attack was placed at 2 million USD [9]. The prevalence of malware in the business environment is
evident, with 95% of organizations recording a malicious infection [10] and 81% having been affected by
such an infection [11]. While total malware detections have seen a small increase of 1% year over year, the
business sector has seen a 13% increase in 2019 [3, 12]. The top 10 malware variants which target
business infrastructure saw triple digit increases in their number of infections between 2018 and 2019 [3].
Small businesses represent 43% of infected businesses reported, likely due to their inability to mitigate, flag,
and respond to infections appropriately [7] and the fact that 37% of businesses spend less than 200,000
USD on Internet technology (IT) security and 78% do not have a formal incident response plan in place [13,
14]. Security experts encourage IT security personnel to adopt the 1-10-60 rule: threats are to be detected
within the first minute, threats are to be investigated in 10 minutes, and an appropriate action must be taken
within the first 60 minutes [15]. Businesses are prime targets for malware due to the financial motivation, with
71% of all breaches being financially motivated and 25% being motivated by espionage [7, 8]. Furthermore,
North America is one of the leading regions where corporate ransomware is a pressing concern, with 68% of
businesses having experienced attacks in the last year [16].

AV vendors are particularly interested in the emergence of new forms of malware because these represent
unique instances of malware that have never been seen before and they pose a significant threat to security
infrastructure. A report by FireEye noted over 100,000 unique malware signatures are being reported each
day by AV vendors [10]. Zero-day attacks are of particular concern as they require AV vendors to develop
signatures of these new malware instances, requiring significant domain-level knowledge and constant
revision of their signature database. New and emerging threats are evident, with 60% of ransomware

4/91

variants identified in the last 6 months of 2016 being developed in the last year [17]. Moreover, a small but
mutable subset of malware variants, totaling only 50 malware families, were noted to make up 80% of all
successful malware infections [10]. This propensity for malware infections to originate from a small family of
malware instances is due to the polymorphism built into their development. Polymorphism allows for
malware to change their signature upon each iteration of its propagation, leading to previously unseen
threats and new instances of zero-day attacks [18–21]. As the stakes increase for both cybercriminals and
businesses, so has the tools they develop to penetrate and mitigate threat vectors, respectively. The call for
cyber security expertise has never been at its highest, with 62% of organizations planning on investing more
in cyber security in 2020 [22]. The prevalence of polymorphic malware and its variants has expanded how
we approach the field of cyber security for threat mitigation. Legacy methods, which classify new malware
based on previously known signatures, are no longer effective in identifying polymorphic malware [23],
lending credence to the development of a more adaptable, behavioral, and cognitive-based approach to how
we detect malware [24]. The vast majority (93.6%) of malware observed today is polymorphic [25], and the
necessary steps must be taken to ensure our instruction detection systems (IDS) and security information
and event management (SIEM) systems are equipped to keep up with the ever-mutating nature of today’s
malware landscape.

This review will cover several aspects of metamorphic malware: starting from the limitations of current
signature-based methods to the various obfuscation techniques employed by malware. This survey
discusses the constantly evolving threat characteristics of metamorphic malware, which provides the basis
for building more sophisticated heuristic and analytically tools based on potential features sets. In addition, a
broad discussion of metamorphic engines and antiarmoring techniques discusses the challenges
researchers face in isolating malware variants in a controlled environment. We hope to improve the current
understanding of metamorphic malware research by making the following core contributions in this work:

(i)

Summarize the common obfuscation methods which, in turn, can be used to develop better heuristic
techniques for feature engineering in machine learning pipelines.

(ii)

Present the inner workings of a metamorphic engine and polymorphism more generally. Understanding
how a malicious payload can persist in memory without ever be written to disk will allow researchers to
find indicators of compression or encryption when a candidate binary is presented.

(iii)

Outline the current metamorphic engines broadly available in the literature which can be used by
researchers to obfuscate their own binaries to incorporate robustness into their own work.

Section 1.1 will cover basic signature techniques used by AV vendors including the most common scanning
techniques and considerations for scanners. Section 2 builds on the limitations of these techniques by
introducing malware obfuscation, which is the most commonly used routine used by metamorphic engines in

5/91

its obfuscation stage. In Section 3, the idea of obfuscation is put into perspective with a deepdive into a
metamorphic engine, which involves the ability of malware to unpack, obfuscate, compress, and encrypt its
payload on the fly. Finally, Section 4 provides an overview of the most well-studied datasets used in malware
research, with Section 4.2 covering popular metamorphic kits that can be used by researchers to create their
own metamorphic binaries.

1.1. Signature Analysis and Creation

Signatures are used to help identify malicious code segments present, either existing as independent
executables or attached to benign files known as benignware. It is imperative that AV vendors constantly
update their signature databases in order to cross-reference known malicious binaries with files suspected of
being malicious. Acting as unique fingerprints for malware, signatures are plagued with several fundamental
issues. First, signatures are incapable of identifying emerging malware variants. In an environment where
approximately 60% of new ransomware are never-before-seen variants according to the most recent
estimates [3], this creates a significant shortfall in detection rates for new variants. In addition, when the vast
majority of malware is polymorphic [25], signatures are sometimes not generalized to catch obfuscated
instances of previously flagged malware.

The art of file scanning is in of itself a laborious process, requiring trade-offs between speed and specificity.
Incorporating longer signatures provides a more specific identification of malware and malware families but
is unable to catch the subtleties of minute changes [26]. Short signatures provide better coverage but results
in more false positives [27, 28]. AV vendors therefore must come up with a series of rules to both generalize
their signatures and improve their scanning efficiency. Some of the basic scanning strategies are shown in
Table 1 and described in the following:

 

String scanning is the de facto standard for any string match scanning. The scanner is to look up the
exact sequence of bytes in any offset.

 

Wildcards method allows for the use of wildcard variables. In the example shown in Table 1, the use of
“??” acts as a placeholder for 2 bytes of any string, while %3 prompts the scanner to look for the
subsequent byte sequence in any of the proceeding 3 byte positions. This is extremely effective for
catching register swapping and instruction replacement obfuscations.

 

Mismatch method incorporates the idea of partial match of any given byte sequence. In the example
provided in Table 1, if the scanner allows for up to 1 mismatch, as long as 2 of the 3 byte sequences
are found, the scanner alerts to a match.

 

6/91

Generic method allows for the detection of malware families through the use of both wildcards and
mismatch sequences. This method extracts the core malware artifacts of a malware family, thereby
capturing any subtle alterations to the bytecode sequence that may arise in the future. For example,
the Win95/Regswap virus uses similar opcodes between generations. Through a combination of
wildcard string matching with mismatch, the entire Regswap generation can be flagged based on a few
common signatures.

Table 1.
Summary of byte (strings) scanning techniques.
  Description Example

String
scanning

Searches for sequences of common strings characteristic of
malware

AA, AB, AC, AD,
AE, AF

Wildcards
method

Searches for sequences of common strings while introducing
wildcard variables

AA, ??, AC, %3,
AE, AF

Mismatch
method

Searches for sequences of common strings, regardless of
position AA, AC, AE, AF

Generic
detection

Searches for common strings combinations typical of malware
families AA, ??, %2, AE, AF

Legend: (?) wildcard, (%) mismatch.

In addition to generating unique signatures as part of generating a greater signature database for malware,
scanning files requires a dedicated strategy, and in some cases, dedicated hardware. For example, while a
signature may be located in any one of the portable executable (PE) sections, such as .idata, it may also be
located in the PE file header. In addition, if you wish to cross-reference thousands of malicious signatures
with an incoming data stream using regex patterns, you would have to take advantage of intrapacket or
interpacket scanning to process them effectively [29]. AV vendors utilize cheaper operations, such as
checking the file length, before committing to the use of a more arduous task such as a checksum [28]. In
practice, a signature can act as a representation for a series of bytes, a whole file, or certain sections. The
ways in which AV vendors carry out simple scanning on a binary is described in the following sections.

1.1.1. Top-and-Tail Scanning

This mode of scanning used to extract signatures from the top and bottom of files. This is especially useful
for viruses that append to the front or back of the targeted host program. Since the address of the main entry
point of a program is in its header section, manipulation of this address to point to the appending malicious
binary is possible [30]. As an example, the Polimer.512.A virus preappends itself at the front of the
executable and shifts the original program content after itself. Alternatively, the Vienna virus is 1,881 bytes
long and appends itself to the end of the host file.

1.1.2. Entry Point Scanning

This mode of scanning is used to extract signatures from the sequence at program entry points. Malware
routinely alters program entry points as to avoid detection through rerouting of the execution flow to a
decryptor stub which decrypts the original binary [31]. The Zmorph virus follows such behavior, whereby the

7/91

decryptor aims to rebuild the instructions line by line by pushing the result into the stack memory. This can
lead to “black hole” scenarios where useless operations are compiled early on in the process flow to burden
the reverse engineering analysis.

In addition, an assembly encoder or an altered JUMP statement can be configured to run encoded
information in a “code cave,” as to not increase the file size of the binaries. This would normally impact the
binary file header values, and any changes will alter relative/absolute offsets, so the pointers need to be
changed accordingly. As previously mentioned, the Polimer.512.A virus appends itself to the infected
program and in doing so is exactly 512 bytes long. This would raise flags and be easy to identify possible
infected files due to the consistent file size differential.

Viruses such as the Win32/Simile is able to avoid changing the entry point of an infected file by altering call
instructions which reference ExitProcess() to point to the virus code. This has the effect of not changing the
entry point of the infected file. Other viruses such as W32/Bistro and W32/SMorph obfuscate their entry point
[32]. SMorph is able to use existing API calls in the infected file to call to its own import address table
containing references to API imports.

1.1.3. Integrity Checking

This mode of scanning can be an extremely powerful tool to detect manipulation of system files which should
never change [27]. A checksum database can be used for reference when performing routine integrity
checking of the system and files to detect any alterations [33, 34]. Common checksums include MD4, MD5,
and CRC32. Checksums are routinely used on byte values suspected areas of a virus body, thereby
reducing the number of total checksums required.

Alternatively, certain types of infections, such as companion infections, may attempt to mimic the name of an
infected file and redirect the header section of an EXE which stores the address to the main entry point of a
program to the start of the virus code [35]. The virus may also change the extension to COM as the Windows
OS give a higher priority to COM over EXE extensions. In order to account for this, distributions such as
McAfee’s network security platform can assign a magic number to file types and will flag files whose
extensions have been tampered with [36].

2. Obfuscation
This chapter will provide an overview of the common obfuscation techniques employed by malware.
Examples of these techniques will be provided, along with some actual code snippets from popularized
malware variants. Finally, a brief overview of encryption and compression is given, two very important
techniques to familiarize yourself with. This chapter will focus on obfuscations made specifically via changes
to the opcodes and operands, which serve as the CPU instruction set which specifies the data that are
processed and how it is done. Opcode examples will include both Intel and ATT syntax, with the former
being readily apparent as the source operand is always on the right side of the instruction and the
destination on the left (e.g., mov eax, 1).

8/91

2.1. Dead-Code Insertion

Dead-code insertion, or sometimes referred to as garbage code insertion, is an obfuscation technique which
inserts byte code sequences into a binary without affecting functionality [37–40]. This obfuscation relies on
the fact that instructions can be added to code which do not perform any meaningful function, or in other
scenarios, can carry out an instruction and perform the operation in reverse [41, 42]. An example of this type
of obfuscation is shown in Table 2 where a series of nop instructions are used to pad the instructions.
Typically, dead-code insertion is used to carry out one of three functions:

(1)

Insertion of a pointless operation such as nop, mov eax, eax, add eax, 0, and eax, −1 or or eax, 0. In
practice, these instructions do not change the content of CPU registers or memory as they are all
semantically equivalent to nop; however, they may modify the status of the flag register in the CPU.
These instructions also have different opcodes.

(2)

Insertion of operations with the purpose of burdening the reverse engineering process by altering
values in registries and then reversing the instruction. An example would be incrementing a registry
add eax, 1 and then reversing the instruction by decrementing sub eax, 1. Other examples would be
push and pop and inc and sub. This form does change the values of the CPU registry but simply
undoes the operation sometime afterwards.

(3)

Insertion of dead code within branches of code that are never actually called, which may or may not
make changes to variables in other branches of code which are never executed. An example would be
a set of variables in Function A which are manipulated, but Function A is never executed because it is
bypassed with a jmp statement.

Table 2.
An example of dead code insertion using nop.
Before obfuscation After obfuscation

xor eax, eax
move eax, 0x2D
mov ecx, 0xA

xor eax, eax
move eax, 0x2D
nop
nop
mov ecx, 0xA

Garbage code insertion is used successfully in the implementation of W95/Bistro, a later implementation of
W32/Zperm, which utilizes a random block insertion engine which is placed directly after the virus entry
point. Upon entering, this block of code millions of instructions is run, thereby overburdening the emulator
before the virus instructions are even executed. Other popular examples of viruses utilizing garbage code
insertion are W32/Evol and W32/Zmist. Zmist is notable for its use of the executable trash generator (ETG).

9/91

W32/Evol in particular is able to utilize garbage code insertion to produce very different variants with different
opcodes and string signatures, thereby evading signature scanning techniques as no sequence of bytes is
similar between the two generations. An example of 3 variations of the same code is shown in Table 3.

Table 3.
Three versions of the E32/Evol virus following obfuscation through garbage code insertion and
encryption. Retrieved from [43].

  Opcode After obfuscation

Version 1
C7060F000055 mov dword ptr [esi], 5500000Fh
C746048BEC5151 mov dword ptr [esi + 0004], 5151EC8Bh

  

Version 2

BF0F000055 mov edi, 5500000Fh
893E mov [esi], edi
5F pop edi
52 push edx
B640 mov dh, 40
BA8BEC5151 mov edx, 5151EC8Bh
53 push ebx
8BDA mov ebx, edx
895E04 mov [esi + 0004], ebx

  

Version 3

BB0F000055 mov ebx, 5500000Fh
891E mov [esi], ebx
5B pop ebx
51 push ecx
B9CB00C05F mov ecx, 5FC000CBh
81C1C0EB91F1 add ecx, F191EBC0h; ecx = 5151EC8Bh
894E04 mov [esi + 0004], ecx

The use of garbage code insertion techniques is useful in avoiding AV scanning for two reasons. First, the
garbage code inserted is unique to each virus generation, thereby sidestepping previously seen AV
signatures [44]. Secondly, garbage code from benignware can be inserted into malware to increase the false
negative rate. In [45], the authors created binaries with approximately 30% of dead code along with 10%
benign code and showed similar classification scores as benignware. In the work of [46], ranges of garbage
code between 5 and 35% were used to determine their effectiveness at evading detection; with 10% being
noted as being sufficient. In an earlier work [47], the authors combined various proportions of garbage code
insertion with subroutine reordering to total 25 different combinations. Two different obfuscation engines,
AVFUCKER and DSPLIT, also known as crypters, were used in [48] to produce obfuscated code with dead
code insertion. Since there is a wide variety of permutations, from single nops to intermeshed garbage code
blocks, upon which garbage code insertion can take form, string scanning is fairly ineffective against this
form of obfuscation.

2.2. Registry Reassignment

10/91

Registry Reassignment, or sometimes referred to as Registry Renaming, is an obfuscation technique which
swaps unused registers or memory variables with those currently used by the program [44]. In its simplest
form, as demonstrated in Figure 1, registry reassignment can replace the eax registry with ebx, with no
change in functionality.

Graphical illustration for the decryption, obfuscation, and encryption carried out by a
metamorphic mutation engine.

The downside to using registry reassignment is that string scanning techniques, such as wildcard or half-
byte techniques, can be used to detect any possible combination of registry used. This in effect will provide a
constant string between generations of registry reassignment, rendering them easily flagged by scanners.
The virus W95/Regswap (hence the name) effectively made use of registry reassignment as demonstrated in
Table 4.

Table 4.
An example of simple registry reassignment.

https://undefined/cms/asset/5ed385fc-cbf8-4525-a5f3-faa967819957/sec8227751-fig-0001-m.jpg

11/91

Before obfuscation After obfuscationBefore obfuscation After obfuscation
mov eax, ecx mov ebx, ecx
xor ebx, ebx xor eax, eax
test eax, ebx test ebx, eax

In Table 5, the string signatures of version 1 and version 2 have a 60% similarity when it comes to their
hexadecimal representation [49]. With the help of regex expressions, the accuracy is greatly increased with
variations of a similar instruction set [50]. Along with garbage code insertion, these primary obfuscation
techniques make it considerably harder to flag new variants of malware.

Table 5.
An example of the Regswap virus. Adapted from [49].
  Opcode After obfuscation

Version 1

5A pop edx
BF04000000 mov edi, 0004h
8BF5 mov esi, ebp
B80C000000 move eax, 00Ch
81C288000000 add edx, 0088h
8B1A mov ebx, [edx]
899C8618110000 move [esi + eax ∗ 4 + 00001118], ebx

  

Version 2

58 pop eax
BB04000000 move ebx, 0004h
8BD5 mov edx, ebp
BF0C000000 move edi, 000Ch
81C088000000 add eax, 0088h
8B30 mov esi, [eax]
89B4BA1811000 move [edx + edi ∗ 4 + 00001118], esi

2.3. Instruction Substitution

The instruction-substitution technique introduces an additional layer of obfuscation on the existing
techniques discussed. The power of instruction-substitution comes from the fact that there is a seemingly
endless diversity to the substitutions you can introduce to an existing instruction framework. Table 6
demonstrates an example of a 2–4 instruction substitution (2 instructions are replaced with 4 to perform the
same function) [51]. Another instruction substitution would be push eax; mov eax, ebx with push eax; push
ebx; pop eax. Semantically, these are equivalent, but push, pop is in fact slower as it is quicker to direct
registry write with mov. This exact substitution is utilized by the W95/Zmist virus, along with interchanging
xor/sub and or/test instructions.

Table 6.
A simple example of instruction-substitution.
Before obfuscation After obfuscation

12/91

Before obfuscation After obfuscation

add eax, 05H
mov ebx eax

add eax, 01H
add eax, 05H
push ebx
pop eax

Instruction-substitution is utilized very effectively in several high-profile viruses such as Evol, MetaPHOR,
Zperm, and Avron. Since instructions-substitutions produce different opcode representations, this renders
opcode frequency and accompanying n-gram techniques effectively useless. Researchers have attempted to
draw from the basic set of fundamental operations in order to track the malware’s original intentions. In [52],
a clue set was established for the Evol virus in which all rewritten instructions were based upon. This
approach was found to be very effective at characterizing the metamorphic engine Evol uses. A similar
approach was taken by [53] where the complex instructions the virus would create were transformed back
into their simple representations using their similar semantics. In Table 7, two versions of the W95/Bistro
virus are shown, using different instruction substitutions in each generation. Similar to registry reassignment,
the generations contain similar string signatures, making them susceptible to wildcard and half-byte
scanning techniques. While this manuscript is focused on obfuscators based on the Intel x86 instruction set,
compile-time instruction set obfuscators can also create semantically similar rule sets for basic operations in
other instruction sets [54, 55].

Table 7.
Instruction replacement used by the Win95/Bistro virus. Adapted from [49].
  Opcode After obfuscation

Version 1

55 push ebp
8BEC mov ebp, esp
8B7608 mov esi, dword ptr [ebp + 08]
85F6 test esi, esi
743B je 401045
8B7E0C mov edi, dword ptr [ebp + 0c]
09FF or edi, edi
7434 je 401045
31D2 xor edx, edx

  

Version 2

55 push ebp
54 push esp
5D pop ebp
8B7608 mov esi, dword ptr [ebp + 08]
09F6 or esi, esi
743B je 401045
8B7E0C mov edi, dword ptr [ebp + 0c]
85FF test edi, edi
7434 je 401045
28D2 sub edx, edx

13/91

2.4. Code Transposition

Code transposition, or sometimes called instruction permutation, is an obfuscation technique which utilizes
conditional or unconditional jmp statements to reorder single or blocks of instructions [18]. Since jmp
instructions can theoretically be used for every line of instruction, the total number of permutations m! is
proportional to the number of lines rearranged m [44]. Code transposition carries out a very similar function
as subroutine reordering with the exception that there is a change in the process flow; therefore, they will be
discussed together. Subroutine reordering, also known as block reordering, is an obfuscation technique that
reorders the process flow by rearranging blocks of code that have independent subroutines [56]. If a
program were to be categorized into n number of subroutines, then n! permutations of subroutines are
available for rearrangement [40, 50, 57, 58]. A simple program with 10 subroutines would therefore be able
to produce over 3.6 million possible iterations. Subroutines require that the instructions’ set are independent
of one another, allowing them to be reordered without having an impact on functionality. In Table 8, an
example of a set of instructions exhibiting multiple forms of obfuscation is shown. In the example code
transposition, subroutine reordering, garbage code insertion, and instruction-substitution are all used.

Table 8.
An example of code reordering and code transposition in combination with other obfuscation
techniques.
Before obfuscation After obfuscation

mov eax, ecx
mov ebx, 10
Mul ebx
add eax, 5
mov ecx, eax

mov ebx, 10
jmp F1
jnk
F2: push edx; jnk
pop ecx
jmp F3
F1: mul, ebx
add ecx, 1; jnk
add ecx, 5
jmp F2
F3: mul ebx

Several jmp statements are employed to permute blocks of instructions which can be run independently from
each other. Instruction-substitution is used to add more sophisticated instructions based on the simple
instruction set add eax 5; mov ecx, eax. jnk insertions are used to add complexity to the existing code, as
well as added following the jmp F1 statement where it is never actually executed. This jnk could include code
from benignware that would normally fail to compile if it were embedded within the existing obfuscated
framework but may confuse scanning techniques nonetheless. Table 8 also displays another form of
obfuscation called subroutine outlining [32]. This obfuscation explicitly turns instruction blocks into
subroutines and uses the call instruction to perform an unconditional jump to the location indicated by the
label operand. Subroutine inlining would carry out the reverse: where subroutines would be unraveled and
placed in order to preserve the process flow. Unlike simple jmp instructions, call preserves the locations to
return to when the subroutine is completed.

14/91

This sophisticated form of obfuscation is used by the W95/Zperm and W32/Ghost viruses, with the former
employing the use of the real permutation engine to perform subroutine reordering. Zperm divides the code
into frames which are independent subroutines, which are then repositioned randomly and connected using
branch instructions to preserve process flow. When Zperm initializes, it allocates a buffer sized at 64 Kb filled
with zeros and then fills it with obfuscated code and randomly positioned jmp statements [43]. This means
that a constant body is never generated between generations and is never present in memory. Similar to
Table 8, garbage code is inserted between frames to fool string detection similar to the Zmist virus.
W95/Zmist also inserts jmp instructions after every instruction, making it the perfect shield to heuristic
detection. In [39], 30% subroutine reordering was used to sidestep a developed similarity metric that
compared benignware to malware based on the similarity of their transpositions. From a security analysis
standpoint, it is extremely difficult to know when the virus begins when it is embedded within existing code
and is encrypted. Partial emulation is one avenue whereby code can be reconstructed and then used to
completely decrypt the virus. But when and how to decrypt during emulation is still a laborious process in of
itself.

3. Encryption, Compression, and Metamorphism
Metamorphism, and more generally obfuscation techniques, makes up the backbone for most new and
emerging malicious threats we see today. As the signature-based scanning techniques improved for AV
vendors, so did the levels of obfuscation employed by malicious actors to thwart said techniques [49, 59].
Along with obfuscation came various forms of armoring, stealth-behavior and antiemulation tactics, which
made the job of a security researcher that much more burdensome.

To understand how mutation came to be, it is worth mentioning the earliest forms of obfuscation and how
they came into existence. Viruses make use of entry point obscuration (EPO) in order to avoid any
consistency in the execution order of the virus code in relation to the infected file. As shown in Figure 2, the
file header would point to an address that would execute virus code, which would then point back to the host
file so that the virus execution would do so unknowingly.

15/91

Illustration of an appending virus that latches onto the end of a benign file.

The CASCADE virus in 1986 became one of the first known viruses to implement encryption, thereby
requiring a separate decryption routine to carry out decryption and push the instructions into memory for
execution. Since the form of encryption would become apparent as the virus propagated, the decryptor
routine itself would have to be mutated, leading to the establishment of the first series of oligomorphic
viruses.

3.1. Oligomorphism

Oligomorphism began as a reaction to the signature-based scanning techniques widely utilized for flagging
possible virus infections. With the help of scanning techniques such as wildcard and mismatch, a greater
swath of possible infections could be characterized by a few unique signatures. Furthermore, since virus
code would either append or preappend onto an existing file, top-and-tail scanning was an effective tool for

https://undefined/cms/asset/b3ca05c0-51a9-4d00-86d5-87cd12d2fc3a/sec8227751-fig-0002-m.jpg

16/91

extracting signatures from certain select sections of a file. Emulators could also be utilized to uncover the
decryption routine used in the encryption, meaning that the decryption routine itself had to be altered in
some form or another. Emulators wait as the virus is decrypted one instruction at a time and as it rebuilds
itself by pushing the stack into memory. Once control is sent to the stack memory, the emulator monitors the
stack, and the code can be dumped. Oligomorphic malware were the start of a new breed of malware which
would involve obfuscation of the routine itself, meaning viruses were unique among their generation. The
first oligomorphic virus was the whale DOS virus first identified in 1990. In Figure 3(a), an obfuscated,
encrypted decryption routine is used to carry out decryption of the virus body and to avoid detection.

An illustration showing the variation in positioning and level of obfuscation found in (a)
oligomorphic and (b) metamorphic malware.

https://undefined/cms/asset/e0a9ee14-34ea-409e-bbec-f6b970d49e61/sec8227751-fig-0003a-m.jpg

17/91

An illustration showing the variation in positioning and level of obfuscation found in (a)
oligomorphic and (b) metamorphic malware.

However, a major limitation to oligomorphism is that the loop of possible decryptors is finite. For example, the
W95/Memorial virus had exactly 96 different decryptors to choose from. Once an oligomorphic generator is
exhausted, the entirety of its possible generational variance is also exhausted and understood. The natural
extension to this problem is to introduce obfuscation into the decryptor routine itself, leading to an infinite
number of possible decryption routines [60]. This led to the first generation of polymorphic viruses such as
1260, and popularized generators such as Phalcon/Skism mass-produced code generator (PS-MPC) and
virus creation lab (VCL), which are still used to this day.

3.2. Polymorphism

https://undefined/cms/asset/f48a1dd7-e6eb-4e56-a271-3262e0cba941/sec8227751-fig-0003b-m.jpg

18/91

Polymorphic malware was seen as a complete package: complete with a compiler that could decrypt and
obfuscate then recompile everything back together. The unencrypted virus body would create a new mutated
decryptor using a random encryption algorithm and then allow the decryptor to encrypt itself before linking
both sections back together. However, the core problem of emulation remains: the virus code section would
be decrypted into memory and be able to be detected and flagged by security researchers. It was also the
case that prior generations of obfuscators suffered from several limitations [61]:

(1)

Constant size of virus code between generations (Polimer.512.A or Vienna viruses)

(2)

Appending or preappending to the infected host file meant signature scanning could target these
sections exclusively

(3)

Similar virus code segments between generations mean the virus is subject to entropy analysis

In order to build on some of these deficiencies, the introduction of the metamorphic engine came to be.

3.3. Metamorphism

The introduction of metamorphic viruses introduced the idea for the first time that no two generations of
viruses can have similar signatures, as no constant body is present like with polymorphic malware [43]. In
Figure 3(b), an example of a metamorphic virus is shown. Unlike polymorphism, the virus code is
obfuscated, meaning that the entirety of the virus is present in an obfuscated state. This introduces the
fundamental issue since “metamorphics are body-polymorphics” [62] and as a result have no constant body
and they reinforce the notion that anomaly-based detection is NP-complete [63, 64]. The first metamorphic
viruses were W95/Regswap in 1998 [65] followed by W32/Ghost identified in 2000 [66]. W32/Ghost
contained 10 submodules, so over 3.6 million possible variations were possible with subroutine reordering.

In light of the graphic shown in Figure 3(b), the separation between the decryptor and the virus body is no
longer possible and the level of obfuscation means that encryption is no longer needed. Furthermore, as is
typically the case, the decryption routine is scattered in the benign code. The executed code in the virus
body mutates entirely along with the decryptor, and it does not need to unpack to create a new constant
virus body like polymorphics [50]. One of the most utilized and effective metamorphic generators is
W32/NGVCK created in 2001. Metamorphic viruses have a sophisticated mutation engine that contains
many subprocesses. These will be discussed in the following section.

3.4. Metamorphic Engine

A metamorphic engine is responsible for the obfuscation and reconstruction of the binary so that the file can
remain operational. In Figure 4, an illustration of a complete metamorphic engine is shown. Some of the key

19/91

components of the metamorphic engine are described as follows [65, 67]:

 

Disassembler is responsible for turning the source code into assembly instructions. This creates an
intermediate form that is independent of the CPU architecture for future adoption with different OS and
CPU architectures [43]. Within the disassembler a code analyzer provides info for a code transformer
module that gathers information related to control flow, subroutines, variables, and registers.

 

Shrinker eliminates much of the garbage code produced from previous generations and mainly
eliminates garbage and other nonsequential code that is produced from obfuscation. This step also
carries out code shrinking, a form of code-substitution that will turn previous 1 to 2 or 1 to 3 instruction
substitutions back to their semantically similar primitive equivalents [68].

 

Permutor carries out much of the obfuscation using permutations of subroutines, many times in a
randomized fashion. Insertion of jmp instructions is also common to divert control flow.

 

Expander performs instruction-substitution to convert instructions into another equivalent instruction
set. In addition, registries are reassigned and variables are reselected according to the fixed
probabilities using substitution tables [65, 69]. Garbage and other do-nothing codes are added, and
functions are inlined/outlined [70, 71] Both the permutor and expander steps are quite sophisticated in
the metamorphic W32/Etap and W32/Zmist viruses [60].

 

Assembler restructures the control flow and converts the assembly code back into machine binary
code where it can become operational again.

 

Virus code contains the core instruction set that will execute on all new generations of the virus. It also
contains the instructions that coordinate with the mutation engine and other components.

20/91

Overview of the major components of a metamorphic engine.

The mutation engine does not have to operate at the assembly and the source code level but can also
operate at an intermediate representation (IR) bytecode level [70]. In [72, 73], morphing techniques are seen
as deterministic automata, whereby transitions following formal grammar are made to symbols and new
mutations are produced. In [69], a template is used which illustrates how simple representations of formal
grammar can produce several possible mutations. The depiction shown in Figure 4 includes all the core
components with the exception of a decryption routine. A metamorphic engine with the addition of a
decryption routine is shown in Figure 1 and follows a sequence of steps to decrypt, obfuscate, and link
everything back together. The steps are as follows in order:

(1)

First, the decryption routine decrypts the virus body and executes an instance of it.

https://undefined/cms/asset/a881ab56-981c-4eee-9675-5eeacee6cc03/sec8227751-fig-0004-m.jpg

21/91

(2)

The decryption routine then decrypts the mutation engine and executes it.

(3)

The shrinker component of the mutation engine goes to work to deobfuscate the virus body.

(4)

Obfuscation takes place by introducing a new and unique decryption routine using the various
techniques discussed in Section 2.

(5)

The virus body is then obfuscated by the mutation engine to produce a unique generation using the
various techniques discussed in Section 2. The virus body is then encrypted using a unique algorithm,
a static key or a host specified temporary key. More is given on this in the following section.

(6)

Finally, the mutation engine is encrypted.

Once all three components are reobfuscated to seemingly new binaries, with the mutation engine and virus
body decrypted, the virus relinks its components back up and can execute on a new host by decrypting its
payload through it newly obfuscated decryption routine.

The authors in [57] provide a detailed summary of the production and considerations for creating a
metamorphic generator, as well as in [74] for creating a metamorphic worm. One of the more sophisticated
metamorphic viruses is W32/Simile, also known as MetaPHOR or Etap. The author, “Mental Driller,” referred
to the expansion, contraction, and permutation of instructions as the “Accordion Model” [61, 67] based on the
changing form that garbage code takes when it becomes obfuscated. The Simile virus was also unique, and
in that, 90% of the virus code was dedicated to the metamorphic engine itself, with the decryptor being
placed at the end of the code section and the virus body being partitioned elsewhere [43, 52].

3.5. Encryption

While encryption was briefly touched upon at the beginning of Section 3, obfuscation engines make use of a
variety of encryption techniques to avoid detection [49]. The earliest form of encryption was carried out by
the CASCADE virus on DOS [40] and did so using a simple xor (see Figure 5).

22/91

Simple xor decryptor which decrypts byte by byte using an increment counter and a jump
not zero (jnz) loop.

The cascade virus, first identified in the early 1900s, was shown to increase the file size of infected files by
1701 and 1704 bytes and mainly comprised its encryption loop and main body. The virus uses a technique
called “cascading” to conceal its presence. When the infected files are executed, the virus code is executed
first, causing the virus to infect more files and directories. This creates a cascading effect, making it difficult
for antivirus programs to detect and remove the virus [75]. The decryption routine in Figure 5 is fairly simple:
the stack pointer, sp, acts as the key and the si register is used to keep track of which position of the virus
body to point to. As the decryption process is carried out, both the si and sp counter increment and
decrement by one, respectively, until sp returns to 0; otherwise, it will jump using jnz. For example, applying
a simple xor operation to each byte using an 8-bit value as the encryption key will produce the encrypted
text. The string 2D03 002E when xor’d with the key 0xFF will produce D2FC FFD1. Doing so in reverse with
the same key will produce the original text, thereby performing encryption and decryption with only one key.

https://undefined/cms/asset/46bc9a10-c81e-46d2-85c3-7878bfe6ae1a/sec8227751-fig-0005-m.jpg

23/91

Conventional decryption relies on the virus’ own decryptor loop to decrypt the virus body. It did not take long
for malicious actors to rely on multiple decryptors instead of one, such as the DOS/whale virus in 1990,
which utilized dozens of different decryptors and chose one randomly each infection. It may also be the case
that rather than the encryption being performed serially, decryption can be performed in a random fashion,
as is the case for W32/MetaPHOR which does so seemingly randomly, with each instruction only being
decrypted once. In malware deployments, the use of a crypter is typically used, which carries out encryption
for antianalysis and obfuscation purposes. A crypter contains a stub which carries out the decryption and
does so while generating a new payload and key with each new generation [48, 76]. All of this occurs in
memory, and nothing is written to disk. Decryption can take place in the stack, but then the key to it is not
writable, as opposed to allocating to memory which is easily flagged by emulations that are monitoring
memory. On Intel x86 platforms, 24 bytes or more of modified memory is characteristic of a decryption
routine [28]. Once the stub passes control to the virus body after decryption, a new encryption key is created
and all executables and .text sections are encrypted with the new key. Depending on the file type, a TEA
cipher can be used for EXE and RC4 for DLLs as is the case for HackedTeam’s core-packer [77]. The key is
then stored in the decryptor stub or elsewhere.

Basic encryption can be performed as mentioned previously with a single decryptor key (see Figure 6), using
1 to 1 byte to byte mapping, with zero operand using inc or neg, or reversible instructions such as add or xor.
Alternatively, sliding key encryption makes use of the starting key which updates as it progresses and may
even utilize the characters most recently encrypted (see Figure 6(b)) or based on an algorithm, as shown in
Figure 6(c). Flow encryption determines a key stream in advance equal to the size of the encrypted text and
then encrypts the body instruction by instruction. Key generation can also be varied amongst decryptor
routines, where a key(s) can be located in the decryptor stub itself, hidden among the virus body, generated
uniquely from the host system, or alternatively, randomly generated and not stored at all.

24/91

Illustration of different encryption archetypes, where (a) key is reused for each encrypted
block; (b) encrypted block is used as nonce for next encrypted block; and (c) stream cipher
is used to encrypt each block.

https://undefined/cms/asset/04ebdf93-f08e-452b-a2d3-1b7e5bec4bb8/sec8227751-fig-0006a-m.jpg

25/91

Illustration of different encryption archetypes, where (a) key is reused for each encrypted
block; (b) encrypted block is used as nonce for next encrypted block; and (c) stream cipher
is used to encrypt each block.

https://undefined/cms/asset/6cc0451c-dea8-4531-a956-907f04756066/sec8227751-fig-0006b-m.jpg

26/91

Illustration of different encryption archetypes, where (a) key is reused for each encrypted
block; (b) encrypted block is used as nonce for next encrypted block; and (c) stream cipher
is used to encrypt each block.

The sources for the encryption key can vary but can either be hardcoded in one form or another or obtained
through the host. In the case of variable key generation, the decryptor can develop the encryption key based
on its own function calls. Alternatively, environmental key generation does not involve any descriptors from
the viral payload or stub itself, but rather, retrieves them from the infected host. One example of
environmental key generation is the use of a trusted platform module (TPM) chip, which is a hardware
component built into many modern computers and devices [78]. The TPM can generate unique encryption
keys that are tied to specific physical attributes of the device, such as the device’s BIOS, firmware, or other
hardware components. This makes it much more difficult for an attacker to access the key and decrypt the
protected data even if they are able to physically access the device. In the case of the RDA.Fighter virus
family, the virus checks the BIOS address at FFFF : 000E0, and if it returns advanced technology (AT), as in

https://undefined/cms/asset/e8513fc4-ae32-422b-bce2-5ba885696b0f/sec8227751-fig-0006c-m.jpg

27/91

AT-class computer, the time stamp is retrieved from the CMOS buffer; otherwise, it is retrieved from the
system clock. The timestamp is then used to create a 16-bit number that is used to decrypt the next code
section using a mirror table lookup as a mask. In addition to time, the current date, timer tick, host filename,
and even the hard disk serial number can act as sources for developing the encryption key. As a form of
armoring, the key can be stored on a distant web server, and outside of a typical host environment, such as
in virtualization or emulation, the virus can disable itself and fail to run.

Decryptions and decryption loops are not limited to a single loop, or to a single key. For example, the
RDA.Fighter virus family utilizes 16 layers of decryption and does so in a backward fashion, making it a
laborious process to automate the disassembling process [28]. Multiple layers of encryption are also utilized
by the W32/Harrier and Bradley viruses [79]. To avoid all form of local or external storage of the key, a
random decryption algorithm (RDA) can be used to brute force the key. The key can be any generated word
value, and the decoding method will check the checksum following the decoding procedure to identify when
it has successfully found the key. In the RDA.Fighter family, RDA is used as secondary form of encryption on
top of environmental key generation.

3.6. Compression

Compression represents an additional level of obfuscation on top of a possible decryption routine and other
forms of obfuscation. A packer is defined as a utility which enacts some form of compression to the
executable either to reduce files size to avoid entropy analysis or introduce a layer of obfuscation to the PE
header. It has been estimated that 80% of all malware uses some form of packer [80], as well as 90% of all
worms [43]. Two of the most popular packers are Ultimate Packer for eXecutables (UPX
(https://upx.github.io/)) and ASPACK (https://www.aspack.com/). In addition to significant compression ratios
and great performance, these packers work for a variety of executable formats with no memory overhead
due to in-place decompression.

Packers are ultimately tasked with compressing executables with decompressed code and a compressed
payload. Packers compress the code to avoid reverse engineering and bypass firewalls. Malware makes use
of packers by initially converting an Image Section (see Figure 7(a)) into a Packed Section and Unpacking
Section (see Figure 7(b)). The Unpacking Section is then set to be the initial point of entry once the file is
executed. Upon execution, the packed section is decompressed to become the Unpacked Section (Figure
7(c)) and is executed on virtual memory [81]. One of the more devious uses of packers in malware analysis
is that the original PE header is hidden as the visible import functions are those utilized by the packer itself.
Since packers such as UPX, ASProtect, PECompact, and Themida are widely used for nonnefarious
purposes as well, there is no sure indication that the file is malicious based on the import functions [82–84].

https://upx.github.io/
https://www.aspack.com/

28/91

Overview of the main steps in a packer. Adopted from [81].

One of the more comprehensive tools for the detection of malicious packers is the use of entropy analysis
[1]. In the work of [85], 28 different packers were used to classify a control flow graph as an image
representation through the use of a convolutional neural network (CNN). The work of [86] used CNNs for a
similar purpose, but was used to categorized 9300 malware variants into 25 malware families simply based
on the malware binary. These techniques have the advantage of allowing the neural network to learn which
PE sections are important in identifying maliciousness; and in doing so it uses an advanced form of entropy
analysis which can identify malware family usage of packers, encryption and garbage code obfuscation [86].
When compression is coupled with encryption, as is the case with so-called Protectors, the resulting binary
has high entropy levels, making it susceptible to classification. In [58], a file segmentation method that
utilized entropy with wavelet analysis was used to classify metamorphic malware based on edit distance
between file segments. This motivation was derived from the earlier work of [87] that established that the
homogeneity of each malware’s binary section is characteristic of the complexity of its data order. Along with

https://undefined/cms/asset/a55489ad-1b4a-40bd-a70b-98a816653c64/sec8227751-fig-0007-m.jpg

29/91

this insight, polymorphic malwares are able to be identified using these techniques, albeit with a high rate of
false positives [87].

In Figure 8, a historic summary is provided, which is complete with major milestones in obfuscation and new
malware deployments.

Timeline of major malware variants, techniques, and mutation engines.

4. Metamorphic Datasets, Generation Kits, and Armoring

While metamorphic malware has grown in sophistication, so has the tools we have as available as
researchers to thwart their actions. One of such tools and resources is the use of publicly available datasets,
such as DARPA99, a popularized dataset released to improve intrusion detection systems. Datasets
encourage the development of classification tools by leaving the details for collecting representative samples

https://undefined/cms/asset/11353eb2-942e-449b-abe4-de24627be527/sec8227751-fig-0008-m.jpg

30/91

in a controlled environment and at scale to others. Secondly, datasets also provide a baseline in which to
compare competing algorithms, usually with the aim of increasing true positive rates and decreasing false
positives. One of the downsides is that these datasets are typically outdated and are not representative of
new and emerging threats. If researchers make raw malicious binaries available, as is the case with the
SOREL dataset [88], they cannot do the same for benign binaries due to issues with copyright. One
workaround used in SOREL is to dump the entire metadata of the binary and use that metadata dump to
create features for a model to learn from. This section will touch on some of the more useful malware
datasets used historically and then transition into covering some aspects of malware generation kits and
antiarmoring behavior.

4.1. Malware Datasets

The DARPA dataset was created in 1998 and contains 7 weeks of raw TCP/IP dumps of a simulated attack
scenario to an Air-Force base. The dataset contains both host and network files. The KDD99 was created
based off the DARPA dataset [89], with a reduced size and a total of 24 attack types and an additional 14
existing solely in the test dataset [90, 91]. Based on the observations of [91], KDD99 was the most widely
used dataset in IDS research between the years 2010 and 2015. Several issues arose with the use of
KDD99, namely, the time-to-live (TTL) values for benign and malicious packets were different [92, 93], and
the data rates were not characteristic of real-world networks [94]. Many of these issues were exemplified in
the critique carried out by [93], leading to a need to provide much needed modifications to the existing
dataset. In addition, since the size of the KDD99 datasets was large for many trainable models and the
dataset contained duplicates of attacks such as DOS, the dataset was further reduced to become its most
recent version, NSL-KDD [93]. Another dataset containing network traffic is the UNSW-NB 15. The dataset
was created by the IXIA PerfectStorm tool at the Cyber Range Lab at the Australian Center for Cyber
Security [95]. A TCP Dump tool is used to capture 100 GB of raw traffic, with a total of 49 features generated
using a set of tools and algorithms. Other lesser known network datasets include CAIDA [96] and ISCX 2012
[97] for network intrusion detection and CICIDS2017 [98]. The CICIDS2017 dataset is unique, and in that,
the authors included behavior for Windows (XP, 7, 8, and 10), macOS, iOS as well as Linux operating
systems, encompassing attacks from Botnets, DoS, DDos, Brute Force FTP, Brute Force SSH, Heartbleed,
Web Attack, and Infiltration [98]. For a thorough summary of network-based datasets, the authors refer to the
review carried out by [99].

Several datasets have been used to represent the content of the malware binary, versus relying on network
activity. One of the more utilized datasets is the Microsoft Malware Classification Challenge dataset, which
becomes popularized in a Kaggle competition back in 2015. The raw data of a virus’ binary are represented
in hexadecimal, with a compilation of metadata retrieved using the IDA disassembler tool. Binary
representations of malware binary have also become popularized as a dataset in image analysis, with the
Malimg dataset [100] having the greatest impact in recent years [101–109]. Other alternatives include the
Malicia dataset [110] which contains 11,668 malicious binaries from 54 families retrieved from 500 drive-by
downloads over 11 months. However, the project was ultimately discontinued in 2016. The Malsign dataset
[111] contains 142,000 signed malware and potential unwanted products (PUP) binaries obtained from 2012
to 2015 for the Windows platform [112].

31/91

Mobile and internet-of-things (IoT) security plays a unique but important role in malware security, as these
devices make up a larger proportion than ever in how we connect with others and exchange information. The
Drebin dataset [113, 114] is one of the most used datasets in mobile security, with 5500+ malware being
included in the dataset belonging to 20 families, collected from 2010 to 2012. The android adware and
general malware dataset (AAGM) [115, 116] includes network activity of 1900 adware, general malware, and
benignware running on android smartphones. The IoTID20 [117] is a more recent dataset used to simulate
network attack retrieved from two smart home devices. The dataset consists of 42 pcap files encompassing
simulated attacks produced from Nmap and from the Mirai botnet [118, 119].

Several datasets include features extracted directly from PE files, and this includes the ClaMP and EMBER
dataset. ClaMP [120] includes features from the DOS header, file header and optional header of PE files.
The integrated dataset includes 68 features:28 features are from the raw dataset, 26 features are Boolean
(file and optional header), and 14 are derived features. A second version of the dataset exists which consists
of 56 features. Finally, the largest dataset by far is the Ember dataset [121] with a total of 1.1 million binary
files. The authors in [122] include additional tools to extract features from the PE files to further encourage
the use of the dataset to train benchmark problems. The Ember dataset was the larges of such datasets until
the introduction of the SOREL dataset in 2020, which expanded from 1.1 million binaries to 20 million
binaries, including 10 million disarmed malware samples ready for feature extraction [88]. The Australian
Defense Force Academy (ADFA) is the author of two datasets: the Linux dataset (LD) [123, 124] and
Windows dataset (WD) [125]. Both datasets provide a comprehensive simulation of a HIDS based on the
collection of system calls; however, a significant downside exists for the ADFA-WD as it was collected solely
on Windows XP, which limits the applicability to future generations of Windows OS [125].

Insider threats are considered one of the more emerging sources of security vulnerabilities for government
and firms. CERT identified that 15–24% of firms experience an insider incident perpetrated by a business
partner [126]. It has also been noted that a quarter of cyber security risks are due to insider threats, meaning
that current or close business partners are considered as much of a threat as ransomware from a security
standpoint [17]. That is why, a dataset such as the CERT insider threat V.2 dataset is so important in our
understanding and tracing of threats that exist in network topologies [127]. The dataset includes several
synthetic threat scenarios, accompanied with information related to HTTP records, employee info, and log
on/off times, among other indicators. A summary of the datasets discussed along with some information on
their makeup is shown in Table 9.

Table 9.
Summary of the more prevalent malware datasets publicly available for use by researchers.
  Features Description References

NSL-KDD 21 attacks from 4 families (DoS, probe, root 2 local
(R2L), user 2 root (U2R)), 41 features

125,973 training
examples (19.85%
benign), 41
features

[93, 95,
128–160]

KDD99 21 attacks from 4 families (DoS, probe, root 2 local
(R2L), user 2 root (U2R)), 41 features

489,431 training
examples (20%
benign)

[91, 93, 95,
131, 161–
185]

32/91

  Features Description References

DARPA 99
Raw TCP/IP dump files; 58 attacks from 4 families
(DoS, probe, root 2 local (R2L), user 2 root (U2R)),
41 features

6,591,458 training
examples

[89, 186–
193]

UNSW-
NB15

Raw Traffic as Pcp files, 9 types of attacks (fuzzers,
analysis, backdoors, DoS, exploits, generic,
reconnaissance, shellcode, worms); 49 features

175,341 training
and 82,332
testings examples,
49 features

[95, 152,
153, 177,
194–213]

MalImg Malware binary, converted to 8 bit vector then 8 bit
grayscale image

9,339 training
examples; 25
Malware families

[100, 102–
105, 107–
109, 214–
217]

CERT
insider
threat V.2

HTTP records, emails, employee info; 5 unique
scenarios of suspicious activity. 191 suspected users

33,771,224 training
examples, 33
features

[134, 218–
235]

Drebin Features extracted from application manifest and dex
code. 8 core feature sets. 179 malware families

5,560 malicious
and 123,453
benign applications

[112, 113,
134, 139,
158, 233,
236–241]

Microsoft
malware
classification

Hexadecimal representation of binary content with
metadata manifest; 9 classes of polymorphic malware
disassembled using IDA packet disassembler

20,000 malware
samples

[101, 103,
104, 214,
242–256]

ClamMP Header fields of PE headers; 54 raw features 15
derived

5210 examples
(47.75% benign)

[120, 136,
257–259]

AAGM Raw traffic from pcap files, 2 types of malicious
applications (adware and general malware)

1,900 malicious
applications (80%
benign)

[115, 116]

EMBER Raw features extracted from PE files in JSON format
900,000 training
and 200,00 testing
examples

[121, 260–
262]

IoTID20
Raw traffic from pcap files, 12 features, 8 attacks
types (DoS, ACK flooding, brute force, HTTP
flooding, UDP flooding, ARP spoofing, scan host port,
scan port OS)

40,070 benign and
58710 malicious
examples

[118, 119]

ADFA-LD
Linux system calls; 6 attacks classes (FTP, SSH,
poisoned executable, Adduser/Meterpreter, TikiWiki
exploit, PHP remote vulnerability) 26 features

2,430,0162 benign
and 317,388
malicious
examples

[124]

Virus repositories are also a source for millions of malicious binaries and source code for malware research.
The Zoo (https://github.com/ytisf/theZoo) from [263] contains hundreds of malicious binaries that are
updated on a regular basis as new threats emerge and as virus source code becomes available [264].
VirusTotal (https://www.virustotal.com/gui/home/) contains one of the most comprehensive repositories used
in the industry today. Malicious binaries can be uploaded or searched via MD5 hash to provide a detailed
summary of the threat and other metadata. VirusTotal also comes equipped with a public and private API
that allows threats to be uploaded while returning a detailed report, along with which AV vendors have
already developed a signature for the given binary. Virushare (https://virusshare.com/) is a searchable

https://github.com/ytisf/theZoo
https://www.virustotal.com/gui/home/
https://virusshare.com/

33/91

sample database, boasting 34 million + malware samples for use for analysts, researchers, and the security
community [265]. Other less popularized repositories for sharing malware for research purposes include
Malshare, VirusBay, and Das Malwerk.

4.2. Metamorphic Generation Kits

Virus generation kits facilitate the creation of a bulk of the newly generated virus signatures we see every
day. These kits perform some, if not all, types of obfuscation outlined in Section 2 to evade signature-based
techniques and are a significant problem for AV vendors and researchers alike. In addition, some kits even
provide functionality whereby users can customize the level of obfuscation and encryption to introduce
variation into the malware generation and are even able to enact antiemulation and armoring behavior.
Some generation kits have been easily flagged by AV vendors since their generated code would contain
similar code between generations; therefore, only a few signatures developed could flag the entire
generation, rendering the generation kit obsolete. Depending on the generation kit, COM and EXE viruses
can be produced directly, while other kits generate the virus assembly code. For example, Borland
TurboAssembler TASM 5.0 can assemble an ASM file into an object file and then TLINK takes the object
files and libraries and links them together to produce virus executables. As demonstrated in Figure 9,
disassemblers such as IDA Pro can be used to produce the ASM files [266]. The ASM files can then be used
to extract opcodes and other features sets for use in malware classification [267]. This section will discuss
several popular generation kits used in research, with a brief description on some of the obfuscation
techniques used by each generator.

34/91

Assembly and compilation of a virus executable.

The phalcon-SKISM mass produced code generator (PS-MPC) was developed in 1992 and includes over 25
options for different types of encryption and payload types, as well as having options to be memory resident.
The generator employs its own decryption routine but lacks options for stealth techniques. PS-MPC
generates files that reside in memory long enough to infect all COM and EXE files. The advantage of PS-
MPC at the time of creation was the ability to carry out code generation in batches due to the generator
operating as a code-morphing engine as it is script-driven [43]. While all PS-MPC-generated codes today are
readily flagged by AV vendors, the generator is still used today for research on metamorphic malware [31,
51, 268–271]. The mass-produced code generation kit (MPCGEN) was first developed in 1993 and was
used to create CFG files which were then passed to PS-MPC followed by TASM to produce 32-bit
executables. The name “mass-produced” comes from the fact that the process of generating, compiling, and
assembling can be carried out for 500 files in as little as 25 minutes. Similarly, MPCGEN is used to produce
a high quality and quantity of metamorphic variants for research purposes [51, 56, 271–275].

https://undefined/cms/asset/ad13b8ee-0e68-4756-8ab2-f5e05a23baaf/sec8227751-fig-0009-m.jpg

35/91

The second-generation virus generator (G2) was developed in 1993 and produces COM and 16-bit EXE
infectors. It employs several code substitution techniques, and as an extension to PS-MPC, introduces
antidebugging and antiemulation features, as well as resident and nonresident viruses. G2 has an easily
modifiable source code to allow customization by an advanced programmer, and the routines it uses are
semipolymorphic. G2 to do this day is a go-to for generating polymorphic variants [31, 50, 51, 56, 58, 59, 67,
73, 268–278].

Virus creation lab for Windows 32 (VCL32) was created in 1992 but was revamped in 2003. Created by a
virus writer named Nowhere Man, a member of a group called NuKE, this generator can produce the
assembly source code of viruses. This means the assembly code needs to be compiled and linked
afterwards before they are active. The versatility of VCL32 comes from being able to customize activation
conditions based on date, time of day, number of infected files, computer country code, version of DOS, or
the amount of RAM available. VLC32 supports COM file infections, generating companion viruses, as well as
various encryption and infection strategies. As a complete package with a GUI and drop-down menus, the
most recent version VCL32 released in 2004 is commonly used in research [31, 50, 51, 56, 268, 272, 274,
279, 280].

The next generation virus generation kit (NGVCK) is one of the more popular virus construction kits
available. Developed in 2001 with the most recent version released in 2003, NGVCK has been widely
adopted for use in developing 32-bit PE-EXE polymorphic malware, especially in a research environment
[31, 39, 47, 50, 51, 56, 58, 67, 268–275, 277–288]. Options for encryption include rotate without carry
ROR/ROL, Twos complement negation NEG, Ones complement Negation NOT, logical exclusive or XOR,
and addition/subtraction ADD/SUB. NGVCK can carry out dead code insertion, subroutine reordering, code
substitution, and registry renaming, and all are very effective techniques for obfuscation. In [51], NGVCK was
compared to other popular generation kits, including G2, MPCGEN, and VCL32, and was noted to produce
the highest rates of obfuscation compared to other kits. A similarity metric was used to compare assembly
programs, and no similarity was found to have G2 and MPCGEN, up to 2.4% was found with VCL32, and
normal files had similarities between 0.98% and 1.2%. In [271], only a 10% similarity was found between
NGVCK when run over multiple iterations, meaning that the kit produces a large amount of variability
between uses. An example of two virus variations produced by the NGVCK generation kit is shown in Table
10. Obfuscation produces two semantically similar variants using garbage code insertion, instruction
substitution, and subroutine reordering as techniques.

Table 10.
Variations in code obfuscation used by the next generation virus generation kit. Adapted from
[286].

Before obfuscation After obfuscation (version 1) After obfuscation (version 2)

36/91

Before obfuscation After obfuscation (version 1) After obfuscation (version 2)

Call function A
Function A: pop
ebp
sub ebp,
OFFSET function
A

Call function A
Function A: sub dword ptr[esp],
OFFSET function A
pop eax
mov ebp, eax

add ecx, 0021751B; junk
Call function A
Function A: sub dword ptr[esp],
OFFSET function A
sub ebx, 00000909; junk
mov edx, [esp]
xchg ecx, eax; junk
add esp, 00000004
and ecx, 00005E44; junk
xchg edx, ebp

A more recent polymorphic engine was introduced in [69] as the virus and metamorphic worm (MWOR)
generation kit. The effectiveness of the generation kit was exemplified in [270] for being able to fool common
statistical analysis. The kit has also found more recent interest in research as it is able to control for the
proportion of garbage code and subroutine reordering possible [270, 271, 273, 282, 283, 286]. This is
extremely effective because inserting a certain amount of garbage code from benign files has demonstrated
an improved ability to thwart AV scanners [39]. This chapter does not provide an exhaustive list of generation
kits, and on the contrary, these kits represent a small subset of available kits widely distributed. Websites
such as VxHeavens were one of such sources until the website was taken down in March 2012 by Ukrainian
police. Repositories containing over 200+ generation kits once hosted on VxHeavens can be found
circulating online to this day. Included in these kits as discussed is antiarmoring and antiemulation
capabilities. Some of these will be discussed in the next section.

4.3. Anti-Emulation, Stealth, and Code Protection

Antiemulation is an all-encompassing term that includes all the various armoring, stealth, and/or code
protection techniques that are used to thwart or burden the process of reverse engineering of a malware
sample. According to Symantec, approximately 28% of malware are VMware [12]. One of the shortcomings
of virtual machines and other honeypot deployments is that the environment they are deployed in is static,
with several configurations set to default. It is for this reason that antiemulation malware can check the
environment for indicators of virtualization and fail to execute or burden the reverse engineering analysis
with cumbersome instructions. This section will cover some of the actions taken by antiemulation malware to
exploit their virtual environment and prevent security experts from understanding the full breadth of their
behavior. Antiemulation checks fall into four categories: human interaction, configuration-specific,
environment-specific, and VMware specific checks [289, 290].

4.3.1. Human Interaction

Checks to see if actions routinely carried out by a user are being performed. This includes mouse
movements, use of the clipboard, and opening and closing windows. The Cuckoo Sandbox, for example, has
a setting which provides this sort of functionality for each malware submission. Trojan Upclicker is a virus
variant that monitors user input in the form of a left click in order to identify sandbox environments. It does
this by using the SetWindowsHookEx() and GetLastInputInfor() API to determine the rate of user input over

37/91

time. This would identify the presence of sandbox environments as automated analysis does not require the
use of an auxiliary keyboard and mouse [291].

4.3.2. Configuration-Specific

Uses time periods or other configuration to execute at a later time and date only if certain conditions are met.
The Duqu virus, which was first identified in 2011, included a series of antistealth techniques in the form of
delays as a precautionary measure [292]. Code injection only occurs after approximately 10–15 minutes, and
the lifespan of Duqu is set by an unknown communication module that removes its hooks, deletes its kernel
driver, and removes its registry key once the timer has elapsed [292, 293]. The Kelihos botnet and Nap
Trojan both make use of the SleepEx() and NtDelayExecution() for extended sleep calls, with the Kelihos
botnet having affected 41,000 users before being identified and taken down. Hastati has a hardcoded check
which is executed only at 2 pm on March 20, 2013. Otherwise, it does not execute if GetLocalTime() returns
a time less than that, indicating the presence of a virtualized environment [294].

4.3.3. Environment-Specific

It looks at the settings and parameters of the host operating system and hardware and decides whether to
execute based on those findings [295]. Virtual machines incorporate virtual hardware which tends to have
consistent configurations between VM deployments. Hardware such as network adapters, USB controllers,
and audio adapters are all virtualized, meaning that MAC addresses, USB controller types, and SCSI device
types are all telling signs of virtualization. The Scoopy Doo tool developed by Tobias Klein uses Windows
Script Host to read registry keys located in HKEY_LOCAL_MACHINE∖HARDWARE∖DEVICEMAP∖Scsi∖
and HKEY_LOCAL_MACHINE∖SYSTEM ∖ControlSet001∖Control∖Class associated with SCSI and can also
lookup keys that are associated with IO and ports for strings containing “VMware.” In another application,
malware can utilize the internal processor tick counter via the ReaD Time Stamp Counter (RDTSC)
instruction. Based on a random bit value that is returned, the decryptor contained within the malware will
decode and execute the virus body; otherwise, it will bypass and exit.

4.3.4. VMware-Specific

It uses checks that add the ability for malware to look for specific indicators of virtualization based on the
VMware software used by the host. One of the best examples is in the use of VMWare workstation’s WinXP
Guest virtual hardware which includes a running VMtools service and 300 references to VMtools in the
registry. Another interesting adoption of VMware behavior is Pushdo. Pushdo uses
PspCreateProcessNotify() to deregister sandbox routines [5, 290]. It also performs a check of the physical
hard drive serial number and checks if it is set to a default value of 00 which is typically in virtual machines.
In the work of [296], the authors looked at antiemulator behavior in android malware and noted volume
identifiers, network interfaces, and invoking the GPU were all techniques used to obfuscate Dalvik virtual
machines. Other evasion techniques, such as exception process timing, IMEI checking, and checking the
variability in sensors have all been traced to emulation evasion in android malware [297–302].

38/91

Alongside the specific checks mentioned above, general antidebugging makes it difficult for researchers to
extract signatures or strings to develop systems to protect against them. An example is the Bistro virus which
inserts garbage code insertion and dummy loops before the decryptor stub. As a result, before the malware
has even unpacked millions of instructions and burdens the emulator, and Bistro fails to run. During analysis,
many malware variants are memory-resident, thereby requiring careful monitoring of viral payload to load
itself into memory before it can be dumped and analyzed [61]. In the past, malware authors have been one
step ahead in their efforts to thwart monitoring memory dumps or memory snapshotting. An example is the
Zmorph virus which has its decryptor rebuilding its instructions line by line by pushing the result into stack
memory. One of the earlier adopters of this sort of technique was the DOS/DarkParanoid which contained 10
different encryption functions which it used to encrypt its previously run instructions while only allowing its
current instruction to be decrypted at any point in time. Without a conventional decryption loop, it is a true
polymorphic memory-resident variant. The use of other so-called “stealth viruses” employed reconnaissance
of the OS by waiting until AV products check-summed programs to check for changes. When a file was read,
as opposed to executed as is the case with user input, it took that as indication of check-summing by the AV
and removed itself from the target executable. Finally, once it waited until the file was closed, it then reinfects
the file [303]. Using this process, it can follow the AV and infect every file on disk. A thorough summary of
antidisassembly, antidebugging, and antiemulation techniques can be found in [43]. For a summary of
android application hardening used by malware authors and developers, we refer the readers to the work of
[304].

5. Approaches to Feature Analysis

Malware features are typically categorized into two types: static and dynamic. Static features incorporate all
the unique compositional information of the executable, irrespective of the contextual information of the
target system [305–308]. That is to say, the static features of an executable would be the same regardless of
what machine the malware is deployed on. Static features typically include the portable executable (PE)
structure, assembly code instructions [5], list of DLLs, n-grams, and byte sequences. PE structure features
would include information related to PE sections, resources, application programming interface (API) calls,
as well as which dynamic link libraries (DLL) are imported/exported. Most modern antivirus (AV) products
employ the use of a signature database which contains known signatures of the static features of malware.
Alternatively, dynamic features include API and DLL call graphs, information gathered from the file system,
registry, as well as process and thread activity and the consumption of kernel resources. Dynamic analysis
can also include temporal snapshots of process execution, memory, network, and system call logs [309].
Dynamic analysis is OS-specific because depending on the system resources, account privileges, and other
environmental variables, the malware will behave differently and have a different signature as a result.

The ability for malware to mutate has also presented a problem for researchers, which render many of the
legacy static approaches to malware research obsolete. As a result, dynamic analysis has been presented
as the de facto standard in classification approaches as it is impervious to routine obfuscation and packing
carried out my mutating malware. Nowadays, dynamic analysis represents some 51% of the analysis
methods in the body of literature examined [306], with a unique combination of feature sets and model
architectures being used to perform classification. It has been noted that malware classification is not a trivial

39/91

problem, with some presenting it as an NP-complete problem [63] to identify a bounded-length mutating
virus or a polymorphic variant of one [310]. Characterizing malware is the fundamental issue of concern, and
researchers and practitioners are constantly refining their methods to stay ahead of the curve. Figure 10
provides an illustration of the feature pipeline used for most malware classification approaches. Both static
and dynamic features form the bedrock in the characterization of malicious behavior. Any number of these
features can be combined to form a hybridized model for feature analysis, which is unofficially the third form
of characterization.

Figure 10

Summary of the feature pipeline for the classification of malware.

Many of these methods are covered in the comprehensive review of [308, 309], but this work will simply
provide a narrow overview of malware detection approaches as it concerns API calls. While API calls are just
of one of the many forms of static and dynamic behavior, it is one of the most consequential and information

https://undefined/cms/asset/f332b90c-3ecd-4ed4-91ca-32e4ead4106f/sec8227751-fig-0010-m.jpg

40/91

rich sources of discrimination. But first, an introduction to the source of APIs, files known as dynamically
linked libraries, is required and will be the topic of the next section.

5.1. Dynamically Linked Libraries

Dynamically linked libraries, or DLLs, are libraries of code that are written by vendors such as Microsoft as
well as third parties to coordinate and manage resources on the Windows OS. DLLs are fundamentally
libraries of code that contain one or more functions, indicated in their Export Address Table (EAT), which
identifies and whose functions are available for export to other processes. DLLs are structurally equivalent to
executables, with the exception being that their main function is called DllMain, and they cannot be executed
without the use of helper functions RUNDLL.exe or RUNDLL32.exe, for 64-bit and 32-bit, respectively. DLLs
are useful because they allow multiple processes to share the same library of code loaded into memory,
thereby reducing the time required to recompile each process and the amount of memory overhead if the
same code segments had to be loaded in memory multiple times. Because each process does not need to
include static code of its functions, it keeps file sizes smaller overall when it can connect to an already
running copy of the library of functions. It also has the advantage of allowing the OS vendor to update a
catalogue of core DLL libraries which can work with subsequent versions of the OS.

When a DLL is requested to be loaded by an EXE, it does so through by checking some default directories
first. There is a known registry key in KnownDLLs that tells Windows that the well-known DLLs should be
found in the System32 path; otherwise, it searches in the .exe directory, the current working directory, the
%SystemRoot% directory, the 16-bit system path, and then the directories in your environment PATH. DLL
order hijacking is the process by which malicious actors inject their own malicious DLLs somewhere in this
load order so that their payload is loaded instead of a legitimate DLL. For example, ntshrui.dll is loaded by
explorer.exe, but it is not a known DLL and therefore can be susceptible to load-order hijacking. DLLs that
are fully protected can recursively load other DLLs that are not protected, which forces the next executable
to follow the default search order and be prone to hijacking. The tool Dependency Walker
(https://www.dependencywalker.com/) can be used to see the dependency tree between loaded DLLs on the
OS. Legacy malware would change the Import Address Table (IAT) to point to a new address in memory for
the DLL it needs. Changing pointers to new malicious address locations with malicious payloads has since
been rectified on newer versions of Windows as it becomes apparent if all the address locations for functions
are in higher memory space 0x7C86 and a single function is loaded into 0x3420 then most likely that IAT
entry has been changed with a hook by a rootkit. Alternatively, malware can just modify the DLL inline,
requiring no changes in pointers just the code, leading to a vulnerability commonly known as DLL proxying
which is much harder to detect but can be alerted to using integrity checking.

Potentially vulnerable DLLs can be observed if using tools such as SysInternals’ Process Monitor (Procmon
(https://docs.microsoft.com/en-us/sysinternals/downloads/procmon)). In Procmon, if a DLL is not found and it
is not core to the functionality of the process, it will return an entry NAME NOT FOUND. Using an out-of-the-
box option like Metasploit’s (https://www.metasploit.com/) msfvenom will produce a DLL than can be put in
place of the missing DLL, thereby running the malicious payload and executing a successful DLL hijacking.
Other tools such as the SANS (https://www.sans.org/blog/detecting-dll-hijacking-on-windows/) tool can be
used to search for DLLs that appear multiple times, are unsinged, and are in unusual folders. More common

https://www.dependencywalker.com/
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.metasploit.com/
https://www.sans.org/blog/detecting-dll-hijacking-on-windows/

41/91

in research, the Dependency Walker tool (https://www.dependencywalker.com/) makes it easy to view the
mapping of imported DLLs and to even view a hierarchical view of all dependencies between modules by
looking at the IAT. The authors in citewang 2008 separated DLL usage according to implicit dependency,
delay-load dependency, and forward dependency, which are all responsible for the static loading of DLLs in 3
tiers of hierarchy. Tier 1 starts from those used by the main program, followed by Tier 2 which have DLLs
invoked by other DLLs that are not in the main executable, with Tier 3 being the entire statically loaded tree.
The authors created a one-hot encoded vector if the particular DLL existed in the program and used that
feature mapping for classification. In [311], a similar approach was taken which relied on the DLL
dependency tree but incorporated encoding tree string dependencies. The authors looked at all the tiers of
DLLs which loaded and created a depth-first representation where the original executable is the root node
and all nodes from root to leaf are assigned a unique integer value. They then used CMTreeMiner which
extracts closed frequent subtrees that exist in a particular executable, and one-hot encoded a feature vector
if a particular subtree exists in the executable. Looking at depths of subtrees from 3 to 6, accuracies as high
as 98%+ were obtained following random forest and naive Bayes classifiers. The work of [312] did not go in
as depth as [310], but the authors looked at the number of API calls by a DLL in addition to the list of DLLs
used and the API calls made. In any case, while DLLs do provide a good proxy of malicious intent, it is in
fact the API calls that are made that are the real discriminator. For this reason, researchers turn their focus
towards API calls and their usage among malware variants.

5.2. Windows Application Programming Interface

Windows API calls are interfaces provided by DLLs to access low-level resources [313]. API calls come in
two flavors: user-level and kernel-level APIs. User level APIs operate at Ring 3 and provide the average user
just enough privileges to access system resources to perform typical workloads. The actual hardware on the
other hand runs in the kernel mode, which makes use of the kernel level APIs that are not directly available
to users for the sake of security and stability of the OS. From the stability perspective, a user-level crash
results in an error message, while a kernel-level crash results in the OS crashing. From the security side,
malware could reside in the kernel and operate at a layer that is indistinguishable to the user or any Ring 3
defenses. Nowadays, it is much more unlikely to see malware residing in the kernel, as the Windows OS has
made it more difficult to run code in the kernel and make use of rootkits. Ultimately, to make use of the
kernel, all userland code uses Kernel32.dll as a gateway to communicate with Ntdll.dll which, in turn,
communicates with the kernel.

The fascination with API calls comes down to the fact that API calls provides a higher resolution of analysis
of the operation of any given process. It is the case that API functions and system calls are related to the
services provided by the OS [309, 314, 315]. As the API is responsible for all system resource management,
it is a particularly discriminating feature for malware classification as it provides the basic functionality for
everything from networking to saving files to disk. The usage of APIs and patterns in usage can be very
telling. Similar to the overarching view of static and dynamic analysis of behavior, APIs are approached from
a static and dynamic perspective as well. In dynamic analysis, the run-time behavior is monitored, and
ideally, all code segments are traced to reveal the behavior of the malware. This circumvents the obfuscation
techniques of encryption, packing, and polymorphism [316]. Static analysis on the other hand can be fooled

https://www.dependencywalker.com/

42/91

by adding fake API calls [317] or API calls typical of benign event activity [318]. It is also the case, as
mentioned in Section 5.1, that the imported functions of a DLL may or may not ever be called, which can be
used as a distraction from the real nefarious purpose of the malware.

Features such as the API call function names, parameters, and the return values of an executable can be
extracted from the APIs [319]. Monitoring the API calls is an approach to detecting the malicious behavior of
software; however, there is no clear distinction between malicious APIs and benign APIs as all native APIs
are a helpful utility given the right context. The next section will outline some of the nefarious usages of APIs
by malware authors and how they balance stealthiness with functionality.

5.2.1. Malicious Windows Application Programming Interface Usage

Broadly speaking, API usage can be categorized into 7 categories based on the functionality they provide to
a process [314, 320]. Researchers have also made use of similar categories to classify malicious intent
[184]. Some of the malicious functionality APIs can provide to executables and include the following:

 

File: create a file in sensitive folders; delete or hide files; file directory traversal

 

Process: inject DLL into a running system process; create mutex to prevent execution

 

Memory: free up or occupy memory; minimize memory usage

 

Registry: add or delete system service. Autorun, hide, and protect

 

Network: open and listen on a port, communicate over e-mail service, communicate with CnC server

 

Windows Service: terminate windows update, firewall, setup Telnet or SSH

 

Others: hooking keyboard, hiding window, scan for existing vulnerabilities and configuration

Code injection usually begins with the usage of third-part DLLs or injecting code into a Windows DLL.
Malware makes use of Ntdll.exe indirectly to make use of kernel APIs, so checking the stack trace of event
activity is important [321]. Malware authors have to balance gaining increased functionality at the cost of

43/91

rising suspicion, so a careful deliberation of which APIs to use is always in mind [322]. Native Windows API
calls that begin with NTtQuery are popular for malware, as they include functions such as
NTtQuerySystemInformation and NTtQueryInformationProcess which provide much more information about
the host system. More invasively, early rootkits would make changes to the System Service Descriptor Table
(SSDT) which contains addresses to the kernel functions, which would instead be changed to malicious
driver functions. If, for example, a typical address of a kernel function is set to 804d7000 for ntoskrnl.exe,
then one can look at addresses which are not familiar and contained within the address space typical for
kernel drivers. With x64 bit versions of Windows starting with XP, PathGuard prevents modification of the
kernel and the kernel code in the SSDT and the Interrupt Descriptor Table (IDT). The IDT takes care of
exception handling, so rerouting the response to interrupts to malicious code would be highly disruptive. As a
precaution to prevent making changes to native Microsoft DLLs and APIs, Windows Vista was the first
Windows version to introduce digitally signed drivers. Some of the example use-cases and APIs used by
malware are the following:

(a)

File: if software wishes to make use of the file register, it can do so using CreateFile, ReadFile, and
WriteFile. Malware can make use of CreateFileMapping or MapViewOfFile which loads the file into
RAM, avoiding writing to disk all-together. Some malware types, like Ransomware, perform high
volume file and encryption operations to carry out its function [323].

(b)

Process: it is typical for malware to use OpenMutex to check if a mutex exists for a running malware
executable. Malware can make use of DLL injection or direct injection. Code can be injected into a
running process using VirtualAlloxEx and WriteProcessMemory. When the code is injected into an
executable such as Explorer.exe, the same privileges hold for the executable it is injected into.
Asynchronous procedure call (APC) is a process by which malicious code is attached to the APC
queue of a process’ thread. WaitForSingleObjectEx is the most common call, with QueueUserAPC
being used for queues running on a thread. It can be run from the kernel using KeInitializeApc and
KeInsertQueueApc. APC remains a known vulnerability on the MITRE ATTCK knowledge base [324].

(c)

Registry: when it comes to making use of the Windows registry, malware can gain persistence so that
it can load whenever Windows restarts [316, 325]. Most commonly the Run key located in
HKLM\Software\Microsoft\Windows\CurrentVersion\Run can set executables to run automatically. The
Sysinternals tool Autoruns (https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns) can be
used to check dozens of registry locations, drivers loaded into the kernel, and any other DLLs. Other
options for persistence include running Services which are typically more powerful than administrator
privileges. Other registry entries include AppInit_DLLs, which is a registry key that contains DLLs that
are attached to processes that load User32.dll. This option has can be disabled in Windows 8 and later
versions when Secure Boot is enabled. WinLogon Notify launches during log on, sleep, or when the

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

44/91

lock screen is open. Adding a malicious DLL to the ServiceDll parameter in the registry allows a
malicious service to start its malicious service DLL into a loaded svchost.exe [326].

(d)

Networking: certain network API usage can be indicative of malicious intent as networking APIs
provide different levels of flexible. For example, the APIs in Wininet.dll will use higher level APIs for
HTTP and HTTPS communications. Malware might use the raw Winsock libraries located in
ws2_32.dll if there is a need to provide further flexibility to their malicious arsenal. The Metasploit
framework can produce shellcode that acts as a listener on a port by creating a simple process using
CreateProcess. The configuration for STARTUPINFO is set to a socket, thereby creating a remote
shell. This setup allows for I/O and error handling for cmd.exe and does so with the command window
suppressed to remain stealthy.

(e)

Other: malware downloaders and launchers use URLDownloadtoFileA to download a file from a URL
and then execute the file by making a call to WinExec. Keyloggers use hooking or polling. Hooking
uses an API such as SetWindowsHookEx to notify about a key press, while polling is conducted using
GetAsyncKeyState and GetForegroundWindow to poll key states during any time period.

Researchers have looked beyond individual API calls and have investigated API call distribution [327]. A
summary of some of these classes of API usage used by researchers is shown in Table 11. The issues arise
in that, and it requires significant domain expertise to create and update a database of API calls for particular
malware variants or families. It is also the case that there is significant overlap between malicious and
benign API usage, thereby making it difficult to alert malware without alerting false positives. The work of
[328] developed a similarity metric to trace the similarity between malware variants and Stuxnet based on
groups of API calls. It comes to reason that groups of API calls in succession, or the distribution of API calls,
can provide further insight into malicious behavior [334]. For this, we investigate some of these research
methods in the following section.

Table 11.
Summary of malicious API usage by behavior type.
Behavior APIs References

General
behavior

ShowWindow, GetWindow, WriteFile, WinExec, ShellExecuteA,
OpenProcess, VirtualAlloc,  ∗Hook,  ∗Exception,  ∗Shutdown,  ∗Crypt,  
∗Debugger,  ∗Shellexecute,  ∗Manager

[1, 328,
330]

Stealthiness NtDelayExecution, FindFirstFileA, FindNextFileA, GetProcAddress,
LoadLibraryA, OpenProcess, sleep [5, 328]

Kernel  ∗Ldr ∗,  ∗Section ∗,  ∗DuplicateObject ∗,  ∗Make ∗,  ∗Object ∗,  ∗Resource ∗,  
∗UdiCreate ∗

[1]

Memory  ∗Memory ∗,  ∗Volume ∗,  ∗Space ∗,  ∗Buffer ∗ [1]

Registry CreateKey, OpenKey, CloseKey, RegOpenKey ∗ RegSetValue,
RegQueryValue,  ∗EnumKey,  ∗DeleteKey,  ∗SetKey,  ∗Enum ∗

[1, 316,
331]

45/91

Behavior APIs References
Reproduction  ∗FindFirstFile,  ∗CopyFile, GetFileType, SetFilePointer [316, 331]

DLL injection
SetWindowsHookEx, CallNextHookEx, CreateRemoteThread,
OpenProcess, LoadLibrary, GetProcAddress, VirtualAllocEx,
WriteProcessMemory

[5]

Search files
FindClose, FindFirstFile, FindFirstFileEx, FindFirstFileName,
TransactedW, FindFirstFileNameW, FindFirstFileTransacted,
FindFirstStream, TransactedW, FindFirstStreamW, FindNextFile,
FindNextFileNameW, FindNextStreamW, SearchPath

[1, 327]

Copy/delete
files

CloseHandle, CopyFile, CopyFileEx, CopyFileTransacted, CreateFile,
CreateFileTransacted CreateHardLink, CreateHardLink, Transacted,
CreateSymbolicLink, CreateSymbolic, LinkTransacted, DeleteFile,
DeleteFileTransacted

[327]

Get file
information

GetBinaryType, GetCompressed, FileSize, GetCompressedFile
GetFileInformation, ByHandleEx, GetFileSize, GetFileSizeEx
GetFileType, GetFinalPathName, ByHandle, GetFullPathName,
GetFullPathName Transacted, GetLongPathName, GetLongPathName,
Transacted, GetShortPathName, GetTempFileName, GetTempPath
SizeTransacted, GetFileAttributes, GetFileAttributesEx, GetFileAttributes,
Transacted, GetFileBandwidth, reservation, GetFileInformation, ByHandle

[327]

Move files MoveFile, MoveFileEx, MoveFileTransacted, MoveFileWithProgress [327]  
Read/write
files

OpenFile, OpenFileById, ReOpenFile, ReplaceFile, WriteFile, CreateFile,
CloseHandle [327]

Change file
attributes

SetFileApisToANSI, SetFileApisToOEM, SetFileAttributes,
SetFileAttributesTransacted, SetFileBandwidthReservation,
SetFileInformationByHandle, SetFileShortName, SetFileValidData

[327]

Metamorphic
engines

HeapAlloc, LocalFree, HeapCreate, GetStartupInfoA,
GetCommandLineA, GetEnvironmentStringsW,
FreeEnvironmentStringsW, GetModuleFileNameA, GetCurrentProcess,
CloseServiceHandle, GetCurrentProcessId, GetProcessHeap,
HeapReAlloc, SetFilePointer, SetFileAttributesA, GetFileAttributesW,
FindFirstFileA, FindClose, SetThreadPriority, GetCurrentThreadId,
GetProcAddress, GetModuleHandleA, ResumeThread,
GetEnvironmentVariableA, ExitThread

[275, 328]

G2

GetCurrentProcessId, GetConsoleMode, SetConsoleMode,
FileTimeToDosDateTime, CreateFileW, GetFileSize,
FileTimeToLocalFileTime, GetFileTime, LocalFileTimeToFileTime,
SetFileTime, SetFilePointer, SetFileAttributesW, GetFileAttributesW,
GetKeyState, ConsoleMenuControl, AppendMenuW, ReleaseMutex,
FindFirstFileA, FindClose, SetThreadPriority, GetCurrentThreadId,
GetProcAddress, GetModuleHandleA, ResumeThread,
GetSystemTimeAsFileTime, GetTickCount, QueryPerformanceCounter,
InitializeCriticalSection, LoadStringA, FormatMessageA

[332]

46/91

Behavior APIs References

MPCGEN

HeapAlloc, LocalFree, GetVersionExA, HeapCreate, GetStartupInfoA,
SetHandleCount, GetCommandLineA, GetEnvironmentStringsW,
FreeEnvironmentStringsW, GetACP, GetCPInfo, GetStringTypeW,
GetModuleFileNameA, LCMapStringW, MultiByteToWideChar,
WideCharToMultiByte, GetEnvironmentStrings, LocalFileTimeToFileTime,
SetFileTime, ReadProcessMemory, AppendMenuW, GetLastError,
GetSystemTimeAsFileTime, GetTickCount, QueryPerformanceCounter,
InitializeCriticalSection, FormatMessageA, GetCurrentProcess,
DuplicateHandle, GetConsoleMode

[332]

NGVCK

GetClassLongW, CreateFontIndirectW, DeleteCriticalSection, TlsFree,
UnmapViewOfFile, CloseHandle, GetCurrentProcessId, EnumDesktopsW,
EnumDesktopWindows, CloseDesktop, GetProcessHeap,
SetUnhandledExceptionFilter, OpenDesktopW,
GetProcessWindowStation, GetUserDefaultLCID, CombineRgn,
OffsetRgn, ExtCreateRegion, CreateRectRgnIndirect, SetWindowRgn,
DefWindowProcW, PeekMessageW, SetCapture, SendMessageW,
ReleaseCapture, MsgWaitForMultipleObjectsEx, PtInRect, GetRgnBox,
HeapReAlloc, LCMapStringW

[332]

Stuxnet LoadLibraryW, LoadLibraryA, GetModuleHandle, GetProcAddress,
VirtualAlloc, VirtualFree [328, 333]

5.2.2. Classification of Windows Application Programming Interfaces

The investigation of API calls in the context of feature extraction is sometimes referred to as API call
sequence or API call traces. In either definition we are concerned with the patterns that arise in the
sequence of API calls used one after another. Early adopters of this form of investigation used Hofmeyr API
call sequences, whereby behavior profiles were established between two sequences of API calls based on
Hamming distance [335]. Originally, UNIX system calls were traced, and the investigators were motivated by
the immune system in their attempt to draw an analogy between sequences of system calls and chains of
amino acids in the human body. API call sequences have been leveraged in several applications involving
malware detection [160, 184, 316, 336–339], as well as in tracing the API call traces during event activity
[316, 340–343]. Overall, API call frequency and API sequences are effective techniques in identifying data-
flow dependencies in a process [315].

5.2.3. Application Programming Interface Frequency

One of the more primitive approaches to API analysis is API frequency analysis. It stands to reason that if
malware and benignware make use of similar API libraries, then malware must make use of certain libraries
or “malicious” APIs more frequently than others. In [319], considering API frequency alone was effective in
achieving 97% accuracy in a multicategorical classification problem involving metamorphic malware variants.
One takeaway was that incorporating sequential information did improve accuracy of the models, so
frequency analysis is certainly a useful preliminary step in behavioral analysis. The work of [344] developed
an end-to-end malware detector based on the frequency of occurrence of opcode and API calls. Their
detector coined OPEM, demonstrating an increased area under the curve (AUC) and lower FPs with static

47/91

calls and a hybrid approach. Unfortunately, the authors did not account for obfuscated malware which tend to
be packed and have polymorphic engines which obfuscates the opcode. Their hybrid approach, which
included API execution trace, did outperform all other feature sets used in their work [344]. Certain works,
like that of [245], decided to use a frequency of a subset of 794 API calls extracted from 500 thousand
malware samples. The authors then fused this feature set with other static techniques such as entropy and
features extracted from the PE file such as the total number of assembly instructions in the .data and .rsrc
section. The drawback to these approaches is that taking the most frequent API calls leaves out information
of potential edges cases; it is also a fact that frequent API calls by malware are still routine events carried
out by benignware, such as reserving memory, creating a file, etc. The work of [345] approached the
problem in a similar fashion, where they eliminated API calls with low frequency. Again, doing so removes
important edge-cases and is used typically to reduce the size of the feature vector space to improve training
times. These aforementioned works all made use of ML techniques to classify their malicious behavior. Other
works make use of statistical similarity metrics to differentiate malicious versus benign by using one or more
metrics of comparison. For example, in [304], the authors made use of information gain to select the features
based on the sequence of opcodes from android applications. Based on some key obfuscation techniques
discussed thus far, including control flow obfuscation, string encryption, in addition to advanced techniques
such as class encryption and reflection, the authors found several ML approaches were effective in detecting
obfuscated samples.

In [346], the cosine similarity was proposed to compare API call frequency between two vectors to represent
the similarity in vector space of a known signature to a new malware sample. The expression for cosine
similarity is shown in equation (1). The motivation for using cosine similarity is that the measure computes
the similarity between two vectors while excluding their magnitude. This has the effect of ignoring the impact
of magnitude if one vector were to use an API much more frequently than the other, as the θ angle in
equation (1) is indifferent to their magnitude.

mathematical
equation

(1)
The extended Jaccard measure is another similarity metric than is useful in measuring the degree of overlap
in two sets [346]. As an extension to Jaccard for use in continuous or count attributes, it is effective in
demonstrating the similarity, or the ratio of set intersection, between two sets in the context of set theory. The
equation for this relationship is shown in equation (2). The numerator can be seen as expressing the set
intersection, while the denominator can be seen as the union which acts as a form of normalization.

48/91

mathematical equation

(2)

The cosine similarity was used effectively to create a similarity matrix between the rarest 20–30% raw
security events and events of the training set [160]. This approach was used to significantly reduce their
dimensionality of their set by focusing their efforts on the similarities between a baseline set of unusual
events and their dataset more broadly. In [347], similarity metrics were computed for API sequences that
appear frequently, and both assembly instructions and API calls were considered in their work. API calls
were noted to be faster in having a smaller signature; however, the authors noted that the API approach is
bad for network applications such as PuTTY and encrypted files which show few or do not show any API
calls. Their work did rely on unpacked executables as it was limited only to static analysis. In [346], an API
call frequency similarity measure was used followed by a chi-square test to test the representation based on
a distribution from a known signature. Families of APIs of known metamorphic mutation engines were
categorized and compared to one another and to the same mutation engine using both the cosine similarity
and the extended Jaccard measure. An interesting finding was that comparing a similarity metric between
variants from the same mutation engine provided a measure of the degree of obfuscation, which was shown
to be the largest for the next generation virus creation kit (NGVCK), a well-known mutation engine. The work
of [275] completed similar work, whereby a proximity index table was setup to compare the similarities
between mutation engine families. Due to the sheer number of possible API calls, feature dimensionality
reduction was carried out on the original 1000 or so APIs according to frequency. The authors noted that
common APIs were used between mass code generator (MPCGEN) and NGVCK-generated viruses. An
approach that included data mining was taken in [320], whereby the calling frequencies of the raw features
are calculated to select a subset of features, and then principal component analysis (PCA) is used for
dimensionality reduction of the selected features. In total, 24,662 API function calls, 792 DLL features, along
with PE header info, were considered in their feature set while considering only the top 30 DLLs according to
frequency [320]. To address the issue with high-dimensional data, the authors in [336] developed a string-
based malware detection system that focused on the top 3,000 interpretable strings that included API names
using a max-relevance algorithm. Their feature parser extracted strings from 9,838 executables and
classified them as Backdoors, spyware, Trojans, and worms, in addition to benignware. While these
techniques have been proven useful in many controlled scenarios, frequency-based analysis is still prone to
malware which can obfuscate themselves to avoid heuristic detection. For this reason, sequence analysis is
used.

5.2.4. Application Programming Interface Sequences

49/91

The investigation of API sequences has become the de facto standard for many behavioral approaches as
the information contained within sequences is too powerful to rely on the API frequency alone. It has also led
to the adoption of natural language approaches which will be discussed in Section 5.4. The work of [316]
provided an example of the flow of information surrounding a process that can act as a template for how to
carry out sequence analysis of APIs. The three flow paths are as follows:

(1)

The API call GetModuleFileName takes a NULL character as its first argument which returns the
malware file path

 

(1.1). the path can be passed to CopyFile to open the executable and run its processes

 

(1.2). or, if desired, a process can call CopyFile on itself with the share permission shared to
NULL, thereby preventing applications from opening and scanning the file

This example serves to demonstrate that two very different uses of CopyFile can indicate malicious behavior,
and only once the whole context is understood can a detection system alert it. An application that performed
this successfully was in [337] where 2,727 unique APIs were categorized into 26 groups based on
functionality such as hooking, file and directories, registry modification, and others. Based on the sequence
of the APIs, critical patterns were uncovered which were essential for core functionality such as screen
capturing and DLL injection. Results demonstrated F1 scores as high as 0.999 with a focus on the longest
common subsequence between existing malicious signatures and those of unknown variants. A similar
approach was taken in [1] where 11 hand-crafted signatures of dynamic and static behaviors were created
based on malicious operations spanning registry operations to device operation to kernel operations. These
signatures were converted into semantic blocks based on the largest common subsequences between
dynamic and static APIs. The work of [348] created a formulation that includes API sequences as part of a
temporal domain, and pointers passed to API calls as spatial information. The motivation being similar to
[316] in that an API call such as LocalAlloc takes in uBytes as an argument that is statistically lower for
malicious files than benign files during allocation of the heap. Capturing this information in the spatial
domain, while modeling the sequences of APIs in the temporal domain were effective in classifying 516
executables with accuracies as high as 0.966. Rather than focusing on API sequences as it pertains to
general malicious behavior, researchers have explored common API sequence usage among malware
variants and types. In [330], five classes of malware including Worm, Trojan-Downloader, Trojan-Spy, Trojan-
Dropper, and Backdoor were associated based on the presence of 26 API categories and sequences. 534
malware variants were hooked and then categorized based on the presence of these API sequences, which
were characteristically different for different malware types that aim to pursue different objectives through
their API usage. In [349], the authors considered 9 behaviors based on sequences of 2–4 APIs in
succession, while [315] looked at combinations of 3 APIs (such as CreateFile, WriteFile, and CloseHandle).

50/91

The work of [350] obtained a 99.7% detection rate using several API calls sets, which included sequences of
different lengths.

When it comes to determining appropriate sets of API calls for classification, researchers have pursued
approaches in the data mining space to optimize for a set of association patterns towards a particular
objective [351] and in this case, optimizing an objective that a sample belongs to a malicious or benign
sample. Several papers have been published in this area, in particular those published out of the Xiamen
University [352–354] focused on malware classification. Ultimately, regardless of the particular mining
algorithm used, the idea is to find a set of API calls that support the objective of classifying malware from
benignware. In [353], this was performed using a frequency pattern growth algorithm [355]. The goal is to
create a frequency pattern tree which encodes sequence in a tree-like structure similar to a Huffman coding
where parents of a node are encoded as longer extensions of the child sequences. So, for a given API call
API_i, it would exist as a leaf node, while its parent nodes would contain sequences that contain API_i such
as (API_i, API_j) or (API_i, API_k). This is performed recursively up the tree, and frequencies are stored as
satellite information at each node, and this is how rules are generated. A new sample is then matched
against the rules according to the descending order of the rules’ confidence and support [356]. The
motivation is to maximize the likelihood that rules exist which can discriminate one objective from the other.
This procedure was further described in [352] and used successfully to generate rules which parse 29,850
Windows PE files, half of which were malicious. In the approach of [356], the authors compared frequency
mining approaches to ML approaches including SVM, decision trees, and naïve Bayes and noted a 2–9%
improvement in classification accuracy. Because these approaches did extract the APIs from the PE files,
this static approach is not effective for packed malware or APIs which are imported by the executable but
never used. In a later paper by Ye and Yu [143], rule pruning was used for duplicate rules and only elected to
use the top 100 API calls as no further improvement was shown beyond 100. While using a linear SVM,
Aassociate classifier and novel hierarchical associative classifier, 26 thousand malicious samples were
parsed and a precision value as high as 96% was achieved but with a low recall value of 34%. A thorough
examination of the state of data mining approaches as it pertains to cyber security are covered in [357].
While handcrafting sequence signatures can be time-consuming and require knowledge of specific patterns
in API usage, the alternative is to consider all possible subsequences of a given length and consider the
usage patterns of all sequences simultaneously. While data mining does provide a compact representation to
do this, more innovative works allow models to discern these rules on their own when coupled to ML
approaches. For this purpose, n-gram representation is used.

5.2.5. Application Programming Interface n-Grams

One of the earliest forms of sequence analysis in the malware domain was carried out in [358]. It was also
the first successful application of n-grams, which involves translating a sequence of L APIs into
subsequences n long and doing so for every possible subsequence that exists in the original API sequence.
This has the effect of incorporating information about the sequences of APIs with little preprocessing
required. For any given API sequence, a sequence of length L would have L − n + 1 n-grams, where n is the
length of the subsequences and assuming a stride length of one. So, for an API sequence 10 APIs long, we
would have (10 − 5) − 1, subsequences for n = 5. The number of possible n-gram combinations would be

51/91

|C|5, which represents all the unique combinations of five APIs in sequence that are possible in the set of
APIs C. The authors in [358] looked at short byte string n-grams of the PC boot sector which was 512 bytes
long. They utilized an ML approach that removed the sigmoid activation and stored the weights as 5/6-bit
integers. The technique became part of the IBM AV package and was successfully deployed to millions of
machines.

The versatility of n-grams means that one can look at smaller n to generate shorter signatures which are
noisy but more generalizable or use larger n to create more specific signatures which lead to lower false
positives (FP) but at a cost of lower true positives (TP). The application of n-grams is known to have low FP
rates with increasing sequence length L; however, the space complexity of n-gram sequences is exponential

in the length of the sequences O(|C|5) [71]. The work of [359] focused their attention of the PE header and
body and carried out static analysis using the top 500 most common 4-grams [360], representing DLL
names. Results demonstrated that the header-only features are as relevant as body information and that
separately, they both have a use-case [359]. Similarly, in [361], a 4-gram representation was used to model
API sequences. The authors developed average confidence values of benign and malicious activity and
used the average confidence of malware as a threshold. This simple thresholding obtained 90% accuracy;
however, the work provided no indication of FP rates to support their findings. The work of [342] went one
step further and carried out n-gram modeling of API call sequences based on the file system, network, and
registry activity. This work was unique in that, and it separated API events based on the file system, network,
and registry, to provide a further analysis of how these event categories fare in acting as discriminators. In
all, the authors looked at over 17,900 malicious executables and obtained 92.5% test accuracy. Finally, [345]
resorted to 3- and 4-gram representations but focused on the dynamic API usage after process execution.
This resulted in 94% accuracy, but when coupled with static feature sets based on frequency, it improved the
accuracy beyond 97%. The shortfall of n-grams is that sequences exceeding that of 4 or 5 are impractical to
model due to the number of permutations of API calls, which significantly hinders the ability for models to
attend to different behaviors. For this reason, we can pursue graph-based approaches in an attempt to
consider different behaviors simultaneously.

5.3. Graph-Based Approaches

Graph-based approaches to malware detection have a long history. The earliest application of graph-based
includes the use of control flow graphs (CFG) to evaluate unique control flow sequences of a program. A
CFG is created as a directed graph where the nodes represent individual or blocks of program instructions
and the edges represent the control flow between statements [310]. Within each CFG, we have a subgraph
that is isomorphic to the whole graph. Trying to map a subgraph from one sample to another is part of the set
of problems which includes the subgraph isomorphism problem which is NP-complete [362]. In Figure 11, we
can see an illustration for the control flow from the Trojan.Emotet virus. This instruction segment belongs to
the set of instructions that are responsible for spawning a child process which depends on the initial call to
CreateEvent at the top of Figure 11. When examining such a control flow, the question becomes which
segment(s) of instructions are responsible for malicious behavior. While this segment was carefully selected
to show the behavior of Emotet, extracting similar segments from the entire malicious execution is
cumbersome, especially when they include diversions and dead-ends. Extracting such segments as

52/91

signatures and generalizing these signatures to flag future malware samples is the goal of CFG-based
malware classification.

A CFG representation of the disassembled instructions for Trojan.Emotet produced in Ghidra.

Most applications of CFGs look at extracting some subset of the flow of sequences to compare to other
samples to establish a baseline for malicious control flow. One approach used by [363] looked at jmp, jcc,
call, ret, inst, and ret opcode instructions and built the CFG based on only these instructions, thereby
creating a reduced graph and leaving placeholders for the rest. Based on these, the authors created unique
signatures for malware detection. In [364], the authors looked at the system call functions, which included
call, jump, and conditional jump expressions in the x86 Intel instruction set. In [365], the authors looked at
the most frequent subgraphs and simply excluded the rest. The sample set used by [366] included 25,145
functions which were 5 nodes (simple instructions) large and 15,439 unique functions which were 5 nodes
long. Setting the threshold at 5 ensures that only atypical calls and procedures are included. One of the

https://undefined/cms/asset/6e201b6d-2a9b-402b-85df-a1b64987cb94/sec8227751-fig-0011-m.jpg

53/91

issues associated with CFGs is that the control flow is either (a) similar among all executables, regardless of
malicious activity (also known as boilerplate code) or (b) is sometimes appended with benign code segments
that are never executed but can confuse string-based scanning techniques [366]. This was considered by
[367] in their CFG reconstruction based on system call logs extracted using Procmon. Their approach did not
look at functions that were not loaded by the dynamic linker in order to remove boilerplate code. However,
this is a double-edged sword as malware does not only rely on its Import Address Table (IAT) to fetch the
APIs it needs, it can load those statically as well. An alternative approach used in [368] looked at contrast
subgraphing [369], which is the opposite of graph isomorphism since it looks for the smallest subgraph of G1

that does not belong in G2. This approach lends itself well to looking for characteristically significant

differences between malware and benignware, rather than developing signatures that look for similarities
among classes. Alternatively, one can consider creating signatures as coopcode graphs that belong to
malware families and therefore create high-level signatures that can be used to classify malware families
based on the coopcode graph similarity [319]. While opcodes have been investigated extensively, Windows
API usage has been shown to perform well at detecting polymorphic variants, [143, 160, 364] but the large
size of potential subgraphs remains a limitation to graph-based approaches. Going more in depth, [370]
examined not just the API functions used but also their function input arguments among file system, registry,
socket, and process operations. This provides additional insight into the calling process, such as through
bytes written to when using WriteFile or destination key when setting a registry value using RegSetValue.
The work of [289] looked at the opcode similarity to detect polymorphic variants. The authors developed a
weighted directed graph where the edges were probabilities that one opcode followed the next. They then
computed scores between metamorphic viruses and between viruses and benign files and developed a
threshold score for maliciousness. This approach performed well since metamorphic viruses are created with
a selected few metamorphic engines; therefore, the signatures developed are in fact tracing obfuscation
used by a given mutation engine [364, 371].

Another factor to consider when using CFGs is how to establish a comparison between CFGs from malicious
and nonmalicious control-flows. The authors in [362] examined the detection of metamorphic code based on
a cross-comparison of the control flow graphs of known malware. The authors normalized the code to
remove dead or unreachable code, removed common subexpressions, removed dead paths, and analyzed
indirect control flow transitions to remove longer chains of control flow and avoid misdirections. The authors
recorded a 96.5% true positive rate while producing almost no false positives. The Jaccard similarity matrix
was used in [367] between system call subsequences. The cosine similarity is another approach used [372],
but all similarity metrics suffer from drawbacks because they are all subject to the selection of subgraph as
discussed earlier. Even with reliable subgraphs that perform well on a particular set of malware, the work of
[373] demonstrated that 23 algorithmic graph features including betweenness centrality, closeness, degree
centrality, density, and number of edges and nodes can be used in adversarial analysis and result in a 100%
misclassification rate. Their approached target IoT malware, but android malware, is also an ongoing field of
study [374–376]. With all the shortcomings that come with the graph-isomorphism problem, newer advances
in this field remove the need for graphs all-together and convert the entire graph into feature vectors [373,
377]. Once features are vectorized, this opens up the door for other machine learning models to act as
discriminators for the classification step.

54/91

5.4. Natural Language Processing Approaches

The use of natural language processing (NLP) approaches applied to API call sequences was a natural
extension to developing models that can predict malicious behavior. Malicious behavior is not simply a
product of individual API usage or frequency of APIs, but it is rather a consideration of the pattern in the API
usage over time. Similar to how word usage and context can provide an indication of whether or not an email
is spam or not, the context of API called in succession can tell you something about malicious intent. This
has the effect of being able to attend to different behaviors simultaneously and allows the model to learn
what malicious behaviors exist on its own.

Many popularized vectorization techniques used in NLP applications have also been migrated for the
purpose of malware research. Two of these techniques were displayed in the work of [378] which used a
bag-of-words (BoW) model and term frequency-inverse document frequency (tf-idf). The background
specifics of these techniques will be discussed in the next section. Their work created fixed lengthened
vectors from behavioral reports produced in virtual machines and automated the feature extraction step.
Finally, an ensemble of ML techniques, such as random forest, k-nearest neighbors (k-NN), support vector
machine (SVM), and XGBoost, were used, with majority voting summarizing the end predictions over the
models. An application that did involve APIs was carried in [1] who looked at both dynamic and static
behaviors and hand-crafted groups of signatures based on operation. The authors created 11 different types
of malicious operations, spanning from registry operations to device I/O to kernel operations. APIs were
converted to semantic blocks which looked at the largest common subsequences between dynamic and
static behavior. Following the sequencing, tf-idf was used to vectorize the contribution of each API, with a
focus on rarely used APIs that drive malicious behavior. In [160], tf-idf was used to convert the sequence of a
unique event name to a representation for a machine learning mode to learn which included both 1-
dimensional convolutional neural network (CNN) and long short-term memory (LSTM) architectures. A
similar line of work was used in [379] where a LSTM was used to model sequential API usage of 20
thousand malware samples run on a Windows 7 machine using the Cuckoo sandbox. The authors only
considered 342 API calls but limited their investigation to those that were used at least 10 times among all
samples in the training set. When coupled with tf-idf, this has the effect of focusing more on rarely used
APIs, and by limiting the minimum threshold to 10, there are enough training examples for the model to learn
the importance of those features. In a more recent work in [380], graph neural networks (GNN) were used to
identify dynamic malware execution in a sandbox using the techniques developed in [315] and used in [381].
Windows APIs were vectorized with n-gram and td-idf, with malware execution being performed in sandbox
snapshots with different benignware excecutions to simulate different potential host environments. The use
of GNNs allowed the model to learn patterns in API usage by combining learned patterns from neighboring
nodes that represent differnet hierachies in process execution. This has the effect of not only learning the
API usage of a single process, but that of all the processes that are daughter or parent processes of any
given running process - thereby magnifying the discriminatory power of the model in identifying malicious
behavior.

In addition to the form of vectorization, modern NLP models allow the model itself to learn the importance of
each word (or API) relative to the context of the surrounding words. For this purpose, word embeddings were

55/91

developed which can learn the semantic relationship between words and map that relationship to vector
space [382]. This has the effect of allowing models that are closely related to have similar cosine-similarity
scores. A modest application by [383] used 300-dimensional word embeddings followed by a similarity matrix
to cluster malware and benignware using k-means. This way, the cluster index was a dense representation
of malware and benignware. A more end-to-end approach was used in [381] whereby API stack traces were
modeled as an NLP problem. Embedding dimensions of size 50 to 200 were used to map the API stack
trace that included APIs that communicated all the way to the kernel. With the use of a transformer
architecture which learns latent representation of the sequences, F1 scores as high as 96.2% were obtained
when considering registry APIs. The authors in [384] looked at developing a semantic transition matrix to
segregate API calls which have similar contexts into clusters. This was conducted by capturing the
relationship between API calls that represent malware and benignware using Word2Vec [382], a word
embedding technique which has more powerful encoding ability than vanilla word embedding approaches.
More powerful encoders translate to better ability to learn context, which was evident in their FP rate of only
1%. A similar use of Word2Vec was followed by an LSTM in [385] to analyze opcodes and API function
names. In total, 1369 API function names and opcodes were used, of which 958 were API calls.

Several works have made use of the Windows PE malware API sequence dataset [379], a dataset of over
API call sequence extracted from 7017 malicious binaries from 8 malware classes including Adware,
Backdoors, Downloaders Droppers, Apyware, Trojans, Viruses, and Worms. For this dataset, [386] achieved
poor results with a 0.38 F1 score when using a 32-dimensional embedding to represent the API sequences
followed by a 2-layer LSTM. Their approach used 342 API calls and discarded those that were used less
than 10 times. Similar poor results were obtained in [387] which reported F1 scores ranging from 0.33 to
0.72 for the 8 malware types based on a similar LSTM approach. The work of [388] went one step further
and compared an LSTM approach to that of a transformer and finally to a bidirectional encoder
representation from transformers (BERT). BERT relies on learning latent representations from both
directional contexts from before and after sequences, meaning that it does a better job encoding context of
the API sequence. In [388], they also used the Windows PE malware dataset and found similar issues
classifying the 8 classes with a weighted F1 score of 0.51 on their best performing BERT model. One
approach that did find success using BERT was that of [389] who implemented fastText [390], a text
vectorizing technique based on n-gram. While removing redundant API calls, such as NtDelayExecution,
accuracies as high as 96.76% using BERT were obtained.

6. Conclusions
This paper provides a systematic review of commonly used obfuscation techniques used by malware
variants and mutation engine kits. This survey of the literature touched upon several key indicators of
obfuscation employed by malware, which serves to better understand the nature of the reverse-engineering
process. Our work makes four core contributions.

We noted the scope of malware and obfuscation worldwide and presented some of the key red-flags noted
by antivirus (AV) vendors and researchers. The numbers suggest an aggressive increase in the number of

56/91

threats and the monetary cost associated with breaches, system intrusions, and downtime. In addition, we
discussed some of the string scanning techniques that are still very much in use by AV vendors to this day.

We provided an examination of the popular obfuscation techniques used to translate the opcode sequences
of malware into semantic equivalent but different instructions. These techniques have been integrated into
popular mutation engines for over a decade now and render much of the reverse-engineering and legacy
signature-based techniques obsolete if used effectively. This presents a fundamental problem for
researchers and practitioners, but it has led to the field of dynamic analysis which examines the run-time
behavior of malicious executables. We also touched upon the structure of metamorphic mutation engines,
along with encryption and compression, two very important behaviors that serve as key indicators of
maliciousness for a given binary.

We provided a review of popularized malware datasets that are commonly used in malware research. These
datasets span applications in mobile malware, intrusion detection, networking, and binaries. We also
touched upon some antiemulation and antiarmoring tactics in use by malware to protect from examination
under virtualized environments.

Finally, some common approaches to feature analysis are introduced which discusses the various ways
Windows APIs are categorized and vectorized to identify malicious binaries, especially in the context of
identifying obfuscated malware variants.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research has been financially supported by Mitacs Accelerate (IT15018) in partnership with Canadian
Tire Corporation and is supported by the University of Manitoba.

Open Research
Data Availability

The data used to support the findings of this study are available from the corresponding author upon
reasonable request.

References

1
Han W., Xue J., Wang Y., Liu Z., and Kong Z., MalInsight: a systematic profiling based malware
detection framework, Journal of Network and Computer Applications. (2019) 125, 236–250.
2
Gillespie A. A., Cybercrime: Key Issues and Debates, 2015, Routledge, Milton Park, UK.
10.4324/9781315884202
Google Scholar
3
Malwarebytes, 2020 State of Malware Report, 2020, Malwarebytes Labs, Santa Clara, CA, USA.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2015%26author%3DA.%2BA.%2BGillespie%26title%3DCybercrime%253A%2BKey%2BIssues%2Band%2BDebates&doi=10.1155%2F2023%2F8227751&doiOfLink=10.4324%2F9781315884202&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

57/91

Google Scholar
4
Kaspersky, Kaspersky Security Bulletin 2019, 2019, White Paper, Moscow, Russia.
Google Scholar
5
Rudd E. M., Rozsa A., Günther M., and Boult T. E., A survey of stealth malware attacks, mitigation
measures, and steps toward autonomous open world solutions, IEEE Communications Surveys
Tutorials. (2016) 19, no. 2, 1145–1172.
6
Enterprise H. P., HPE security research cyber risk report 2016, Feb. 2016, Technical Report.
Google Scholar
7
Verizon, 2019 Data Breach Investigations Report, 2019, Verizon, New York, NY, USA.
Google Scholar
8
Ibm, 2019 Cost of Data Breach Report, 2019, IBM, Armonk, NY, USA.
Google Scholar
9
Berard D., DDoS breach costs rise to over $2M for enterprises finds Kaspersky lab report, 2018,
https://usa.kaspersky.com/about/press-releases/2018_ddos-breach-costs-rise-to-over-2m-for-
enterprises-finds-kaspersky-lab-report.
Google Scholar
10
FireEye, APT: A Window into Russia’s Cyber Espionage Operations?, 2014, FireEye, Milpitas, CA,
USA.
Google Scholar
11
CyberEdge, Cyberthreat Defense Report, 2020, CyberEdge Group, Annapolis, MD, USA.
Google Scholar
12
Symantec, ISTR 20 Internet Security Threat Report, 2020, Symantex Corporation World
Headquarters, Mountain View, CA, USA.
Google Scholar
13
Cso, 2018 U.S. State of Cybercrime,” IDG Communications, 2018, Survey, Framingham, MA, USA.
Google Scholar
14
PwC, Key Findings from the Global State of Information Security Survey 2018, 2017, International
Data Group Inc, London, UK.
Google Scholar
15
Crowdstrike, Crowdstrike global threat report 2020, 2020, https://go.crowdstrike.com/rs/281-OBQ-
266/images/Report2020CrowdStrikeGlobalThreatReport.pdf.
Google Scholar
16
Mimecast, The State of Email Security Report, 2019, Mimecast, London, UK.
Google Scholar
17
Malwarebytes, White Hat Black Hat and the Emergence of the Gray Hat: The True Costs of
Cybercrime, 2019, Osterman Research Inc, Black Diamond, WA, USA.
Google Scholar
18
Wanswett B. and Kalita H. K., The threat of obfuscated zero day polymorphic malwares: an
analysis, Proceedings of the 2015 International Conference on Computational Intelligence and
Communication Networks (CICN), December 2015, Jabalpur, India, 1188–1193.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2020%26author%3D%2BMalwarebytes%26title%3D2020%2BState%2Bof%2BMalware%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3D%2BKaspersky%26title%3DKaspersky%2BSecurity%2BBulletin%2B2019&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AEnterprise%2BH.%2BP.%252C%2BHPE%2Bsecurity%2Bresearch%2Bcyber%2Brisk%2Breport%2B2016%252C%2BFeb.%2B2016%252C%2BTechnical%2BReport.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3D%2BVerizon%26title%3D2019%2BData%2BBreach%2BInvestigations%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3D%2BIbm%26title%3D2019%2BCost%2Bof%2BData%2BBreach%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://usa.kaspersky.com/about/press-releases/2018_ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-kaspersky-lab-report
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABerard%2BD.%252C%2BDDoS%2Bbreach%2Bcosts%2Brise%2Bto%2Bover%2B%25242M%2Bfor%2Benterprises%2Bfinds%2BKaspersky%2Blab%2Breport%252C%2B2018%252C%2Bhttps%253A%252F%252Fusa.kaspersky.com%252Fabout%252Fpress-releases%252F2018_ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-kaspersky-lab-report.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3D%2BFireEye%26title%3DAPT%253A%2BA%2BWindow%2Binto%2BRussia%25E2%2580%2599s%2BCyber%2BEspionage%2BOperations%253F&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2020%26author%3D%2BCyberEdge%26title%3DCyberthreat%2BDefense%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2020%26author%3D%2BSymantec%26title%3DISTR%2B20%2BInternet%2BSecurity%2BThreat%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2018%26author%3D%2BCso%26title%3D2018%2BU.S.%2BState%2Bof%2BCybercrime%252C%25E2%2580%259D%2BIDG%2BCommunications&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2017%26author%3D%2BPwC%26title%3DKey%2BFindings%2Bfrom%2Bthe%2BGlobal%2BState%2Bof%2BInformation%2BSecurity%2BSurvey%2B2018&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://go.crowdstrike.com/rs/281-OBQ-266/images/Report2020CrowdStrikeGlobalThreatReport.pdf
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ACrowdstrike%252C%2BCrowdstrike%2Bglobal%2Bthreat%2Breport%2B2020%252C%2B2020%252C%2Bhttps%253A%252F%252Fgo.crowdstrike.com%252Frs%252F281-OBQ-266%252Fimages%252FReport2020CrowdStrikeGlobalThreatReport.pdf.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3D%2BMimecast%26title%3DThe%2BState%2Bof%2BEmail%2BSecurity%2BReport&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3D%2BMalwarebytes%26title%3DWhite%2BHat%2BBlack%2BHat%2Band%2Bthe%2BEmergence%2Bof%2Bthe%2BGray%2BHat%253A%2BThe%2BTrue%2BCosts%2Bof%2BCybercrime&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWanswett%2BB.%2Band%2B%250AKalita%2BH.%2BK.%252C%2BThe%2Bthreat%2Bof%2Bobfuscated%2Bzero%2Bday%2Bpolymorphic%2Bmalwares%253A%2Ban%2Banalysis%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BConference%2Bon%2BComputational%2BIntelligence%2Band%2BCommunication%2BNetworks%2B%2528CICN%2529%252C%2BDecember%2B2015%252C%2BJabalpur%252C%2BIndia%252C%2B1188%25E2%2580%25931193.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

58/91

19
Innab N., Alomairy E., and Alsheddi L., Hybrid system between anomaly based detection system
and honeypot to detect zero day attack, 2018, https://www.semanticscholar.org/paper/Hybrid-System-
Between-Anomaly-Based-Detection-and-Innab-
Alomairy/5ca4f26c185280593e6b5a287cbe809f53610077.
Google Scholar
20
Azzedin F., Suwad H., and Alyafeai Z., Countermeasureing zero day attacks: asset-based
approach, Proceedings of the 2017 International Conference on High Performance Computing &
Simulation (HPCS), July 2017, Genoa, Italy.
Google Scholar
21
Almomani A., Gupta B. B., Wan T.-C., Altaher A., and Manickam S., Phishing dynamic evolving
neural fuzzy framework for online detection zero-day phishing email, 2013,
http://arxiv.org/abs/1302.0629.
Google Scholar
22
Esg, 2020 technology spending intentions survey, 2020, https://www.esg-global.com/research/esg-
master-survey-results-2020-technology-spending-intentions-survey.
Google Scholar
23
Kaur R. and Singh M., Efficient hybrid technique for detecting zero-day polymorphic worms,
Proceedings of the 2014 IEEE International Advance Computing Conference (IACC), February 2014,
Gurgaon, India, 95–100.
Google Scholar
24
Ren P., Xiao Y., Chang X., Huang P.-Y., Li Z., Gupta B. B., Chen X., and Wang X., A Survey of
Deep Active Learning, 2021, http://arxiv.org/abs/2009.00236.
Google Scholar
25
Webroot, Webroot Threat Report, 2020, https://mypage.webroot.com/rs/557-FSI-195/images/2020.
Google Scholar
26
Carvey H., H. Carvey, Chapter 6 malware detection, Windows Forensic Analysis Toolkit, 2014, 4th
edition, Syngress, Boston, MA, USA.
10.1016/B978-0-12-417157-2.00006-0
Google Scholar
27
Gregg M., Build Your Own Security Lab: A Field Guide for Network Testing, 2010, John Wiley &
Sons, New York, NY, USA.
Google Scholar
28
Aycock J., Computer Viruses and Malware, 2006, Springer, Berlin, Germany.
Google Scholar
29
Seamans E. and Alexander T., Fast Virus Signature Matching on the GPU, 2007,
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-35-fast-virus-
signature-matching-gpu.
Google Scholar
30
Mellado D., IT security governance innovations: theory and research: theory and research, 2012,
IGI Global, Pennsylvania, PA, USA.
Google Scholar

https://www.semanticscholar.org/paper/Hybrid-System-Between-Anomaly-Based-Detection-and-Innab-Alomairy/5ca4f26c185280593e6b5a287cbe809f53610077
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AInnab%2BN.%252C%2B%250AAlomairy%2BE.%252C%2Band%2B%250AAlsheddi%2BL.%252C%2BHybrid%2Bsystem%2Bbetween%2Banomaly%2Bbased%2Bdetection%2Bsystem%2Band%2Bhoneypot%2Bto%2Bdetect%2Bzero%2Bday%2Battack%252C%2B2018%252C%2Bhttps%253A%252F%252Fwww.semanticscholar.org%252Fpaper%252FHybrid-System-Between-Anomaly-Based-Detection-and-Innab-Alomairy%252F5ca4f26c185280593e6b5a287cbe809f53610077.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAzzedin%2BF.%252C%2B%250ASuwad%2BH.%252C%2Band%2B%250AAlyafeai%2BZ.%252C%2BCountermeasureing%2Bzero%2Bday%2Battacks%253A%2Basset-based%2Bapproach%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BHigh%2BPerformance%2BComputing%2B%2526%2BSimulation%2B%2528HPCS%2529%252C%2BJuly%2B2017%252C%2BGenoa%252C%2BItaly.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1302.0629
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAlmomani%2BA.%252C%2B%250AGupta%2BB.%2BB.%252C%2B%250AWan%2BT.-C.%252C%2B%250AAltaher%2BA.%252C%2Band%2B%250AManickam%2BS.%252C%2BPhishing%2Bdynamic%2Bevolving%2Bneural%2Bfuzzy%2Bframework%2Bfor%2Bonline%2Bdetection%2Bzero-day%2Bphishing%2Bemail%252C%2B2013%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1302.0629.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.esg-global.com/research/esg-master-survey-results-2020-technology-spending-intentions-survey
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AEsg%252C%2B2020%2Btechnology%2Bspending%2Bintentions%2Bsurvey%252C%2B2020%252C%2Bhttps%253A%252F%252Fwww.esg-global.com%252Fresearch%252Fesg-master-survey-results-2020-technology-spending-intentions-survey.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKaur%2BR.%2Band%2B%250ASingh%2BM.%252C%2BEfficient%2Bhybrid%2Btechnique%2Bfor%2Bdetecting%2Bzero-day%2Bpolymorphic%2Bworms%252C%2BProceedings%2Bof%2Bthe%2B2014%2BIEEE%2BInternational%2BAdvance%2BComputing%2BConference%2B%2528IACC%2529%252C%2BFebruary%2B2014%252C%2BGurgaon%252C%2BIndia%252C%2B95%25E2%2580%2593100.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/2009.00236
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARen%2BP.%252C%2B%250AXiao%2BY.%252C%2B%250AChang%2BX.%252C%2B%250AHuang%2BP.-Y.%252C%2B%250ALi%2BZ.%252C%2B%250AGupta%2BB.%2BB.%252C%2B%250AChen%2BX.%252C%2Band%2B%250AWang%2BX.%252C%2BA%2BSurvey%2Bof%2BDeep%2BActive%2BLearning%252C%2B2021%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F2009.00236.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://mypage.webroot.com/rs/557-FSI-195/images/2020
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWebroot%252C%2BWebroot%2BThreat%2BReport%252C%2B2020%252C%2Bhttps%253A%252F%252Fmypage.webroot.com%252Frs%252F557-FSI-195%252Fimages%252F2020.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3DH.%2BCarvey%26title%3DWindows%2BForensic%2BAnalysis%2BToolkit&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2FB978-0-12-417157-2.00006-0&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2010%26author%3DM.%2BGregg%26title%3DBuild%2BYour%2BOwn%2BSecurity%2BLab%253A%2BA%2BField%2BGuide%2Bfor%2BNetwork%2BTesting&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2006%26author%3DJ.%2BAycock%26title%3DComputer%2BViruses%2Band%2BMalware&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-35-fast-virus-signature-matching-gpu
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASeamans%2BE.%2Band%2B%250AAlexander%2BT.%252C%2BFast%2BVirus%2BSignature%2BMatching%2Bon%2Bthe%2BGPU%252C%2B2007%252C%2Bhttps%253A%252F%252Fdeveloper.nvidia.com%252Fgpugems%252Fgpugems3%252Fpart-v-physics-simulation%252Fchapter-35-fast-virus-signature-matching-gpu.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2012%26author%3DD.%2BMellado%26title%3DIT%2Bsecurity%2Bgovernance%2Binnovations%253A%2Btheory%2Band%2Bresearch%253A%2Btheory%2Band%2Bresearch&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

59/91

31
Mahawer D. K. and Nagaraju A., Metamorphic malware detection using base malware identification
approach, Security and Communication Networks. (2014) 7, no. 11, 1719–1733.
32
Raghu S. and Mohit V., Cyber Security, Cyber Crime and Cyber Forensics: Applications and
Perspectives: Applications and Perspectives, 2010, Idea Group Inc (IGI), New York, NY, USA.
Google Scholar
33
Yu S., Lou W., and Ren K., S. K. Das, K. Kant, and N. Zhang, Chapter 15 data security in cloud
computing, Handbook on Securing Cyber-Physical Critical Infrastructure, 2012, Morgan Kaufmann,
Boston, MA, USA, 389–410.
10.1016/B978-0-12-415815-3.00015-7
Google Scholar
34
Shivakumar S. K., S. K. Shivakumar, Securing enterprise web application, Architecting High
Performing, Scalable and Available Enterprise Web Applications, 2015, Morgan Kaufmann, Boston,
MA, USA.
10.1016/B978-0-12-802258-0.00005-6
Google Scholar
35
Daoud E. A., Jebril I. H., and Zaqaibeh B., Computer virus strategies and detection methods,
International Journal of Open Problems in Computer Science and Mathematics. (2008) 1, no. 2.
Google Scholar
36
McAfee, McA. Network Security Platform 9.1.x, 2017, https://docs.mcafee.com/bundle/network-
security-platform-9.1.x-product-guide/page/GUID-D00D67EA-5EAE-4461-ACFC-
A2B2A78C3E50.html.
Google Scholar
37
Kreuk F., Barak A., Aviv-Reuven S., Baruch M., Pinkas B., and Keshet J., Deceiving End-To-End
Deep Learning Malware Detectors Using Adversarial Examples, 2018, http://arxiv.org/abs/1802.04528.
Google Scholar
38
Rohan A., Basu K., and Karri R., Can Monitoring System State + Counting Custom Instruction
Sequences Aid Malware Detection?, Proceedings of the 2019 IEEE 28th Asian Test Symposium
(ATS), December 2019, Kolkata, India.
Google Scholar
39
Lin D. and Stamp M., Hunting for undetectable metamorphic viruses, Journal in Computer Virology.
(2011) 7, no. 3, 201–214, https://doi.org/10.1007/s11416-010-0148-y, 2-s2.0-79960582590.
10.1007/s11416-010-0148-y
Google Scholar
40
You I. and Yim K., Malware Obfuscation Techniques: A Brief Survey,” in 2010 International
Conference on Broadband, Proceedings of the Wireless Computing, Communication and Applications,
November 2010, Fukuoka, Japan, 297–300.
Google Scholar
41
Park D. C., Khan H., and Yener B., Generation & Evaluation of Adversarial Examples for Malware
Obfuscation, Proceedings of the 2019 18th IEEE International Conference on Machine Learning and
Applications (ICMLA), December 2019, Boca Raton, FL, USA.
Google Scholar
42
Durfina L. and Kolar D., C source code obfuscator, Kybernetika. (2012) 48, no. 3, 494–501.
43
Szor P., The Art of Computer Virus Research and Defense, 2005, Addison-Wesley, Upper Saddle
River, NJ, USA.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2010%26author%3DS.%2BRaghu%26author%3DV.%2BMohit%26title%3DCyber%2BSecurity%252C%2BCyber%2BCrime%2Band%2BCyber%2BForensics%253A%2BApplications%2Band%2BPerspectives%253A%2BApplications%2Band%2BPerspectives&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2012%26pages%3D389-410%26author%3DS.%2BYu%26author%3DW.%2BLou%26author%3DK.%2BRen%26title%3DHandbook%2Bon%2BSecuring%2BCyber-Physical%2BCritical%2BInfrastructure&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2FB978-0-12-415815-3.00015-7&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2015%26author%3DS.%2BK.%2BShivakumar%26title%3DArchitecting%2BHigh%2BPerforming%252C%2BScalable%2Band%2BAvailable%2BEnterprise%2BWeb%2BApplications&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2FB978-0-12-802258-0.00005-6&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D1%26publication_year%3D2008%26journal%3DInternational%2BJournal%2Bof%2BOpen%2BProblems%2Bin%2BComputer%2BScience%2Band%2BMathematics%26author%3DE.%2BA.%2BDaoud%26author%3DI.%2BH.%2BJebril%26author%3DB.%2BZaqaibeh%26title%3DComputer%2Bvirus%2Bstrategies%2Band%2Bdetection%2Bmethods&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://docs.mcafee.com/bundle/network-security-platform-9.1.x-product-guide/page/GUID-D00D67EA-5EAE-4461-ACFC-A2B2A78C3E50.html
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMcAfee%252C%2BMcA.%2BNetwork%2BSecurity%2BPlatform%2B9.1.x%252C%2B2017%252C%2Bhttps%253A%252F%252Fdocs.mcafee.com%252Fbundle%252Fnetwork-security-platform-9.1.x-product-guide%252Fpage%252FGUID-D00D67EA-5EAE-4461-ACFC-A2B2A78C3E50.html.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1802.04528
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKreuk%2BF.%252C%2B%250ABarak%2BA.%252C%2B%250AAviv-Reuven%2BS.%252C%2B%250ABaruch%2BM.%252C%2B%250APinkas%2BB.%252C%2Band%2B%250AKeshet%2BJ.%252C%2BDeceiving%2BEnd-To-End%2BDeep%2BLearning%2BMalware%2BDetectors%2BUsing%2BAdversarial%2BExamples%252C%2B2018%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1802.04528.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARohan%2BA.%252C%2B%250ABasu%2BK.%252C%2Band%2B%250AKarri%2BR.%252C%2BCan%2BMonitoring%2BSystem%2BState%2B%252B%2BCounting%2BCustom%2BInstruction%2BSequences%2BAid%2BMalware%2BDetection%253F%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B28th%2BAsian%2BTest%2BSymposium%2B%2528ATS%2529%252C%2BDecember%2B2019%252C%2BKolkata%252C%2BIndia.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-010-0148-y
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2011%26pages%3D201-214%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DD.%2BLin%26author%3DM.%2BStamp%26title%3DHunting%2Bfor%2Bundetectable%2Bmetamorphic%2Bviruses&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-010-0148-y&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYou%2BI.%2Band%2B%250AYim%2BK.%252C%2BMalware%2BObfuscation%2BTechniques%253A%2BA%2BBrief%2BSurvey%252C%25E2%2580%259D%2Bin%2B2010%2BInternational%2BConference%2Bon%2BBroadband%252C%2BProceedings%2Bof%2Bthe%2BWireless%2BComputing%252C%2BCommunication%2Band%2BApplications%252C%2BNovember%2B2010%252C%2BFukuoka%252C%2BJapan%252C%2B297%25E2%2580%2593300.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APark%2BD.%2BC.%252C%2B%250AKhan%2BH.%252C%2Band%2B%250AYener%2BB.%252C%2BGeneration%2B%2526%2BEvaluation%2Bof%2BAdversarial%2BExamples%2Bfor%2BMalware%2BObfuscation%252C%2BProceedings%2Bof%2Bthe%2B2019%2B18th%2BIEEE%2BInternational%2BConference%2Bon%2BMachine%2BLearning%2Band%2BApplications%2B%2528ICMLA%2529%252C%2BDecember%2B2019%252C%2BBoca%2BRaton%252C%2BFL%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

60/91

44
Kumar B. J., Naveen H., Kumar B. P., Sharma S. S., and Villegas J., Logistic regression for
polymorphic malware detection using ANOVA F-test, Proceedings of the 2017 International
Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), March
2017, Coimbatore, India, 1–5.
Google Scholar
45
Toderici A. H. and Stamp M., Chi-squared distance and metamorphic virus detection, Journal of
Computer Virology and Hacking Techniques. (2013) 9, no. 1, 1–14, https://doi.org/10.1007/s11416-
012-0171-2, 2-s2.0-84874559655.
10.1007/s11416-012-0171-2
Google Scholar
46
Li X., Loh P. K. K., and Tan F., Mechanisms of Polymorphic and Metamorphic Viruses, Proceedings
of the 2011 European Intelligence and Security Informatics Conference, September 2011, Athens,
Greece.
Google Scholar
47
Toderici A. H., Chi-Squared Distance and Metamorphic Virus Detection, 2012, San Jose State
University, San Jose, CA, USA.
10.31979/etd.j3nz-gjtr
Google Scholar
48
Barría C. I. V., Cordero D. G., Cubillos C., and Osses R., Obfuscation procedure based in dead
code insertion into crypter, Proceedings of the 6th International Conference on Computers
Communications and Control (ICCCC), May 2016, Oradea, Romania.
Google Scholar
49
Rad B. B., Masrom M., and Ibrahim S., Evolution of computer virus concealment and anti-virus
techniques, A Short Survey. (2010) 7, no. 6.
Google Scholar
50
Patel M., Similarity Tests for Metamorphic Virus Detection, 2011,
https://scholarworks.sjsu.edu/etd_projects/175.
Google Scholar
51
Wong W., Analysis and Detection of Metamorphic Computer Viruses, 2006, San Jose State
University, San Jose, CA, USA.
10.31979/etd.rnm3-sdfc
Google Scholar
52
Chouchane M. R. and Lakhotia A., Using Engine Signature to Detect Metamorphic Malware, 2006,
WORM, Alexandria, VI, USA.
10.1145/1179542.1179558
Google Scholar
53
Jin R., Wei Q., Yang P., and Wang Q., Normalization towards instruction substitution metamorphism
based on standard instruction set, Proceedings of the 2007 International Conference on
Computational Intelligence and Security Workshops (CISW 2007), December 2007, Harbin, China,
795–798.
Google Scholar
54
Yu-jia Z. and Jian-min P., A new compile-time obfuscation scheme for software protection,
Proccedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), October 2016, Chengdu, China.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKumar%2BB.%2BJ.%252C%2B%250ANaveen%2BH.%252C%2B%250AKumar%2BB.%2BP.%252C%2B%250ASharma%2BS.%2BS.%252C%2Band%2B%250AVillegas%2BJ.%252C%2BLogistic%2Bregression%2Bfor%2Bpolymorphic%2Bmalware%2Bdetection%2Busing%2BANOVA%2BF-test%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BInnovations%2Bin%2BInformation%252C%2BEmbedded%2Band%2BCommunication%2BSystems%2B%2528ICIIECS%2529%252C%2BMarch%2B2017%252C%2BCoimbatore%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-012-0171-2
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2013%26pages%3D1-14%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DA.%2BH.%2BToderici%26author%3DM.%2BStamp%26title%3DChi-squared%2Bdistance%2Band%2Bmetamorphic%2Bvirus%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-012-0171-2&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALi%2BX.%252C%2B%250ALoh%2BP.%2BK.%2BK.%252C%2Band%2B%250ATan%2BF.%252C%2BMechanisms%2Bof%2BPolymorphic%2Band%2BMetamorphic%2BViruses%252C%2BProceedings%2Bof%2Bthe%2B2011%2BEuropean%2BIntelligence%2Band%2BSecurity%2BInformatics%2BConference%252C%2BSeptember%2B2011%252C%2BAthens%252C%2BGreece.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2012%26author%3DA.%2BH.%2BToderici%26title%3DChi-Squared%2BDistance%2Band%2BMetamorphic%2BVirus%2BDetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.31979%2Fetd.j3nz-gjtr&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABarr%25C3%25ADa%2BC.%2BI.%2BV.%252C%2B%250ACordero%2BD.%2BG.%252C%2B%250ACubillos%2BC.%252C%2Band%2B%250AOsses%2BR.%252C%2BObfuscation%2Bprocedure%2Bbased%2Bin%2Bdead%2Bcode%2Binsertion%2Binto%2Bcrypter%252C%2BProceedings%2Bof%2Bthe%2B6th%2BInternational%2BConference%2Bon%2BComputers%2BCommunications%2Band%2BControl%2B%2528ICCCC%2529%252C%2BMay%2B2016%252C%2BOradea%252C%2BRomania.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2010%26journal%3DA%2BShort%2BSurvey%26author%3DB.%2BB.%2BRad%26author%3DM.%2BMasrom%26author%3DS.%2BIbrahim%26title%3DEvolution%2Bof%2Bcomputer%2Bvirus%2Bconcealment%2Band%2Banti-virus%2Btechniques&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://scholarworks.sjsu.edu/etd_projects/175
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APatel%2BM.%252C%2BSimilarity%2BTests%2Bfor%2BMetamorphic%2BVirus%2BDetection%252C%2B2011%252C%2Bhttps%253A%252F%252Fscholarworks.sjsu.edu%252Fetd_projects%252F175.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2006%26author%3DW.%2BWong%26title%3DAnalysis%2Band%2BDetection%2Bof%2BMetamorphic%2BComputer%2BViruses&doi=10.1155%2F2023%2F8227751&doiOfLink=10.31979%2Fetd.rnm3-sdfc&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2006%26author%3DM.%2BR.%2BChouchane%26author%3DA.%2BLakhotia%26title%3DUsing%2BEngine%2BSignature%2Bto%2BDetect%2BMetamorphic%2BMalware&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1179542.1179558&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJin%2BR.%252C%2B%250AWei%2BQ.%252C%2B%250AYang%2BP.%252C%2Band%2B%250AWang%2BQ.%252C%2BNormalization%2Btowards%2Binstruction%2Bsubstitution%2Bmetamorphism%2Bbased%2Bon%2Bstandard%2Binstruction%2Bset%252C%2BProceedings%2Bof%2Bthe%2B2007%2BInternational%2BConference%2Bon%2BComputational%2BIntelligence%2Band%2BSecurity%2BWorkshops%2B%2528CISW%2B2007%2529%252C%2BDecember%2B2007%252C%2BHarbin%252C%2BChina%252C%2B795%25E2%2580%2593798.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYu-jia%2BZ.%2Band%2B%250AJian-min%2BP.%252C%2BA%2Bnew%2Bcompile-time%2Bobfuscation%2Bscheme%2Bfor%2Bsoftware%2Bprotection%252C%2BProccedings%2Bof%2Bthe%2B2016%2BInternational%2BConference%2Bon%2BCyber-Enabled%2BDistributed%2BComputing%2Band%2BKnowledge%2BDiscovery%2B%2528CyberC%2529%252C%2BOctober%2B2016%252C%2BChengdu%252C%2BChina.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

61/91

55
Junod P., Rinaldini J., Wehrli J., and Michielin J., Obfuscator-LLVM Software Protection for the
Masses, Proceedings of the 2015 IEEE/ACM 1st International Workshop on Software Protection, May
2015, Florence, Italy.
Google Scholar
56
Kayem A., Information security in diverse computing environments, 2014, IGI Global, New York,
NY, USA.
10.4018/978-1-4666-6158-5
Google Scholar
57
Venkatachalam S. and Stamp M., Detecting Undetectable Metamorphic Viruses, 2011, San Jose
State University, San Jose, CA, USA.
Google Scholar
58
Baysa D., Low R. M., and Stamp M., Structural entropy and metamorphic malware, Journal of
Computer Virology and Hacking Techniques. (2013) 9, no. 4, 179–192, https://doi.org/10.1007/s11416-
013-0185-4, 2-s2.0-84893000796.
10.1007/s11416-013-0185-4
Google Scholar
59
Sharma A. and Sahay S. K., Evolution and detection of polymorphic and metamorphic malwares: a
survey, International Journal of Critical Accounting. (2014) 90, no. 2, 7–11.
Google Scholar
60
Rad B. B., Masrom M., and Ibrahim S., Camouflage in Malware: From Encryption to
Metamorphism, 2012, https://www.semanticscholar.org.
Google Scholar
61
Beaucamps P., Advanced polymorphic techniques, International Journal of Computer and
Information Engineering. (2007) 1, no. 10.
Google Scholar
62
Szor P. and Ferrie P., Hunting for Metamorphic, 2001, White Paper, Cupertino, CA, USA.
Google Scholar
63
Spinellis D., Reliable identification of bounded-length viruses is NP-complete, IEEE Transactions on
Information Theory. (2003) 49, no. 1, 280–284.
64
Borello J.-M. and Mé L., Code obfuscation techniques for metamorphic viruses, Journal in
Computer Virology. (2008) 4, no. 3, 211–220, https://doi.org/10.1007/s11416-008-0084-2, 2-s2.0-
48349087890.
10.1007/s11416-008-0084-2
Google Scholar
65
Stamp M., Information Security Principles and Practice, 2011, 2nd edition, John Wiley & Sons, New
York, NY, USA.
10.1002/9781118027974
Google Scholar
66
Tuba M., Akashe S., and Joshi A., Information and Communication Technology for Sustainable
Development: Proceedings of ICT4SD 2018, 2019, Springer, New York, NY, USA.
Google Scholar
67
Saleh M., Mohamed A., and Nabi A., Eigenviruses for metamorphic virus recognition, IET
Information Security. (2011) 5, no. 4, 191–198.
68
Fiñones R. G. and Fernandez R., Solving the Metamorphic Puzzle, 2006,
https://www.virusbulletin.com/virusbulletin/2006/03/solving-metamorphic-puzzle.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJunod%2BP.%252C%2B%250ARinaldini%2BJ.%252C%2B%250AWehrli%2BJ.%252C%2Band%2B%250AMichielin%2BJ.%252C%2BObfuscator-LLVM%2BSoftware%2BProtection%2Bfor%2Bthe%2BMasses%252C%2BProceedings%2Bof%2Bthe%2B2015%2BIEEE%252FACM%2B1st%2BInternational%2BWorkshop%2Bon%2BSoftware%2BProtection%252C%2BMay%2B2015%252C%2BFlorence%252C%2BItaly.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3DA.%2BKayem%26title%3DInformation%2Bsecurity%2Bin%2Bdiverse%2Bcomputing%2Benvironments&doi=10.1155%2F2023%2F8227751&doiOfLink=10.4018%2F978-1-4666-6158-5&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2011%26author%3DS.%2BVenkatachalam%26author%3DM.%2BStamp%26title%3DDetecting%2BUndetectable%2BMetamorphic%2BViruses&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-013-0185-4
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2013%26pages%3D179-192%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DD.%2BBaysa%26author%3DR.%2BM.%2BLow%26author%3DM.%2BStamp%26title%3DStructural%2Bentropy%2Band%2Bmetamorphic%2Bmalware&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-013-0185-4&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D90%26publication_year%3D2014%26pages%3D7-11%26journal%3DInternational%2BJournal%2Bof%2BCritical%2BAccounting%26author%3DA.%2BSharma%26author%3DS.%2BK.%2BSahay%26title%3DEvolution%2Band%2Bdetection%2Bof%2Bpolymorphic%2Band%2Bmetamorphic%2Bmalwares%253A%2Ba%2Bsurvey&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.semanticscholar.org/
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARad%2BB.%2BB.%252C%2B%250AMasrom%2BM.%252C%2Band%2B%250AIbrahim%2BS.%252C%2BCamouflage%2Bin%2BMalware%253A%2BFrom%2BEncryption%2Bto%2BMetamorphism%252C%2B2012%252C%2Bhttps%253A%252F%252Fwww.semanticscholar.org.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D1%26publication_year%3D2007%26journal%3DInternational%2BJournal%2Bof%2BComputer%2Band%2BInformation%2BEngineering%26author%3DP.%2BBeaucamps%26title%3DAdvanced%2Bpolymorphic%2Btechniques&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2001%26author%3DP.%2BSzor%26author%3DP.%2BFerrie%26title%3DHunting%2Bfor%2BMetamorphic&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-008-0084-2
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D4%26publication_year%3D2008%26pages%3D211-220%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DJ.-M.%2BBorello%26author%3DL.%2BM%25C3%25A9%26title%3DCode%2Bobfuscation%2Btechniques%2Bfor%2Bmetamorphic%2Bviruses&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-008-0084-2&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2011%26author%3DM.%2BStamp%26title%3DInformation%2BSecurity%2BPrinciples%2Band%2BPractice&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1002%2F9781118027974&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3DM.%2BTuba%26author%3DS.%2BAkashe%26author%3DA.%2BJoshi%26title%3DInformation%2Band%2BCommunication%2BTechnology%2Bfor%2BSustainable%2BDevelopment%253A%2BProceedings%2Bof%2BICT4SD%2B2018&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.virusbulletin.com/virusbulletin/2006/03/solving-metamorphic-puzzle

62/91

Google Scholar
69
Sridhara S. M., Metamorphic Worm That Carries Its Own Morphing Engine, Apr. 2012, San Jose
State University, San Jose, CA, USA, https://scholarworks.sjsu.edu/etd_projects/240.
10.31979/etd.unb6-nb8s
Google Scholar
70
Deshpande S., Park Y., and Stamp M., Eigenvalue analysis for metamorphic detection, Journal of
Computer Virology and Hacking Techniques. (2014) 10, no. 1, 53–65, https://doi.org/10.1007/s11416-
013-0193-4, 2-s2.0-84893826510.
10.1007/s11416-013-0193-4
Google Scholar
71
Bazrafshan Z., Hashemi H., Fard S. M. H., and Hamzeh A., A Survey on Heuristic Malware
Detection Techniques, Proceedings of the 5th Conference on Information and Knowledge Technology,
May, 2013, Shiraz, Iran.
Google Scholar
72
Zbitskiy P. V., Code mutation techniques by means of formal grammars and automatons, Journal in
Computer Virology. Aug. 2009, 5, no. 3, 199–207, https://doi.org/10.1007/s11416-009-0121-9, 2-s2.0-
70349989094.
10.1007/s11416-009-0121-9
Google Scholar
73
Tamboli T., Austin T. H., and Stamp M., Metamorphic code generation from LLVM bytecode, Journal
of Computer Virology and Hacking Techniques. Aug. 2014, 10, no. 3, 177–187,
https://doi.org/10.1007/s11416-013-0194-3, 2-s2.0-84941259979.
10.1007/s11416-013-0194-3
Google Scholar
74
Madenur Sridhara S. and Stamp M., Metamorphic worm that carries its own morphing engine,
Journal of Computer Virology and Hacking Techniques. May 2013, 9, no. 2, 49–58,
https://doi.org/10.1007/s11416-012-0174-z, 2-s2.0-84876448803.
10.1007/s11416-012-0174-z
Google Scholar
75
Harley D., Slade R., and Gattiker U., Viruses Revealed, Dec. 2002, McGraw Hill Professional, New
York, NY, USA.
Google Scholar
76
Ec-Council, Ethical Hacking and Countermeasures: Threats and Defense Mechanisms, Sep. 2009,
Nelson Education, Ontario, Canada.
Google Scholar
78
Mauri J. L., Thampi S. M., Rawat D. B., and Jin D., Security in Computing and Communications:
Second International Symposium, SSCC 2014, Delhi, India, September 24-27, 2014. Proceedings,
Aug. 2014, Springer, Berlin, Germany.
10.1007/978-3-662-44966-0
Google Scholar
79
Filiol E., Strong cryptography armoured computer viruses forbidding code analysis: the bradley
virus, 2004, https://hal.inria.fr/inria-00070748, inria-00070748, Report.
Google Scholar
80
Al-Enezi J., Abbod M., and Alsharhan S., Artificial Immune Systems – Models, Algorithms and
Applications, Artificial Immune Systems. (2010) 14.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2006%26author%3DR.%2BG.%2BFi%25C3%25B1ones%26author%3DR.%2BFernandez%26title%3DSolving%2Bthe%2BMetamorphic%2BPuzzle&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://scholarworks.sjsu.edu/etd_projects/240
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2012%26author%3DS.%2BM.%2BSridhara%26title%3DMetamorphic%2BWorm%2BThat%2BCarries%2BIts%2BOwn%2BMorphing%2BEngine&doi=10.1155%2F2023%2F8227751&doiOfLink=10.31979%2Fetd.unb6-nb8s&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-013-0193-4
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D10%26publication_year%3D2014%26pages%3D53-65%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DS.%2BDeshpande%26author%3DY.%2BPark%26author%3DM.%2BStamp%26title%3DEigenvalue%2Banalysis%2Bfor%2Bmetamorphic%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-013-0193-4&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABazrafshan%2BZ.%252C%2B%250AHashemi%2BH.%252C%2B%250AFard%2BS.%2BM.%2BH.%252C%2Band%2B%250AHamzeh%2BA.%252C%2BA%2BSurvey%2Bon%2BHeuristic%2BMalware%2BDetection%2BTechniques%252C%2BProceedings%2Bof%2Bthe%2B5th%2BConference%2Bon%2BInformation%2Band%2BKnowledge%2BTechnology%252C%2BMay%252C%2B2013%252C%2BShiraz%252C%2BIran.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-009-0121-9
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2009%26pages%3D199-207%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DP.%2BV.%2BZbitskiy%26title%3DCode%2Bmutation%2Btechniques%2Bby%2Bmeans%2Bof%2Bformal%2Bgrammars%2Band%2Bautomatons&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-009-0121-9&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-013-0194-3
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D10%26publication_year%3D2014%26pages%3D177-187%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DT.%2BTamboli%26author%3DT.%2BH.%2BAustin%26author%3DM.%2BStamp%26title%3DMetamorphic%2Bcode%2Bgeneration%2Bfrom%2BLLVM%2Bbytecode&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-013-0194-3&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-012-0174-z
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2013%26pages%3D49-58%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DS.%2BMadenur%2BSridhara%26author%3DM.%2BStamp%26title%3DMetamorphic%2Bworm%2Bthat%2Bcarries%2Bits%2Bown%2Bmorphing%2Bengine&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-012-0174-z&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2002%26author%3DD.%2BHarley%26author%3DR.%2BSlade%26author%3DU.%2BGattiker%26title%3DViruses%2BRevealed&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2009%26author%3D%2BEc-Council%26title%3DEthical%2BHacking%2Band%2BCountermeasures%253A%2BThreats%2Band%2BDefense%2BMechanisms&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3DJ.%2BL.%2BMauri%26author%3DS.%2BM.%2BThampi%26author%3DD.%2BB.%2BRawat%26author%3DD.%2BJin%26title%3DSecurity%2Bin%2BComputing%2Band%2BCommunications%253A%2BSecond%2BInternational%2BSymposium%252C%2BSSCC%2B2014%252C%2BDelhi%252C%2BIndia%252C%2BSeptember%2B24-27%252C%2B2014.%2BProceedings&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-662-44966-0&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://hal.inria.fr/inria-00070748
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFiliol%2BE.%252C%2BStrong%2Bcryptography%2Barmoured%2Bcomputer%2Bviruses%2Bforbidding%2Bcode%2Banalysis%253A%2Bthe%2Bbradley%2Bvirus%252C%2B2004%252C%2Bhttps%253A%252F%252Fhal.inria.fr%252Finria-00070748%252C%2Binria-00070748%252C%2BReport.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D14%26publication_year%3D2010%26journal%3DArtificial%2BImmune%2BSystems%26author%3DJ.%2BAl-Enezi%26author%3DM.%2BAbbod%26author%3DS.%2BAlsharhan%26title%3DArtificial%2BImmune%2BSystems%2B%25E2%2580%2593%2BModels%252C%2BAlgorithms%2Band%2BApplications&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

63/91

81
Al-Anezi D. M. M. K., Generic packing detection using several complexity analysis for accurate
malware detection, International Journal of Advanced Computer Science and Applications. (2014) 5,
no. 1.
Google Scholar
82
Ma X., Biao Q., Yang W., and Jiang J., Using multi-features to reduce false positive in malware
classification, Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and
Automation Control Conference, May 2016, Chongqing, China, 361–365.
Google Scholar
83
Liska A. and Gallo T., Ransomware: Defending against Digital Extortion, 2016, O’Reilly Media, Inc,
Sebastopol, CA, USA.
Google Scholar
84
Bos H., Monrose F., and Blanc G., Research in attacks, intrusions, and defenses, Proceedings of
the 18th international symposium, RAID 2015, November, Oct. 2015, kyoto, Japan, Springer.
Google Scholar
85
Nguyen M. H., Nguyen D. L., Nguyen X. M., and Quan T. T., Auto-detection of sophisticated
malware using lazy-binding control flow graph and deep learning, Computers and Security. Jul. 2018,
76, 128–155.
86
Brezinski K. and Ferens K., Complexity-based convolutional neural network for malware
classification, 2020 International Conference on Computational Science and Computational
Intelligence, October 2020, Las Vegas, USA.
Google Scholar
87
Sorokin I., Comparing files using structural entropy, Journal in Computer Virology. Jun. 2011, 7, no.
4, https://doi.org/10.1007/s11416-011-0153-9, 2-s2.0-80255131297.
10.1007/s11416-011-0153-9
Google Scholar
88
Ducau F. N., Rudd E. M., Heppner T. M., Long A., and Berlin K., Automatic malware description via
attribute tagging and similarity embedding, 2020, http://arxiv.org/abs/1905.06262.
Google Scholar
89
Lippmann R., Fried D., Graf I., Haines J., Kendall K., McClung D., Weber D., Webster S.,
Wyschogrod D., Cunningham R., and Zissman M., Evaluating intrusion detection systems: the 1998
DARPA off-line intrusion detection evaluation, Proceedings of the DARPA Information Survivability
Conference and Exposition. DISCEX’00, January. 2000, Hilton Head, SC, USA, 12–26.
Google Scholar
90
Lee W. and Stolfo S. J., A framework for constructing features and models for intrusion detection
systems, ACM Transactions on Information and System Security. (2000) 3, no. 4, 227–261,
https://doi.org/10.1145/382912.382914, 2-s2.0-84885774862.
10.1145/382912.382914
Google Scholar
91
Özgür A. and Erdem H., A review of KDD99 dataset usage in intrusion detection and machine
learning between 2010 and 2015, PeerJ. (2016) 4.
Google Scholar
92
Mahoney M. V. and Chan P. K., G. Goos, J. Hartmanis, J. van Leeuwen, G. Vigna, C. Kruegel, and
E. Jonsson, An analysis of the 1999 DARPA/lincoln laboratory evaluation data for network anomaly

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2014%26journal%3DInternational%2BJournal%2Bof%2BAdvanced%2BComputer%2BScience%2Band%2BApplications%26author%3DD.%2BM.%2BM.%2BK.%2BAl-Anezi%26title%3DGeneric%2Bpacking%2Bdetection%2Busing%2Bseveral%2Bcomplexity%2Banalysis%2Bfor%2Baccurate%2Bmalware%2Bdetection&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMa%2BX.%252C%2B%250ABiao%2BQ.%252C%2B%250AYang%2BW.%252C%2Band%2B%250AJiang%2BJ.%252C%2BUsing%2Bmulti-features%2Bto%2Breduce%2Bfalse%2Bpositive%2Bin%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BInformation%2BTechnology%252C%2BNetworking%252C%2BElectronic%2Band%2BAutomation%2BControl%2BConference%252C%2BMay%2B2016%252C%2BChongqing%252C%2BChina%252C%2B361%25E2%2580%2593365.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2016%26author%3DA.%2BLiska%26author%3DT.%2BGallo%26title%3DRansomware%253A%2BDefending%2Bagainst%2BDigital%2BExtortion&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABos%2BH.%252C%2B%250AMonrose%2BF.%252C%2Band%2B%250ABlanc%2BG.%252C%2BResearch%2Bin%2Battacks%252C%2Bintrusions%252C%2Band%2Bdefenses%252C%2BProceedings%2Bof%2Bthe%2B18th%2Binternational%2Bsymposium%252C%2BRAID%2B2015%252C%2BNovember%252C%2BOct.%2B2015%252C%2Bkyoto%252C%2BJapan%252C%2BSpringer.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABrezinski%2BK.%2Band%2B%250AFerens%2BK.%252C%2BComplexity-based%2Bconvolutional%2Bneural%2Bnetwork%2Bfor%2Bmalware%2Bclassification%252C%2B2020%2BInternational%2BConference%2Bon%2BComputational%2BScience%2Band%2BComputational%2BIntelligence%252C%2BOctober%2B2020%252C%2BLas%2BVegas%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-011-0153-9
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2011%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DI.%2BSorokin%26title%3DComparing%2Bfiles%2Busing%2Bstructural%2Bentropy&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-011-0153-9&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1905.06262
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADucau%2BF.%2BN.%252C%2B%250ARudd%2BE.%2BM.%252C%2B%250AHeppner%2BT.%2BM.%252C%2B%250ALong%2BA.%252C%2Band%2B%250ABerlin%2BK.%252C%2BAutomatic%2Bmalware%2Bdescription%2Bvia%2Battribute%2Btagging%2Band%2Bsimilarity%2Bembedding%252C%2B2020%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1905.06262.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALippmann%2BR.%252C%2B%250AFried%2BD.%252C%2B%250AGraf%2BI.%252C%2B%250AHaines%2BJ.%252C%2B%250AKendall%2BK.%252C%2B%250AMcClung%2BD.%252C%2B%250AWeber%2BD.%252C%2B%250AWebster%2BS.%252C%2B%250AWyschogrod%2BD.%252C%2B%250ACunningham%2BR.%252C%2Band%2B%250AZissman%2BM.%252C%2BEvaluating%2Bintrusion%2Bdetection%2Bsystems%253A%2Bthe%2B1998%2BDARPA%2Boff-line%2Bintrusion%2Bdetection%2Bevaluation%252C%2BProceedings%2Bof%2Bthe%2BDARPA%2BInformation%2BSurvivability%2BConference%2Band%2BExposition.%2BDISCEX%25E2%2580%259900%252C%2BJanuary.%2B2000%252C%2BHilton%2BHead%252C%2BSC%252C%2BUSA%252C%2B12%25E2%2580%259326.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/382912.382914
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D3%26publication_year%3D2000%26pages%3D227-261%26journal%3DACM%2BTransactions%2Bon%2BInformation%2Band%2BSystem%2BSecurity%26author%3DW.%2BLee%26author%3DS.%2BJ.%2BStolfo%26title%3DA%2Bframework%2Bfor%2Bconstructing%2Bfeatures%2Band%2Bmodels%2Bfor%2Bintrusion%2Bdetection%2Bsystems&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F382912.382914&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D4%26publication_year%3D2016%26journal%3DPeerJ%26author%3DA.%2B%25C3%2596zg%25C3%25BCr%26author%3DH.%2BErdem%26title%3DA%2Breview%2Bof%2BKDD99%2Bdataset%2Busage%2Bin%2Bintrusion%2Bdetection%2Band%2Bmachine%2Blearning%2Bbetween%2B2010%2Band%2B2015&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

64/91

detection, Recent Advances in Intrusion Detection, 2003, 2820, Springer, Berlin, Germany, 220–237.
10.1007/978-3-540-45248-5_13
Google Scholar
93
Tavallaee M., Bagheri E., Lu W., and Ghorbani A. A., A detailed analysis of the KDD CUP 99 data
set, Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and
Defense Applications, July. 2009, Ottawa, Canada, IEEE, 1–6.
Google Scholar
94
McHugh J., Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by Lincoln Laboratory, ACM Transactions on Information
and System Security. (2000) 3, no. 4, 262–294, https://doi.org/10.1145/382912.382923, 2-s2.0-
85019691440.
10.1145/382912.382923
Google Scholar
95
Moustafa N. and Slay J., UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set), Proceedings of the 2015 Military Communications and
Information Systems Conference (MilCIS), November. 2015, Canberra, Australia, 1–6.
Google Scholar
96
Bhaya W. and Manaa M. E., A proactive DDoS attack detection approach using data mining cluster
analysis, Journal of Next Generation Information Technology. (2014) 5, no. 4.
Google Scholar
97
Shiravi A., Shiravi H., Tavallaee M., and Ghorbani A. A., Toward developing a systematic approach
to generate benchmark datasets for intrusion detection, Computers and Security. May 2012, 31, no. 3,
357–374.
98
Sharafaldin I., Lashkari A. H., and Ghorbani A. A., Toward generating a new intrusion detection
dataset and intrusion traffic characterization, Proceedings of the 4th International Conference on
Information Systems Security and Privacy, April, 2018, Kenitra, Morocco.
Google Scholar
99
Ring M., Wunderlich S., Scheuring D., Landes D., and Hotho A., A survey of network-based
intrusion detection data sets, Computers and Security. Sep. 2019, 86, 147–167,
http://arxiv.org/abs/1903.02460.
100
Nataraj L., Karthikeyan S., Jacob G., and Manjunath B. S., Malware images: visualization and
automatic classification, Proceedings of the 8th International Symposium on Visualization for Cyber
Security, July. 2011, Pittsburgh, PA, USA, Association for Computing Machinery, 1–7,
https://doi.org/10.1145/2016904.2016908, 2-s2.0-80052297905.
10.1145/2016904.2016908
Google Scholar
101
Gibert D., Mateu C., and Planes J., V. Kuringrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I.
Maglogiannis, An end-to-end deep learning architecture for classification of Malware’s binary content,
Artificial Neural Networks and Machine Learning – ICANN 2018, Ser. Lecture Notes in Computer
Science, 2018, Springer International Publishing, Berlin, Germany, 383–391.
Google Scholar
102
Bhodia N., Prajapati P., Di Troia F., and Stamp M., Transfer learning for image-based malware
classification, Jan. 2019, http://arxiv.org/abs/1903.11551.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2003%26pages%3D220-237%26author%3DM.%2BV.%2BMahoney%26author%3DP.%2BK.%2BChan%26title%3DRecent%2BAdvances%2Bin%2BIntrusion%2BDetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-540-45248-5_13&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ATavallaee%2BM.%252C%2B%250ABagheri%2BE.%252C%2B%250ALu%2BW.%252C%2Band%2B%250AGhorbani%2BA.%2BA.%252C%2BA%2Bdetailed%2Banalysis%2Bof%2Bthe%2BKDD%2BCUP%2B99%2Bdata%2Bset%252C%2BProceedings%2Bof%2Bthe%2B2009%2BIEEE%2BSymposium%2Bon%2BComputational%2BIntelligence%2Bfor%2BSecurity%2Band%2BDefense%2BApplications%252C%2BJuly.%2B2009%252C%2BOttawa%252C%2BCanada%252C%2BIEEE%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/382912.382923
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D3%26publication_year%3D2000%26pages%3D262-294%26journal%3DACM%2BTransactions%2Bon%2BInformation%2Band%2BSystem%2BSecurity%26author%3DJ.%2BMcHugh%26title%3DTesting%2BIntrusion%2Bdetection%2Bsystems%253A%2Ba%2Bcritique%2Bof%2Bthe%2B1998%2Band%2B1999%2BDARPA%2Bintrusion%2Bdetection%2Bsystem%2Bevaluations%2Bas%2Bperformed%2Bby%2BLincoln%2BLaboratory&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F382912.382923&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMoustafa%2BN.%2Band%2B%250ASlay%2BJ.%252C%2BUNSW-NB15%253A%2Ba%2Bcomprehensive%2Bdata%2Bset%2Bfor%2Bnetwork%2Bintrusion%2Bdetection%2Bsystems%2B%2528UNSW-NB15%2Bnetwork%2Bdata%2Bset%2529%252C%2BProceedings%2Bof%2Bthe%2B2015%2BMilitary%2BCommunications%2Band%2BInformation%2BSystems%2BConference%2B%2528MilCIS%2529%252C%2BNovember.%2B2015%252C%2BCanberra%252C%2BAustralia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2014%26journal%3DJournal%2Bof%2BNext%2BGeneration%2BInformation%2BTechnology%26author%3DW.%2BBhaya%26author%3DM.%2BE.%2BManaa%26title%3DA%2Bproactive%2BDDoS%2Battack%2Bdetection%2Bapproach%2Busing%2Bdata%2Bmining%2Bcluster%2Banalysis&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASharafaldin%2BI.%252C%2B%250ALashkari%2BA.%2BH.%252C%2Band%2B%250AGhorbani%2BA.%2BA.%252C%2BToward%2Bgenerating%2Ba%2Bnew%2Bintrusion%2Bdetection%2Bdataset%2Band%2Bintrusion%2Btraffic%2Bcharacterization%252C%2BProceedings%2Bof%2Bthe%2B4th%2BInternational%2BConference%2Bon%2BInformation%2BSystems%2BSecurity%2Band%2BPrivacy%252C%2BApril%252C%2B2018%252C%2BKenitra%252C%2BMorocco.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1903.02460
https://doi.org/10.1145/2016904.2016908
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANataraj%2BL.%252C%2B%250AKarthikeyan%2BS.%252C%2B%250AJacob%2BG.%252C%2Band%2B%250AManjunath%2BB.%2BS.%252C%2BMalware%2Bimages%253A%2Bvisualization%2Band%2Bautomatic%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B8th%2BInternational%2BSymposium%2Bon%2BVisualization%2Bfor%2BCyber%2BSecurity%252C%2BJuly.%2B2011%252C%2BPittsburgh%252C%2BPA%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B1%25E2%2580%25937%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F2016904.2016908%252C%2B2-s2.0-80052297905.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F2016904.2016908&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2018%26pages%3D383-391%26author%3DD.%2BGibert%26author%3DC.%2BMateu%26author%3DJ.%2BPlanes%26title%3DArtificial%2BNeural%2BNetworks%2Band%2BMachine%2BLearning%2B%25E2%2580%2593%2BICANN%2B2018%252C%2BSer.%2BLecture%2BNotes%2Bin%2BComputer%2BScience&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1903.11551
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABhodia%2BN.%252C%2B%250APrajapati%2BP.%252C%2B%250ADi%2BTroia%2BF.%252C%2Band%2B%250AStamp%2BM.%252C%2BTransfer%2Blearning%2Bfor%2Bimage-based%2Bmalware%2Bclassification%252C%2BJan.%2B2019%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1903.11551.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

65/91

103
Tran T. K., Sato H., and Kubo M., Image-based unknown malware classification with few-shot
learning models, Proceedings of the 2019 Seventh International Symposium on Computing and
Networking Workshops (CANDARW), November. 2019, Nagasaki, Japan, 401–407.
Google Scholar
104
Kalash M., Rochan M., Mohammed N., Bruce N. D. B., Wang Y., and Iqbal F., Malware
classification with deep convolutional neural networks, Proceedings of the 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), February, 2018, Paris, France, 1–5.
Google Scholar
105
Akarsh S., Poornachandran P., Menon V. K., and Soman K. P., A. E. Hassanien and M. Elhoseny,
A detailed investigation and analysis of deep learning architectures and visualization techniques for
malware family identification, Cybersecurity and Secure Information Systems: Challenges and
Solutions in Smart Environments, Ser. Advanced Sciences and Technologies for Security Applications,
2019, Springer International Publishing, Berlin, Germany, 241–286.
10.1007/978-3-030-16837-7_12
Google Scholar
106
Akarsh S., Simran K., Poornachandran P., Menon V. K., and Soman K., Deep learning framework
and visualization for malware classification, Proceedings of the 2019 5th International Conference on
Advanced Computing Communication Systems (ICACCS), March, 2019, Coimbatore, India, 1059–
1063.
Google Scholar
107
Abdullayeva F., Malware detection in cloud computing using an image visualization technique,
Proceedings of the 2019 IEEE 13th International Conference on Application of Information and
Communication Technologies (AICT), October, 2019, Baku, Azerbaijan, 1–5.
Google Scholar
108
Vi B. N., Noi Nguyen H., Nguyen N. T., and Truong Tran C., Adversarial examples against image-
based malware classification systems, Proceedings of the 2019 11th International Conference on
Knowledge and Systems Engineering (KSE), October, 2019, Da Nang, Vietnam, 1–5.
Google Scholar
109
Lo W. W., Yang X., and Wang Y., An xception convolutional neural network for malware
classification with transfer learning, Proceedings of the 2019 10th IFIP international conference on new
technologies, mobility and security (NTMS), June, 2019, Canary Islands, Spain, 1–5.
Google Scholar
110
Nappa A., Rafique M. Z., and Caballero J., D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F.
Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.
Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, K. Rieck, P. Stewin, and J.-P. Seifert, Driving in the
cloud: an analysis of drive-by download operations and abuse reporting, Detection of Intrusions and
Malware, and Vulnerability Assessment, 2013, 7967, Springer, Berlin, Germany, 1–20.
10.1007/978-3-642-39235-1_1
Google Scholar
111
Kotzias P., Matic S., Rivera R., and Caballero J., Certified pup: abuse in authenticode code
signing, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, October, 2015, Denver, CO, USA.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ATran%2BT.%2BK.%252C%2B%250ASato%2BH.%252C%2Band%2B%250AKubo%2BM.%252C%2BImage-based%2Bunknown%2Bmalware%2Bclassification%2Bwith%2Bfew-shot%2Blearning%2Bmodels%252C%2BProceedings%2Bof%2Bthe%2B2019%2BSeventh%2BInternational%2BSymposium%2Bon%2BComputing%2Band%2BNetworking%2BWorkshops%2B%2528CANDARW%2529%252C%2BNovember.%2B2019%252C%2BNagasaki%252C%2BJapan%252C%2B401%25E2%2580%2593407.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKalash%2BM.%252C%2B%250ARochan%2BM.%252C%2B%250AMohammed%2BN.%252C%2B%250ABruce%2BN.%2BD.%2BB.%252C%2B%250AWang%2BY.%252C%2Band%2B%250AIqbal%2BF.%252C%2BMalware%2Bclassification%2Bwith%2Bdeep%2Bconvolutional%2Bneural%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2B2018%2B9th%2BIFIP%2BInternational%2BConference%2Bon%2BNew%2BTechnologies%252C%2BMobility%2Band%2BSecurity%2B%2528NTMS%2529%252C%2BFebruary%252C%2B2018%252C%2BParis%252C%2BFrance%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26pages%3D241-286%26author%3DS.%2BAkarsh%26author%3DP.%2BPoornachandran%26author%3DV.%2BK.%2BMenon%26author%3DK.%2BP.%2BSoman%26title%3DCybersecurity%2Band%2BSecure%2BInformation%2BSystems%253A%2BChallenges%2Band%2BSolutions%2Bin%2BSmart%2BEnvironments%252C%2BSer.%2BAdvanced%2BSciences%2Band%2BTechnologies%2Bfor%2BSecurity%2BApplications&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-030-16837-7_12&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAkarsh%2BS.%252C%2B%250ASimran%2BK.%252C%2B%250APoornachandran%2BP.%252C%2B%250AMenon%2BV.%2BK.%252C%2Band%2B%250ASoman%2BK.%252C%2BDeep%2Blearning%2Bframework%2Band%2Bvisualization%2Bfor%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2019%2B5th%2BInternational%2BConference%2Bon%2BAdvanced%2BComputing%2BCommunication%2BSystems%2B%2528ICACCS%2529%252C%2BMarch%252C%2B2019%252C%2BCoimbatore%252C%2BIndia%252C%2B1059%25E2%2580%25931063.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAbdullayeva%2BF.%252C%2BMalware%2Bdetection%2Bin%2Bcloud%2Bcomputing%2Busing%2Ban%2Bimage%2Bvisualization%2Btechnique%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B13th%2BInternational%2BConference%2Bon%2BApplication%2Bof%2BInformation%2Band%2BCommunication%2BTechnologies%2B%2528AICT%2529%252C%2BOctober%252C%2B2019%252C%2BBaku%252C%2BAzerbaijan%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AVi%2BB.%2BN.%252C%2B%250ANoi%2BNguyen%2BH.%252C%2B%250ANguyen%2BN.%2BT.%252C%2Band%2B%250ATruong%2BTran%2BC.%252C%2BAdversarial%2Bexamples%2Bagainst%2Bimage-based%2Bmalware%2Bclassification%2Bsystems%252C%2BProceedings%2Bof%2Bthe%2B2019%2B11th%2BInternational%2BConference%2Bon%2BKnowledge%2Band%2BSystems%2BEngineering%2B%2528KSE%2529%252C%2BOctober%252C%2B2019%252C%2BDa%2BNang%252C%2BVietnam%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALo%2BW.%2BW.%252C%2B%250AYang%2BX.%252C%2Band%2B%250AWang%2BY.%252C%2BAn%2Bxception%2Bconvolutional%2Bneural%2Bnetwork%2Bfor%2Bmalware%2Bclassification%2Bwith%2Btransfer%2Blearning%252C%2BProceedings%2Bof%2Bthe%2B2019%2B10th%2BIFIP%2Binternational%2Bconference%2Bon%2Bnew%2Btechnologies%252C%2Bmobility%2Band%2Bsecurity%2B%2528NTMS%2529%252C%2BJune%252C%2B2019%252C%2BCanary%2BIslands%252C%2BSpain%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2013%26pages%3D1-20%26author%3DA.%2BNappa%26author%3DM.%2BZ.%2BRafique%26author%3DJ.%2BCaballero%26title%3DDetection%2Bof%2BIntrusions%2Band%2BMalware%252C%2Band%2BVulnerability%2BAssessment&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-642-39235-1_1&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKotzias%2BP.%252C%2B%250AMatic%2BS.%252C%2B%250ARivera%2BR.%252C%2Band%2B%250ACaballero%2BJ.%252C%2BCertified%2Bpup%253A%2Babuse%2Bin%2Bauthenticode%2Bcode%2Bsigning%252C%2BProceedings%2Bof%2Bthe%2B22nd%2BACM%2BSIGSAC%2BConference%2Bon%2BComputer%2Band%2BCommunications%2BSecurity%252C%2BOctober%252C%2B2015%252C%2BDenver%252C%2BCO%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

66/91

112
Sebastián M., Rivera R., Kotzias P., and Caballero J., F. Monrose, M. Dacier, G. Blanc, and J.
Garcia-Alfaro, AVclass: a tool for massive malware labeling, Research in Attacks, Intrusions, and
Defenses, 2016, 9854, Springer International Publishing, Berlin, Germany, 230–253.
10.1007/978-3-319-45719-2_11
Google Scholar
113
Arp D., Spreitzenbarth M., Hubner M., Gascon H., and Rieck K., Drebin: efficient and explainable
detection ofandroid malware in your pocket, 2013, Georg-August Institute of Computer Science,
Technical Report.
Google Scholar
114
Spreitzenbarth M., Freiling F., Echtler F., Schreck T., and Hoffmann J., Mobile-sandbox: having a
deeper look into android applications, Proceedings of the 28th Annual ACM Symposium on Applied
Computing- SAC ’13, June, 2013, Coimbra, Portugal, ACM Press.
Google Scholar
115
Lashkari A. H., Kadir A. F. A., Gonzalez H., Mbah K. F., and Ghorbani A. A., Towards a network-
based framework for android malware detection and characterization, Proceedings of the 2017 15th
Annual Conference on Privacy, Security and Trust (PST), August, 2017, Calgary, Canada.
Google Scholar
116
Murtaz M., Azwar H., Ali S. B., and Rehman S., A framework for android malware detection and
classification, Proceedings of the 2018 IEEE 5th International Conference on Engineering
Technologies and Applied Sciences (ICETAS), November, 2018, Bangkok, Thailand, 1–5.
Google Scholar
117
Kim H. K., Iot network intrusion dataset, 2019, https://ieee-dataport.org/open-access/iot-network-
intrusion-dataset.
Google Scholar
118
Goutte C., Advances in Artificial Intelligence, 1987, Springer Nature, Berlin, Germany.
Google Scholar
119
Ullah I. and Mahmoud Q. H., C. Goutte and X. Zhu, A scheme for generating a dataset for
anomalous activity detection in IoT networks, Advances in Artificial Intelligence, Ser. Lecture Notes in
Computer Science, 2020, Springer International Publishing, Berlin, Germany, 508–520.
10.1007/978-3-030-47358-7_52
Google Scholar
121
Anderson H. S. and Roth P., EMBER: an open dataset for training static pe malware machine
learning models, 2018, http://arxiv.org/abs/1804.04637.
Google Scholar
123
Creech G., Developing a high-accuracy cross platformhost-based intrusion detection system
capableof reliably detecting zero-day attacks, 2014, University of South Wales, Australian Defence
Force Academy, Ph.D. dissertation.
Google Scholar
124
Creech G. and Hu J., Generation of a new IDS test dataset: time to retire the KDD collection,
Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), April.
2013, Shanghai, China, 4487–4492.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2016%26pages%3D230-253%26author%3DM.%2BSebasti%25C3%25A1n%26author%3DR.%2BRivera%26author%3DP.%2BKotzias%26author%3DJ.%2BCaballero%26title%3DResearch%2Bin%2BAttacks%252C%2BIntrusions%252C%2Band%2BDefenses&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-319-45719-2_11&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AArp%2BD.%252C%2B%250ASpreitzenbarth%2BM.%252C%2B%250AHubner%2BM.%252C%2B%250AGascon%2BH.%252C%2Band%2B%250ARieck%2BK.%252C%2BDrebin%253A%2Befficient%2Band%2Bexplainable%2Bdetection%2Bofandroid%2Bmalware%2Bin%2Byour%2Bpocket%252C%2B2013%252C%2BGeorg-August%2BInstitute%2Bof%2BComputer%2BScience%252C%2BTechnical%2BReport.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASpreitzenbarth%2BM.%252C%2B%250AFreiling%2BF.%252C%2B%250AEchtler%2BF.%252C%2B%250ASchreck%2BT.%252C%2Band%2B%250AHoffmann%2BJ.%252C%2BMobile-sandbox%253A%2Bhaving%2Ba%2Bdeeper%2Blook%2Binto%2Bandroid%2Bapplications%252C%2BProceedings%2Bof%2Bthe%2B28th%2BAnnual%2BACM%2BSymposium%2Bon%2BApplied%2BComputing-%2BSAC%2B%25E2%2580%259913%252C%2BJune%252C%2B2013%252C%2BCoimbra%252C%2BPortugal%252C%2BACM%2BPress.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALashkari%2BA.%2BH.%252C%2B%250AKadir%2BA.%2BF.%2BA.%252C%2B%250AGonzalez%2BH.%252C%2B%250AMbah%2BK.%2BF.%252C%2Band%2B%250AGhorbani%2BA.%2BA.%252C%2BTowards%2Ba%2Bnetwork-based%2Bframework%2Bfor%2Bandroid%2Bmalware%2Bdetection%2Band%2Bcharacterization%252C%2BProceedings%2Bof%2Bthe%2B2017%2B15th%2BAnnual%2BConference%2Bon%2BPrivacy%252C%2BSecurity%2Band%2BTrust%2B%2528PST%2529%252C%2BAugust%252C%2B2017%252C%2BCalgary%252C%2BCanada.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMurtaz%2BM.%252C%2B%250AAzwar%2BH.%252C%2B%250AAli%2BS.%2BB.%252C%2Band%2B%250ARehman%2BS.%252C%2BA%2Bframework%2Bfor%2Bandroid%2Bmalware%2Bdetection%2Band%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B5th%2BInternational%2BConference%2Bon%2BEngineering%2BTechnologies%2Band%2BApplied%2BSciences%2B%2528ICETAS%2529%252C%2BNovember%252C%2B2018%252C%2BBangkok%252C%2BThailand%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKim%2BH.%2BK.%252C%2BIot%2Bnetwork%2Bintrusion%2Bdataset%252C%2B2019%252C%2Bhttps%253A%252F%252Fieee-dataport.org%252Fopen-access%252Fiot-network-intrusion-dataset.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D1987%26author%3DC.%2BGoutte%26title%3DAdvances%2Bin%2BArtificial%2BIntelligence&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2020%26pages%3D508-520%26author%3DI.%2BUllah%26author%3DQ.%2BH.%2BMahmoud%26title%3DAdvances%2Bin%2BArtificial%2BIntelligence%252C%2BSer.%2BLecture%2BNotes%2Bin%2BComputer%2BScience&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-030-47358-7_52&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1804.04637
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAnderson%2BH.%2BS.%2Band%2B%250ARoth%2BP.%252C%2BEMBER%253A%2Ban%2Bopen%2Bdataset%2Bfor%2Btraining%2Bstatic%2Bpe%2Bmalware%2Bmachine%2Blearning%2Bmodels%252C%2B2018%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1804.04637.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ACreech%2BG.%252C%2BDeveloping%2Ba%2Bhigh-accuracy%2Bcross%2Bplatformhost-based%2Bintrusion%2Bdetection%2Bsystem%2Bcapableof%2Breliably%2Bdetecting%2Bzero-day%2Battacks%252C%2B2014%252C%2BUniversity%2Bof%2BSouth%2BWales%252C%2BAustralian%2BDefence%2BForce%2BAcademy%252C%2BPh.D.%2Bdissertation.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ACreech%2BG.%2Band%2B%250AHu%2BJ.%252C%2BGeneration%2Bof%2Ba%2Bnew%2BIDS%2Btest%2Bdataset%253A%2Btime%2Bto%2Bretire%2Bthe%2BKDD%2Bcollection%252C%2BProceedings%2Bof%2Bthe%2B2013%2BIEEE%2BWireless%2BCommunications%2Band%2BNetworking%2BConference%2B%2528WCNC%2529%252C%2BApril.%2B2013%252C%2BShanghai%252C%2BChina%252C%2B4487%25E2%2580%25934492.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

67/91

125
Creech G. and Hu J., A semantic approach to host-based intrusion detection systems using
contiguousand discontiguous system call patterns, IEEE Transactions on Computers. (2014) 63, no. 4,
807–819.
10.1109/TC.2013.13
Web of Science®Google Scholar
126
CERT, CERT Insider Threat Center, 2017, Carnegie Mellon University Software Engineering
Institute, Pittsburgh, PA, USA.
Google Scholar
127
Glasser J. and Lindauer B., Bridging the gap: a pragmatic approach to generating insider threat
data, Proceedings of the 2013 IEEE Security and Privacy Workshops, May 2013, San Francisco, CA,
USA, IEEE, 98–104.
Google Scholar
128
Bhattacharjee P. S., Md Fujail A. K., and Begum S. A., A comparison of intrusion detection by K-
means and fuzzy C-means clustering algorithm over the NSL-KDD dataset, Proceedings of the 2017
IEEE International Conference on Computational Intelligence and Computing Research (ICCIC),
December, 2017, Coimbatore, India, 1–6.
Google Scholar
129
Ingre B. and Yadav A., Performance analysis of NSL-KDD dataset using ANN, Proceedings of the
2015 International Conference on Signal Processing and Communication Engineering Systems,
January, 2015, Guntur, India, 92–96.
Google Scholar
130
Hakim L., Fatma R., and Novriandi, Influence analysis of feature selection to network intrusion
detection system performance using NSL-KDD dataset, Proceedings of the 2019 International
Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE),
October, 2019, Jember, Indonesia, 217–220.
Google Scholar
131
Kunhare N. and Tiwari R., Study of the attributes using four class labels on kdd99 and nsl-kdd
datasets with machine learning techniques, Proceedings of the 2018 8th International Conference on
Communication Systems and Network Technologies (CSNT), November, 2018, Bhopal, India, 127–
131.
Google Scholar
132
Meena G. and Choudhary R. R., A review paper on IDS classification using KDD 99 and NSL
KDD dataset in WEKA, Proceedings of the 2017 International Conference on Computer,
Communications and Electronics (Comptelix), July. 2017, Jaipur, India, 553–558.
Google Scholar
133
Thomas R. and Pavithran D., A survey of intrusion detection models based on NSL-KDD data set,
Proceedings of the 2018 Fifth HCT Information Technology Trends (ITT), November, 2018, Dubai,
United Arab Emirates, 286–291.
Google Scholar
134
Zhang C., Ruan F., Yin L., Chen X., Zhai L., and Liu F., A deep learning approach for network
intrusion detection based on NSL-KDD dataset, Proceedings of the 2019 IEEE 13th International

https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000333472500002&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FTC.2013.13&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D63%26publication_year%3D2014%26pages%3D807-819%26journal%3DIEEE%2BTransactions%2Bon%2BComputers%26author%3DG.%2BCreech%26author%3DJ.%2BHu%26title%3DA%2Bsemantic%2Bapproach%2Bto%2Bhost-based%2Bintrusion%2Bdetection%2Bsystems%2Busing%2Bcontiguousand%2Bdiscontiguous%2Bsystem%2Bcall%2Bpatterns&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FTC.2013.13&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2017%26author%3D%2BCERT%26title%3DCERT%2BInsider%2BThreat%2BCenter&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AGlasser%2BJ.%2Band%2B%250ALindauer%2BB.%252C%2BBridging%2Bthe%2Bgap%253A%2Ba%2Bpragmatic%2Bapproach%2Bto%2Bgenerating%2Binsider%2Bthreat%2Bdata%252C%2BProceedings%2Bof%2Bthe%2B2013%2BIEEE%2BSecurity%2Band%2BPrivacy%2BWorkshops%252C%2BMay%2B2013%252C%2BSan%2BFrancisco%252C%2BCA%252C%2BUSA%252C%2BIEEE%252C%2B98%25E2%2580%2593104.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABhattacharjee%2BP.%2BS.%252C%2B%250AMd%2BFujail%2BA.%2BK.%252C%2Band%2B%250ABegum%2BS.%2BA.%252C%2BA%2Bcomparison%2Bof%2Bintrusion%2Bdetection%2Bby%2BK-means%2Band%2Bfuzzy%2BC-means%2Bclustering%2Balgorithm%2Bover%2Bthe%2BNSL-KDD%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2017%2BIEEE%2BInternational%2BConference%2Bon%2BComputational%2BIntelligence%2Band%2BComputing%2BResearch%2B%2528ICCIC%2529%252C%2BDecember%252C%2B2017%252C%2BCoimbatore%252C%2BIndia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AIngre%2BB.%2Band%2B%250AYadav%2BA.%252C%2BPerformance%2Banalysis%2Bof%2BNSL-KDD%2Bdataset%2Busing%2BANN%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BConference%2Bon%2BSignal%2BProcessing%2Band%2BCommunication%2BEngineering%2BSystems%252C%2BJanuary%252C%2B2015%252C%2BGuntur%252C%2BIndia%252C%2B92%25E2%2580%259396.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHakim%2BL.%252C%2B%250AFatma%2BR.%252C%2Band%2B%250ANovriandi%252C%2BInfluence%2Banalysis%2Bof%2Bfeature%2Bselection%2Bto%2Bnetwork%2Bintrusion%2Bdetection%2Bsystem%2Bperformance%2Busing%2BNSL-KDD%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BConference%2Bon%2BComputer%2BScience%252C%2BInformation%2BTechnology%252C%2Band%2BElectrical%2BEngineering%2B%2528ICOMITEE%2529%252C%2BOctober%252C%2B2019%252C%2BJember%252C%2BIndonesia%252C%2B217%25E2%2580%2593220.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKunhare%2BN.%2Band%2B%250ATiwari%2BR.%252C%2BStudy%2Bof%2Bthe%2Battributes%2Busing%2Bfour%2Bclass%2Blabels%2Bon%2Bkdd99%2Band%2Bnsl-kdd%2Bdatasets%2Bwith%2Bmachine%2Blearning%2Btechniques%252C%2BProceedings%2Bof%2Bthe%2B2018%2B8th%2BInternational%2BConference%2Bon%2BCommunication%2BSystems%2Band%2BNetwork%2BTechnologies%2B%2528CSNT%2529%252C%2BNovember%252C%2B2018%252C%2BBhopal%252C%2BIndia%252C%2B127%25E2%2580%2593131.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMeena%2BG.%2Band%2B%250AChoudhary%2BR.%2BR.%252C%2BA%2Breview%2Bpaper%2Bon%2BIDS%2Bclassification%2Busing%2BKDD%2B99%2Band%2BNSL%2BKDD%2Bdataset%2Bin%2BWEKA%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BComputer%252C%2BCommunications%2Band%2BElectronics%2B%2528Comptelix%2529%252C%2BJuly.%2B2017%252C%2BJaipur%252C%2BIndia%252C%2B553%25E2%2580%2593558.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AThomas%2BR.%2Band%2B%250APavithran%2BD.%252C%2BA%2Bsurvey%2Bof%2Bintrusion%2Bdetection%2Bmodels%2Bbased%2Bon%2BNSL-KDD%2Bdata%2Bset%252C%2BProceedings%2Bof%2Bthe%2B2018%2BFifth%2BHCT%2BInformation%2BTechnology%2BTrends%2B%2528ITT%2529%252C%2BNovember%252C%2B2018%252C%2BDubai%252C%2BUnited%2BArab%2BEmirates%252C%2B286%25E2%2580%2593291.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

68/91

Conference on Anti-counterfeiting, Security, and Identification (ASID), October, 2019, Xiamen, China,
41–45.
Google Scholar
135
Benaddi H., Ibrahimi K., and Benslimane A., Improving the intrusion detection system for NSL-
KDD dataset based on PCA-fuzzy clustering-KNN, Proceedings of the 2018 6th International
Conference on Wireless Networks and Mobile Communications (WINCOM), October, 2018,
Marrakesh, Morocco, 1–6.
Google Scholar
136
Singh K. and Mathai K. J., Performance comparison of intrusion detection system between deep
belief network (DBN)algorithm and state preserving extreme learning machine (SPELM) algorithm,
Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication
Technologies (ICECCT), February, 2019, Coimbatore, India, 1–7.
Google Scholar
137
Álvarez Almeida L. A. and Carlos Martinez Santos J., Evaluating features selection on NSL-KDD
data-set to train a support vector machine-based intrusion detection system, Proceedings of the 2019
IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), June, 2019,
Barranquilla, Colombia, 1–5.
Google Scholar
138
Paulauskas N. and Auskalnis J., Analysis of data pre-processing influence on intrusion detection
using NSL-KDD dataset, Proceedings of the 2017 Open Conference of Electrical, Electronic and
Information Sciences (eStream), April, 2017, Vilnius, Lithuania, 1–5.
Google Scholar
139
Yusof A. R., Udzir N. I., Selamat A., Hamdan H., and Abdullah M. T., Adaptive feature selection for
denial of services (DoS) attack, Proceedings of the 2017 IEEE Conference on Application, Information
and Network Security (AINS), November, 2017, Miri, Malaysia, 81–84.
Google Scholar
140
Rodda S. and Erothi U. S. R., Class imbalance problem in the network intrusion detection
systems, Proceedings of the 2016 International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), March, 2016, Chennai, India, 2685–2688.
Google Scholar
141
Samdani S. and Shukla S., A novel technique for converting nominal attributes to numeric
attributes for intrusion detection, Proceedings of the 2017 8th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), July. 2017, Delhi, India, 1–5.
Google Scholar
142
Jabbar M. A. and Samreen S., Intelligent network intrusion detection using alternating decision
trees, Proceedings of the 2016 International Conference on Circuits, Controls, Communications and
Computing (I4C), October, 2016, Bangalore, India, 1–6.
Google Scholar
143
Ye Z. and Yu Y., Network intrusion classification based on extreme learning machine, Proceedings
of the 2015 IEEE International Conference on Information and Automation, August, 2015, Lijiang,
China, 1642–1647.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZhang%2BC.%252C%2B%250ARuan%2BF.%252C%2B%250AYin%2BL.%252C%2B%250AChen%2BX.%252C%2B%250AZhai%2BL.%252C%2Band%2B%250ALiu%2BF.%252C%2BA%2Bdeep%2Blearning%2Bapproach%2Bfor%2Bnetwork%2Bintrusion%2Bdetection%2Bbased%2Bon%2BNSL-KDD%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B13th%2BInternational%2BConference%2Bon%2BAnti-counterfeiting%252C%2BSecurity%252C%2Band%2BIdentification%2B%2528ASID%2529%252C%2BOctober%252C%2B2019%252C%2BXiamen%252C%2BChina%252C%2B41%25E2%2580%259345.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABenaddi%2BH.%252C%2B%250AIbrahimi%2BK.%252C%2Band%2B%250ABenslimane%2BA.%252C%2BImproving%2Bthe%2Bintrusion%2Bdetection%2Bsystem%2Bfor%2BNSL-KDD%2Bdataset%2Bbased%2Bon%2BPCA-fuzzy%2Bclustering-KNN%252C%2BProceedings%2Bof%2Bthe%2B2018%2B6th%2BInternational%2BConference%2Bon%2BWireless%2BNetworks%2Band%2BMobile%2BCommunications%2B%2528WINCOM%2529%252C%2BOctober%252C%2B2018%252C%2BMarrakesh%252C%2BMorocco%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASingh%2BK.%2Band%2B%250AMathai%2BK.%2BJ.%252C%2BPerformance%2Bcomparison%2Bof%2Bintrusion%2Bdetection%2Bsystem%2Bbetween%2Bdeep%2Bbelief%2Bnetwork%2B%2528DBN%2529algorithm%2Band%2Bstate%2Bpreserving%2Bextreme%2Blearning%2Bmachine%2B%2528SPELM%2529%2Balgorithm%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BInternational%2BConference%2Bon%2BElectrical%252C%2BComputer%2Band%2BCommunication%2BTechnologies%2B%2528ICECCT%2529%252C%2BFebruary%252C%2B2019%252C%2BCoimbatore%252C%2BIndia%252C%2B1%25E2%2580%25937.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250A%25C3%2581lvarez%2BAlmeida%2BL.%2BA.%2Band%2B%250ACarlos%2BMartinez%2BSantos%2BJ.%252C%2BEvaluating%2Bfeatures%2Bselection%2Bon%2BNSL-KDD%2Bdata-set%2Bto%2Btrain%2Ba%2Bsupport%2Bvector%2Bmachine-based%2Bintrusion%2Bdetection%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BColombian%2BConference%2Bon%2BApplications%2Bin%2BComputational%2BIntelligence%2B%2528ColCACI%2529%252C%2BJune%252C%2B2019%252C%2BBarranquilla%252C%2BColombia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APaulauskas%2BN.%2Band%2B%250AAuskalnis%2BJ.%252C%2BAnalysis%2Bof%2Bdata%2Bpre-processing%2Binfluence%2Bon%2Bintrusion%2Bdetection%2Busing%2BNSL-KDD%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2017%2BOpen%2BConference%2Bof%2BElectrical%252C%2BElectronic%2Band%2BInformation%2BSciences%2B%2528eStream%2529%252C%2BApril%252C%2B2017%252C%2BVilnius%252C%2BLithuania%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYusof%2BA.%2BR.%252C%2B%250AUdzir%2BN.%2BI.%252C%2B%250ASelamat%2BA.%252C%2B%250AHamdan%2BH.%252C%2Band%2B%250AAbdullah%2BM.%2BT.%252C%2BAdaptive%2Bfeature%2Bselection%2Bfor%2Bdenial%2Bof%2Bservices%2B%2528DoS%2529%2Battack%252C%2BProceedings%2Bof%2Bthe%2B2017%2BIEEE%2BConference%2Bon%2BApplication%252C%2BInformation%2Band%2BNetwork%2BSecurity%2B%2528AINS%2529%252C%2BNovember%252C%2B2017%252C%2BMiri%252C%2BMalaysia%252C%2B81%25E2%2580%259384.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARodda%2BS.%2Band%2B%250AErothi%2BU.%2BS.%2BR.%252C%2BClass%2Bimbalance%2Bproblem%2Bin%2Bthe%2Bnetwork%2Bintrusion%2Bdetection%2Bsystems%252C%2BProceedings%2Bof%2Bthe%2B2016%2BInternational%2BConference%2Bon%2BElectrical%252C%2BElectronics%252C%2Band%2BOptimization%2BTechniques%2B%2528ICEEOT%2529%252C%2BMarch%252C%2B2016%252C%2BChennai%252C%2BIndia%252C%2B2685%25E2%2580%25932688.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASamdani%2BS.%2Band%2B%250AShukla%2BS.%252C%2BA%2Bnovel%2Btechnique%2Bfor%2Bconverting%2Bnominal%2Battributes%2Bto%2Bnumeric%2Battributes%2Bfor%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2017%2B8th%2BInternational%2BConference%2Bon%2BComputing%252C%2BCommunication%2Band%2BNetworking%2BTechnologies%2B%2528ICCCNT%2529%252C%2BJuly.%2B2017%252C%2BDelhi%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJabbar%2BM.%2BA.%2Band%2B%250ASamreen%2BS.%252C%2BIntelligent%2Bnetwork%2Bintrusion%2Bdetection%2Busing%2Balternating%2Bdecision%2Btrees%252C%2BProceedings%2Bof%2Bthe%2B2016%2BInternational%2BConference%2Bon%2BCircuits%252C%2BControls%252C%2BCommunications%2Band%2BComputing%2B%2528I4C%2529%252C%2BOctober%252C%2B2016%252C%2BBangalore%252C%2BIndia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

69/91

Google Scholar
144
Yihunie F., Abdelfattah E., and Regmi A., Applying machine learning to anomaly-based intrusion
detection systems, Proceedings of the 2019 IEEE Long Island Systems, Applications and Technology
Conference (LISAT), May, 2019, New York, NY, USA, 1–5.
Google Scholar
145
Kala T. S. and Christy A., An intrusion detection system using opposition based particle swarm
optimization algorithm and PNN, Proceedings of the 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon), February, 2019, Faridabad, India,
184–188.
Google Scholar
146
Xiaofeng Z. and Xiaohong H., Research on intrusion detection based on improved combination of
K-means and multi-level SVM, Proceedings of the 2017 IEEE 17th International Conference on
Communication Technology (ICCT), October, 2017, Chengdu, China, 2042–2045.
Google Scholar
147
Gül A. and Adalı E., A feature selection algorithm for IDS, Proceedings of the 2017 International
Conference on Computer Science and Engineering (UBMK), October, 2017, Antalya, Turkey, 816–820.
Google Scholar
148
Chen Z., Yeo C. K., Lee B. S., and Lau C. T., Autoencoder-based network anomaly detection,
Proceedings of the 2018 Wireless Telecommunications Symposium (WTS), April, 2018, Phoenix, AZ,
USA, 1–5.
Google Scholar
149
Woo J.-H., Song J.-Y., and Choi Y.-J., Performance enhancement of deep neural network using
feature selection and preprocessing for intrusion detection, Proceedings of the 2019 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), February, 2019,
Okinawa, Japan, 415–417.
Google Scholar
150
Mikhail I., Kh K. S., Klimenko A., and Balenko E., Neural nets to detect abnormal traffic in
communication networks, Proceedings of the 2019 International Multi-Conference on Industrial
Engineering and Modern Technologies (FarEastCon), October, 2019, Vladivostok, Russia, 1–3.
Google Scholar
151
Zyad E., Khalid C., and Mohammed B., An effective network intrusion detection based on
truncated mean LDA, Proceedings of the 2017 International Conference on Electrical and Information
Technologies (ICEIT), November, 2017, Rabat, Morocco, 1–5.
Google Scholar
152
Gao J., Chai S., Zhang C., Zhang B., and Cui L., A novel intrusion detection system based on
extreme machine learning and multi-voting technology, Proceedings of the 2019 Chinese Control
Conference (CCC), July, 2019, Guangzhou, China, 8909–8914.
Google Scholar
153
Al-Hawawreh M., Moustafa N., and Sitnikova E., Identification of malicious activities in industrial
internet of things based on deep learning models, Journal of Information Security and Applications.
(2018) 41, 1–11.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYe%2BZ.%2Band%2B%250AYu%2BY.%252C%2BNetwork%2Bintrusion%2Bclassification%2Bbased%2Bon%2Bextreme%2Blearning%2Bmachine%252C%2BProceedings%2Bof%2Bthe%2B2015%2BIEEE%2BInternational%2BConference%2Bon%2BInformation%2Band%2BAutomation%252C%2BAugust%252C%2B2015%252C%2BLijiang%252C%2BChina%252C%2B1642%25E2%2580%25931647.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYihunie%2BF.%252C%2B%250AAbdelfattah%2BE.%252C%2Band%2B%250ARegmi%2BA.%252C%2BApplying%2Bmachine%2Blearning%2Bto%2Banomaly-based%2Bintrusion%2Bdetection%2Bsystems%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BLong%2BIsland%2BSystems%252C%2BApplications%2Band%2BTechnology%2BConference%2B%2528LISAT%2529%252C%2BMay%252C%2B2019%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKala%2BT.%2BS.%2Band%2B%250AChristy%2BA.%252C%2BAn%2Bintrusion%2Bdetection%2Bsystem%2Busing%2Bopposition%2Bbased%2Bparticle%2Bswarm%2Boptimization%2Balgorithm%2Band%2BPNN%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BConference%2Bon%2BMachine%2BLearning%252C%2BBig%2BData%252C%2BCloud%2Band%2BParallel%2BComputing%2B%2528COMITCon%2529%252C%2BFebruary%252C%2B2019%252C%2BFaridabad%252C%2BIndia%252C%2B184%25E2%2580%2593188.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AXiaofeng%2BZ.%2Band%2B%250AXiaohong%2BH.%252C%2BResearch%2Bon%2Bintrusion%2Bdetection%2Bbased%2Bon%2Bimproved%2Bcombination%2Bof%2BK-means%2Band%2Bmulti-level%2BSVM%252C%2BProceedings%2Bof%2Bthe%2B2017%2BIEEE%2B17th%2BInternational%2BConference%2Bon%2BCommunication%2BTechnology%2B%2528ICCT%2529%252C%2BOctober%252C%2B2017%252C%2BChengdu%252C%2BChina%252C%2B2042%25E2%2580%25932045.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AG%25C3%25BCl%2BA.%2Band%2B%250AAdal%25C4%25B1%2BE.%252C%2BA%2Bfeature%2Bselection%2Balgorithm%2Bfor%2BIDS%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BComputer%2BScience%2Band%2BEngineering%2B%2528UBMK%2529%252C%2BOctober%252C%2B2017%252C%2BAntalya%252C%2BTurkey%252C%2B816%25E2%2580%2593820.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChen%2BZ.%252C%2B%250AYeo%2BC.%2BK.%252C%2B%250ALee%2BB.%2BS.%252C%2Band%2B%250ALau%2BC.%2BT.%252C%2BAutoencoder-based%2Bnetwork%2Banomaly%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2018%2BWireless%2BTelecommunications%2BSymposium%2B%2528WTS%2529%252C%2BApril%252C%2B2018%252C%2BPhoenix%252C%2BAZ%252C%2BUSA%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWoo%2BJ.-H.%252C%2B%250ASong%2BJ.-Y.%252C%2Band%2B%250AChoi%2BY.-J.%252C%2BPerformance%2Benhancement%2Bof%2Bdeep%2Bneural%2Bnetwork%2Busing%2Bfeature%2Bselection%2Band%2Bpreprocessing%2Bfor%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BConference%2Bon%2BArtificial%2BIntelligence%2Bin%2BInformation%2Band%2BCommunication%2B%2528ICAIIC%2529%252C%2BFebruary%252C%2B2019%252C%2BOkinawa%252C%2BJapan%252C%2B415%25E2%2580%2593417.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMikhail%2BI.%252C%2B%250AKh%2BK.%2BS.%252C%2B%250AKlimenko%2BA.%252C%2Band%2B%250ABalenko%2BE.%252C%2BNeural%2Bnets%2Bto%2Bdetect%2Babnormal%2Btraffic%2Bin%2Bcommunication%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BMulti-Conference%2Bon%2BIndustrial%2BEngineering%2Band%2BModern%2BTechnologies%2B%2528FarEastCon%2529%252C%2BOctober%252C%2B2019%252C%2BVladivostok%252C%2BRussia%252C%2B1%25E2%2580%25933.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZyad%2BE.%252C%2B%250AKhalid%2BC.%252C%2Band%2B%250AMohammed%2BB.%252C%2BAn%2Beffective%2Bnetwork%2Bintrusion%2Bdetection%2Bbased%2Bon%2Btruncated%2Bmean%2BLDA%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BElectrical%2Band%2BInformation%2BTechnologies%2B%2528ICEIT%2529%252C%2BNovember%252C%2B2017%252C%2BRabat%252C%2BMorocco%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AGao%2BJ.%252C%2B%250AChai%2BS.%252C%2B%250AZhang%2BC.%252C%2B%250AZhang%2BB.%252C%2Band%2B%250ACui%2BL.%252C%2BA%2Bnovel%2Bintrusion%2Bdetection%2Bsystem%2Bbased%2Bon%2Bextreme%2Bmachine%2Blearning%2Band%2Bmulti-voting%2Btechnology%252C%2BProceedings%2Bof%2Bthe%2B2019%2BChinese%2BControl%2BConference%2B%2528CCC%2529%252C%2BJuly%252C%2B2019%252C%2BGuangzhou%252C%2BChina%252C%2B8909%25E2%2580%25938914.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

70/91

10.1016/j.jisa.2018.05.002
Web of Science®Google Scholar
154
Belavagi M. C. and Muniyal B., Game theoretic approach towards intrusion detection, 1,
Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT),
August, 2016, Coimbatore, India, 1–5.
Google Scholar
155
Naseer S., Saleem Y., Khalid S., Bashir M. K., Han J., Iqbal M. M., and Han K., Enhanced network
anomaly detection based on deep neural networks, IEEE Access. (2018) 6.
10.1109/ACCESS.2018.2863036
Google Scholar
156
Sahu S. K., Sarangi S., and Jena S. K., A detail analysis on intrusion detection datasets,
Proceedings of the 2014 IEEE International Advance Computing Conference (IACC), February, 2014,
Gurgaon, India, 1348–1353.
Google Scholar
157
Patgiri R., Varshney U., Akutota T., and Kunde R., An investigation on intrusion detection system
using machine learning, Proceedings of the 2018 IEEE Symposium Series on Computational
Intelligence (SSCI), November, 2018, Bangalore, India, 1684–1691.
Google Scholar
158
Wu P., Guo H., and Buckland R., A transfer learning approach for network intrusion detection,
Proceedings of the 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), March,
2019, Suzhou, China, 281–285.
Google Scholar
159
Dong S. and Zhang B., SVDD-Based network traffic anomaly detection method with high
robustness, Proceedings of the 2019 IEEE 5th International Conference on Computer and
Communications (ICCC), December, 2019, Chengdu, China, 1522–1526.
Google Scholar
160
Lee J., Kim J., Kim I., and Han K., Cyber threat detection based on artificial neural networks using
event profiles, IEEE Access. (2019) 7, 165607–165626.
10.1109/ACCESS.2019.2953095
Web of Science®Google Scholar
161
Essid M. and Jemili F., Combining intrusion detection datasets using MapReduce, Proceedings of
the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), October, 2016,
Budapest, Hungary, 004724–004728.
Google Scholar
162
Li Z. and Yan G., A spark platform-based intrusion detection system by combining MSMOTE and
improved adaboost algorithms, Proceedings of the 2018 IEEE 9th International Conference on
Software Engineering and Service Science, November, 2018, Beijing, China, 1046–1049.
Google Scholar
163
Ibrahimi K. and Ouaddane M., Management of intrusion detection systems based-KDD99:
analysis with LDA and PCA, Proceedings of the 2017 International Conference on Wireless Networks
and Mobile Communications (WINCOM), November, 2017, Rabat, Morocco, 1–6.
Google Scholar
164
Singh P. and Tiwari A., An efficient approach for intrusion detection in reduced features of KDD99
using ID3 and classification with KNNGA, Proceedings of the 2015 Second International Conference

https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000441185300001&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1016%2Fj.jisa.2018.05.002&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D41%26publication_year%3D2018%26pages%3D1-11%26journal%3DJournal%2Bof%2BInformation%2BSecurity%2Band%2BApplications%26author%3DM.%2BAl-Hawawreh%26author%3DN.%2BMoustafa%26author%3DE.%2BSitnikova%26title%3DIdentification%2Bof%2Bmalicious%2Bactivities%2Bin%2Bindustrial%2Binternet%2Bof%2Bthings%2Bbased%2Bon%2Bdeep%2Blearning%2Bmodels&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.jisa.2018.05.002&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABelavagi%2BM.%2BC.%2Band%2B%250AMuniyal%2BB.%252C%2BGame%2Btheoretic%2Bapproach%2Btowards%2Bintrusion%2Bdetection%252C%2B1%252C%2BProceedings%2Bof%2Bthe%2B2016%2BInternational%2BConference%2Bon%2BInventive%2BComputation%2BTechnologies%2B%2528ICICT%2529%252C%2BAugust%252C%2B2016%252C%2BCoimbatore%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D6%26publication_year%3D2018%26journal%3DIEEE%2BAccess%26author%3DS.%2BNaseer%26author%3DY.%2BSaleem%26author%3DS.%2BKhalid%26author%3DM.%2BK.%2BBashir%26author%3DJ.%2BHan%26author%3DM.%2BM.%2BIqbal%26author%3DK.%2BHan%26title%3DEnhanced%2Bnetwork%2Banomaly%2Bdetection%2Bbased%2Bon%2Bdeep%2Bneural%2Bnetworks&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2018.2863036&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASahu%2BS.%2BK.%252C%2B%250ASarangi%2BS.%252C%2Band%2B%250AJena%2BS.%2BK.%252C%2BA%2Bdetail%2Banalysis%2Bon%2Bintrusion%2Bdetection%2Bdatasets%252C%2BProceedings%2Bof%2Bthe%2B2014%2BIEEE%2BInternational%2BAdvance%2BComputing%2BConference%2B%2528IACC%2529%252C%2BFebruary%252C%2B2014%252C%2BGurgaon%252C%2BIndia%252C%2B1348%25E2%2580%25931353.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APatgiri%2BR.%252C%2B%250AVarshney%2BU.%252C%2B%250AAkutota%2BT.%252C%2Band%2B%250AKunde%2BR.%252C%2BAn%2Binvestigation%2Bon%2Bintrusion%2Bdetection%2Bsystem%2Busing%2Bmachine%2Blearning%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BSymposium%2BSeries%2Bon%2BComputational%2BIntelligence%2B%2528SSCI%2529%252C%2BNovember%252C%2B2018%252C%2BBangalore%252C%2BIndia%252C%2B1684%25E2%2580%25931691.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWu%2BP.%252C%2B%250AGuo%2BH.%252C%2Band%2B%250ABuckland%2BR.%252C%2BA%2Btransfer%2Blearning%2Bapproach%2Bfor%2Bnetwork%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B4th%2BInternational%2BConference%2Bon%2BBig%2BData%2BAnalytics%2B%2528ICBDA%2529%252C%2BMarch%252C%2B2019%252C%2BSuzhou%252C%2BChina%252C%2B281%25E2%2580%2593285.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADong%2BS.%2Band%2B%250AZhang%2BB.%252C%2BSVDD-Based%2Bnetwork%2Btraffic%2Banomaly%2Bdetection%2Bmethod%2Bwith%2Bhigh%2Brobustness%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B5th%2BInternational%2BConference%2Bon%2BComputer%2Band%2BCommunications%2B%2528ICCC%2529%252C%2BDecember%252C%2B2019%252C%2BChengdu%252C%2BChina%252C%2B1522%25E2%2580%25931526.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000509486300001&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FACCESS.2019.2953095&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2019%26pages%3D165607-165626%26journal%3DIEEE%2BAccess%26author%3DJ.%2BLee%26author%3DJ.%2BKim%26author%3DI.%2BKim%26author%3DK.%2BHan%26title%3DCyber%2Bthreat%2Bdetection%2Bbased%2Bon%2Bartificial%2Bneural%2Bnetworks%2Busing%2Bevent%2Bprofiles&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2019.2953095&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AEssid%2BM.%2Band%2B%250AJemili%2BF.%252C%2BCombining%2Bintrusion%2Bdetection%2Bdatasets%2Busing%2BMapReduce%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BInternational%2BConference%2Bon%2BSystems%252C%2BMan%252C%2Band%2BCybernetics%2B%2528SMC%2529%252C%2BOctober%252C%2B2016%252C%2BBudapest%252C%2BHungary%252C%2B004724%25E2%2580%2593004728.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALi%2BZ.%2Band%2B%250AYan%2BG.%252C%2BA%2Bspark%2Bplatform-based%2Bintrusion%2Bdetection%2Bsystem%2Bby%2Bcombining%2BMSMOTE%2Band%2Bimproved%2Badaboost%2Balgorithms%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B9th%2BInternational%2BConference%2Bon%2BSoftware%2BEngineering%2Band%2BService%2BScience%252C%2BNovember%252C%2B2018%252C%2BBeijing%252C%2BChina%252C%2B1046%25E2%2580%25931049.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AIbrahimi%2BK.%2Band%2B%250AOuaddane%2BM.%252C%2BManagement%2Bof%2Bintrusion%2Bdetection%2Bsystems%2Bbased-KDD99%253A%2Banalysis%2Bwith%2BLDA%2Band%2BPCA%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BWireless%2BNetworks%2Band%2BMobile%2BCommunications%2B%2528WINCOM%2529%252C%2BNovember%252C%2B2017%252C%2BRabat%252C%2BMorocco%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

71/91

on Advances in Computing and Communication Engineering, May, 2015, Dehradun, India, 445–452.
Google Scholar
165
Jiang J., Jing X., Lv B., and Li M., A novel multi-classification intrusion detection model based on
relevance vector machine, Proceedings of the 2015 11th International Conference on Computational
Intelligence and Security (CIS), December, 2015, Shenzhen, China, 303–307.
Google Scholar
166
Karande H. A. and Gupta S. S., Ontology based intrusion detection system for web application
security, Proceedings of the 2015 International Conference on Communication Networks (ICCN),
November, 2015, Gwalior, India, 228–232.
Google Scholar
167
Chandak T., Ghorpade C., and Shukla S., Effective analysis of feature selection algorithms for
network based intrusion detection system, Proceedings of the 2019 IEEE Bombay Section Signature
Conference (IBSSC), July. 2019, Mumbai, India, 1–5.
Google Scholar
168
Uikey R. and Gyanchandani M., Survey on classification techniques applied to intrusion detection
system and its comparative analysis, Proceedings of the 2019 International Conference on
Communication and Electronics Systems (ICCES), July. 2019, Coimbatore, India, 1451–1456.
Google Scholar
169
Elisa N., Yang L., and Naik N., Dendritic cell algorithm with optimised parameters using genetic
algorithm, Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), July. 2018,
Rio de Janeiro, Brazil, 1–8.
Google Scholar
170
Aburomman A. A. and Bin Ibne Reaz M., Ensemble of binary SVM classifiers based on PCA and
LDA feature extraction for intrusion detection, Proceedings of the 2016 IEEE Advanced Information
Management, Communicates, Electronic and Automation Control Conference (IMCEC), October,
2016, Xi’an, China, 636–640.
Google Scholar
171
Danane Y. and Parvat T., Intrusion detection system using fuzzy genetic algorithm, Proceedings of
the 2015 International Conference on Pervasive Computing (ICPC), January, 2015, Pune, India, 1–5.
Google Scholar
172
Bjerkestrand T., Tsaptsinos D., and Pfluegel E., An evaluation of feature selection and reduction
algorithms for network IDS data, Proceedings of the 2015 International Conference on Cyber
Situational Awareness, Data Analytics and Assessment (CyberSA), June. 2015, London, UK, 1–2.
Google Scholar
173
Mehmood T. and Rais H. B. M., Machine learning algorithms in context of intrusion detection,
Proceedings of the 2016 3rd International Conference on Computer and Information Sciences
(ICCOINS), August, 2016, Kuala Lumpur, Malaysia, 369–373.
Google Scholar
174
Khan R. U., Zhang X., Alazab M., and Kumar R., An improved convolutional neural network model
for intrusion detection in networks, Proceedings of the 2019 Cybersecurity and Cyberforensics
Conference (CCC), May 2019, Melbourne, Australia, 74–77.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASingh%2BP.%2Band%2B%250ATiwari%2BA.%252C%2BAn%2Befficient%2Bapproach%2Bfor%2Bintrusion%2Bdetection%2Bin%2Breduced%2Bfeatures%2Bof%2BKDD99%2Busing%2BID3%2Band%2Bclassification%2Bwith%2BKNNGA%252C%2BProceedings%2Bof%2Bthe%2B2015%2BSecond%2BInternational%2BConference%2Bon%2BAdvances%2Bin%2BComputing%2Band%2BCommunication%2BEngineering%252C%2BMay%252C%2B2015%252C%2BDehradun%252C%2BIndia%252C%2B445%25E2%2580%2593452.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJiang%2BJ.%252C%2B%250AJing%2BX.%252C%2B%250ALv%2BB.%252C%2Band%2B%250ALi%2BM.%252C%2BA%2Bnovel%2Bmulti-classification%2Bintrusion%2Bdetection%2Bmodel%2Bbased%2Bon%2Brelevance%2Bvector%2Bmachine%252C%2BProceedings%2Bof%2Bthe%2B2015%2B11th%2BInternational%2BConference%2Bon%2BComputational%2BIntelligence%2Band%2BSecurity%2B%2528CIS%2529%252C%2BDecember%252C%2B2015%252C%2BShenzhen%252C%2BChina%252C%2B303%25E2%2580%2593307.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKarande%2BH.%2BA.%2Band%2B%250AGupta%2BS.%2BS.%252C%2BOntology%2Bbased%2Bintrusion%2Bdetection%2Bsystem%2Bfor%2Bweb%2Bapplication%2Bsecurity%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BConference%2Bon%2BCommunication%2BNetworks%2B%2528ICCN%2529%252C%2BNovember%252C%2B2015%252C%2BGwalior%252C%2BIndia%252C%2B228%25E2%2580%2593232.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChandak%2BT.%252C%2B%250AGhorpade%2BC.%252C%2Band%2B%250AShukla%2BS.%252C%2BEffective%2Banalysis%2Bof%2Bfeature%2Bselection%2Balgorithms%2Bfor%2Bnetwork%2Bbased%2Bintrusion%2Bdetection%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BBombay%2BSection%2BSignature%2BConference%2B%2528IBSSC%2529%252C%2BJuly.%2B2019%252C%2BMumbai%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AUikey%2BR.%2Band%2B%250AGyanchandani%2BM.%252C%2BSurvey%2Bon%2Bclassification%2Btechniques%2Bapplied%2Bto%2Bintrusion%2Bdetection%2Bsystem%2Band%2Bits%2Bcomparative%2Banalysis%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BConference%2Bon%2BCommunication%2Band%2BElectronics%2BSystems%2B%2528ICCES%2529%252C%2BJuly.%2B2019%252C%2BCoimbatore%252C%2BIndia%252C%2B1451%25E2%2580%25931456.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AElisa%2BN.%252C%2B%250AYang%2BL.%252C%2Band%2B%250ANaik%2BN.%252C%2BDendritic%2Bcell%2Balgorithm%2Bwith%2Boptimised%2Bparameters%2Busing%2Bgenetic%2Balgorithm%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BCongress%2Bon%2BEvolutionary%2BComputation%2B%2528CEC%2529%252C%2BJuly.%2B2018%252C%2BRio%2Bde%2BJaneiro%252C%2BBrazil%252C%2B1%25E2%2580%25938.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAburomman%2BA.%2BA.%2Band%2B%250ABin%2BIbne%2BReaz%2BM.%252C%2BEnsemble%2Bof%2Bbinary%2BSVM%2Bclassifiers%2Bbased%2Bon%2BPCA%2Band%2BLDA%2Bfeature%2Bextraction%2Bfor%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BAdvanced%2BInformation%2BManagement%252C%2BCommunicates%252C%2BElectronic%2Band%2BAutomation%2BControl%2BConference%2B%2528IMCEC%2529%252C%2BOctober%252C%2B2016%252C%2BXi%25E2%2580%2599an%252C%2BChina%252C%2B636%25E2%2580%2593640.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADanane%2BY.%2Band%2B%250AParvat%2BT.%252C%2BIntrusion%2Bdetection%2Bsystem%2Busing%2Bfuzzy%2Bgenetic%2Balgorithm%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BConference%2Bon%2BPervasive%2BComputing%2B%2528ICPC%2529%252C%2BJanuary%252C%2B2015%252C%2BPune%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABjerkestrand%2BT.%252C%2B%250ATsaptsinos%2BD.%252C%2Band%2B%250APfluegel%2BE.%252C%2BAn%2Bevaluation%2Bof%2Bfeature%2Bselection%2Band%2Breduction%2Balgorithms%2Bfor%2Bnetwork%2BIDS%2Bdata%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BConference%2Bon%2BCyber%2BSituational%2BAwareness%252C%2BData%2BAnalytics%2Band%2BAssessment%2B%2528CyberSA%2529%252C%2BJune.%2B2015%252C%2BLondon%252C%2BUK%252C%2B1%25E2%2580%25932.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMehmood%2BT.%2Band%2B%250ARais%2BH.%2BB.%2BM.%252C%2BMachine%2Blearning%2Balgorithms%2Bin%2Bcontext%2Bof%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2016%2B3rd%2BInternational%2BConference%2Bon%2BComputer%2Band%2BInformation%2BSciences%2B%2528ICCOINS%2529%252C%2BAugust%252C%2B2016%252C%2BKuala%2BLumpur%252C%2BMalaysia%252C%2B369%25E2%2580%2593373.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

72/91

Google Scholar
175
Song J., Zhu Z., and Price C., A new evidence accumulation method with hierarchical clustering,
Proceedings of the 2016 IEEE International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), July, 2016, Chengdu, China, 122–126.
Google Scholar
176
Cui H., Research on eliminating abnormal big data based on PSO-SVM, Proceedings of the 2018
IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
October, 2018, Chongqing, China, 2460–2463.
Google Scholar
177
Nagisetty A. and Gupta G. P., Framework for detection of malicious activities in IoT networks using
keras deep learning library, Proceedings of the 2019 3rd International Conference on Computing
Methodologies and Communication (ICCMC), March, 2019, Erode, India, 633–637.
Google Scholar
178
Shao-Bo D., Intrusion feature selection method based on neighborhood distance, Proceedings of
the 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC),
December, 2017, Dalian, China, 748–751.
Google Scholar
179
Almansob S. M. and Lomte S. S., Addressing challenges for intrusion detection system using
naive Bayes and PCA algorithm, Proceedings of the 2017 2nd International Conference for
Convergence in Technology (I2CT), April, 2017, Mumbai, India, 565–568.
Google Scholar
180
Chandra A., Khatri S. K., and Simon R., Filter-based attribute selection approach for intrusion
detection using k-means clustering and sequential minimal optimization techniq, Proceedings of the
2019 Amity International Conference on Artificial Intelligence (AICAI), February, 2019, Dubai, United
Arab Emirates, 740–745.
Google Scholar
181
Jia Y., Wang M., and Wang Y., Network intrusion detection algorithm based on deep neural
network, IET Information Security. (2019) 13, no. 1, 48–53.
10.1049/iet-ifs.2018.5258
Web of Science®Google Scholar
182
Mehmood T. and Rais H. B. M., SVM for network anomaly detection using ACO feature subset,
Proceedings of the 2015 International Symposium on Mathematical Sciences and Computing
Research (iSMSC), May, 2015, Ipoh, Malaysia, 121–126.
Google Scholar
183
Zhao X., Wang G., and Li Z., Unsupervised network anomaly detection based on abnormality
weights and subspace clustering, Proceedings of the 2016 Sixth International Conference on
Information Science and Technology (ICIST), May, 2016, Dalian, China, 482–486.
Google Scholar
184
Alazab A., Hobbs M., Abawajy J., Khraisat A., and Alazab M., Using response action with
intelligent intrusion detection and prevention system against web application malware, Information
Management and Computer Security. (2014) 22, no. 5, 431–449, https://doi.org/10.1108/IMCS-02-
2013-0007, 2-s2.0-84915760589.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKhan%2BR.%2BU.%252C%2B%250AZhang%2BX.%252C%2B%250AAlazab%2BM.%252C%2Band%2B%250AKumar%2BR.%252C%2BAn%2Bimproved%2Bconvolutional%2Bneural%2Bnetwork%2Bmodel%2Bfor%2Bintrusion%2Bdetection%2Bin%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2B2019%2BCybersecurity%2Band%2BCyberforensics%2BConference%2B%2528CCC%2529%252C%2BMay%2B2019%252C%2BMelbourne%252C%2BAustralia%252C%2B74%25E2%2580%259377.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASong%2BJ.%252C%2B%250AZhu%2BZ.%252C%2Band%2B%250APrice%2BC.%252C%2BA%2Bnew%2Bevidence%2Baccumulation%2Bmethod%2Bwith%2Bhierarchical%2Bclustering%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BInternational%2BConference%2Bon%2BCloud%2BComputing%2Band%2BBig%2BData%2BAnalysis%2B%2528ICCCBDA%2529%252C%2BJuly%252C%2B2016%252C%2BChengdu%252C%2BChina%252C%2B122%25E2%2580%2593126.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ACui%2BH.%252C%2BResearch%2Bon%2Beliminating%2Babnormal%2Bbig%2Bdata%2Bbased%2Bon%2BPSO-SVM%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B3rd%2BAdvanced%2BInformation%2BTechnology%252C%2BElectronic%2Band%2BAutomation%2BControl%2BConference%2B%2528IAEAC%2529%252C%2BOctober%252C%2B2018%252C%2BChongqing%252C%2BChina%252C%2B2460%25E2%2580%25932463.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANagisetty%2BA.%2Band%2B%250AGupta%2BG.%2BP.%252C%2BFramework%2Bfor%2Bdetection%2Bof%2Bmalicious%2Bactivities%2Bin%2BIoT%2Bnetworks%2Busing%2Bkeras%2Bdeep%2Blearning%2Blibrary%252C%2BProceedings%2Bof%2Bthe%2B2019%2B3rd%2BInternational%2BConference%2Bon%2BComputing%2BMethodologies%2Band%2BCommunication%2B%2528ICCMC%2529%252C%2BMarch%252C%2B2019%252C%2BErode%252C%2BIndia%252C%2B633%25E2%2580%2593637.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AShao-Bo%2BD.%252C%2BIntrusion%2Bfeature%2Bselection%2Bmethod%2Bbased%2Bon%2Bneighborhood%2Bdistance%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BComputer%2BSystems%252C%2BElectronics%2Band%2BControl%2B%2528ICCSEC%2529%252C%2BDecember%252C%2B2017%252C%2BDalian%252C%2BChina%252C%2B748%25E2%2580%2593751.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAlmansob%2BS.%2BM.%2Band%2B%250ALomte%2BS.%2BS.%252C%2BAddressing%2Bchallenges%2Bfor%2Bintrusion%2Bdetection%2Bsystem%2Busing%2Bnaive%2BBayes%2Band%2BPCA%2Balgorithm%252C%2BProceedings%2Bof%2Bthe%2B2017%2B2nd%2BInternational%2BConference%2Bfor%2BConvergence%2Bin%2BTechnology%2B%2528I2CT%2529%252C%2BApril%252C%2B2017%252C%2BMumbai%252C%2BIndia%252C%2B565%25E2%2580%2593568.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChandra%2BA.%252C%2B%250AKhatri%2BS.%2BK.%252C%2Band%2B%250ASimon%2BR.%252C%2BFilter-based%2Battribute%2Bselection%2Bapproach%2Bfor%2Bintrusion%2Bdetection%2Busing%2Bk-means%2Bclustering%2Band%2Bsequential%2Bminimal%2Boptimization%2Btechniq%252C%2BProceedings%2Bof%2Bthe%2B2019%2BAmity%2BInternational%2BConference%2Bon%2BArtificial%2BIntelligence%2B%2528AICAI%2529%252C%2BFebruary%252C%2B2019%252C%2BDubai%252C%2BUnited%2BArab%2BEmirates%252C%2B740%25E2%2580%2593745.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000455639700006&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1049%2Fiet-ifs.2018.5258&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D13%26publication_year%3D2019%26pages%3D48-53%26journal%3DIET%2BInformation%2BSecurity%26author%3DY.%2BJia%26author%3DM.%2BWang%26author%3DY.%2BWang%26title%3DNetwork%2Bintrusion%2Bdetection%2Balgorithm%2Bbased%2Bon%2Bdeep%2Bneural%2Bnetwork&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1049%2Fiet-ifs.2018.5258&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMehmood%2BT.%2Band%2B%250ARais%2BH.%2BB.%2BM.%252C%2BSVM%2Bfor%2Bnetwork%2Banomaly%2Bdetection%2Busing%2BACO%2Bfeature%2Bsubset%252C%2BProceedings%2Bof%2Bthe%2B2015%2BInternational%2BSymposium%2Bon%2BMathematical%2BSciences%2Band%2BComputing%2BResearch%2B%2528iSMSC%2529%252C%2BMay%252C%2B2015%252C%2BIpoh%252C%2BMalaysia%252C%2B121%25E2%2580%2593126.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZhao%2BX.%252C%2B%250AWang%2BG.%252C%2Band%2B%250ALi%2BZ.%252C%2BUnsupervised%2Bnetwork%2Banomaly%2Bdetection%2Bbased%2Bon%2Babnormality%2Bweights%2Band%2Bsubspace%2Bclustering%252C%2BProceedings%2Bof%2Bthe%2B2016%2BSixth%2BInternational%2BConference%2Bon%2BInformation%2BScience%2Band%2BTechnology%2B%2528ICIST%2529%252C%2BMay%252C%2B2016%252C%2BDalian%252C%2BChina%252C%2B482%25E2%2580%2593486.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1108/IMCS-02-2013-0007

73/91

10.1108/IMCS-02-2013-0007
Google Scholar
185
Duque S. and Omar M. N. B., Using data mining algorithms for developing a model for intrusion
detection system (IDS), Procedia Computer Science. (2015) 61, 46–51.
10.1016/j.procs.2015.09.145
Web of Science®Google Scholar
186
Harrou F., Bouyeddou B., Sun Y., and Kadri B., A method to detect DOS and DDOS attacks based
on generalized likelihood ratio test, Proceedings of the 2018 International Conference on Applied
Smart Systems (ICASS), November, 2018, Medea, Algeria, 1–6.
Google Scholar
187
Harrou F., Bouyeddou B., Sun Y., and Kadri B., Detecting cyber-attacks using a CRPS-based
monitoring approach, Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), November, 2018, Bangalore, India, 618–622.
Google Scholar
188
Bouyeddou B., Harrou F., Sun Y., and Kadri B., An effective network intrusion detection using
hellinger distance-based monitoring mechanism, Proceedings of the 2018 International Conference on
Applied Smart Systems (ICASS), November, 2018, Medea, Algeria, 1–6.
Google Scholar
189
Bouyeddou B., Harrou F., Sun Y., and Kadri B., Detection of smurf flooding attacks using Kullback-
Leibler-based scheme, Proceedings of the 2018 4th International Conference on Computer and
Technology Applications (ICCTA), May, 2018, Istanbul, Turkey, 11–15.
Google Scholar
190
Fan G. and Min Y., Automatic attack scenario construction by mining meta-alert sequences,
Proceedings of the 2009 Second Pacific-Asia Conference on Web Mining and Web-Based Application,
June, 2009, Wuhan, China, 149–153.
Google Scholar
191
Fan G., JiHua Y., and Min Y., Design and implementation of a distributed ids alert aggregation
model, Proceedings of the 2009 4th International Conference on Computer Science Education, July,
2009, Nanning, China, 975–980.
Google Scholar
192
Salehi H., Shirazi H., and Moghadam R. A., Increasing overall network security by integrating
signature-based NIDS with packet filtering firewall, Proceedings of the 2009 International Joint
Conference on Artificial Intelligence, April, 2009, Hainan, China, 357–362.
Google Scholar
193
Lippmann R., Haines J. W., Fried D. J., Korba J., and Das K., The 1999 DARPA off-line intrusion
detection evaluation, Computer Networks. (2000) 34, no. 4, 579–595, https://doi.org/10.1016/S1389-
1286(00)00139-0, 2-s2.0-0034301517.
10.1016/S1389-1286(00)00139-0
Web of Science®Google Scholar
194
Moustafa N. and Slay J., The significant features of the UNSW-NB15 and the KDD99 data sets for
network intrusion detection systems, Proceedings of the 2015 4th International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS), November, 2015,
Kyoto, Japan, 25–31.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D22%26publication_year%3D2014%26pages%3D431-449%26journal%3DInformation%2BManagement%2Band%2BComputer%2BSecurity%26author%3DA.%2BAlazab%26author%3DM.%2BHobbs%26author%3DJ.%2BAbawajy%26author%3DA.%2BKhraisat%26author%3DM.%2BAlazab%26title%3DUsing%2Bresponse%2Baction%2Bwith%2Bintelligent%2Bintrusion%2Bdetection%2Band%2Bprevention%2Bsystem%2Bagainst%2Bweb%2Bapplication%2Bmalware&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1108%2FIMCS-02-2013-0007&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000373845000006&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1016%2Fj.procs.2015.09.145&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D61%26publication_year%3D2015%26pages%3D46-51%26journal%3DProcedia%2BComputer%2BScience%26author%3DS.%2BDuque%26author%3DM.%2BN.%2BB.%2BOmar%26title%3DUsing%2Bdata%2Bmining%2Balgorithms%2Bfor%2Bdeveloping%2Ba%2Bmodel%2Bfor%2Bintrusion%2Bdetection%2Bsystem%2B%2528IDS%2529&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.procs.2015.09.145&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHarrou%2BF.%252C%2B%250ABouyeddou%2BB.%252C%2B%250ASun%2BY.%252C%2Band%2B%250AKadri%2BB.%252C%2BA%2Bmethod%2Bto%2Bdetect%2BDOS%2Band%2BDDOS%2Battacks%2Bbased%2Bon%2Bgeneralized%2Blikelihood%2Bratio%2Btest%252C%2BProceedings%2Bof%2Bthe%2B2018%2BInternational%2BConference%2Bon%2BApplied%2BSmart%2BSystems%2B%2528ICASS%2529%252C%2BNovember%252C%2B2018%252C%2BMedea%252C%2BAlgeria%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHarrou%2BF.%252C%2B%250ABouyeddou%2BB.%252C%2B%250ASun%2BY.%252C%2Band%2B%250AKadri%2BB.%252C%2BDetecting%2Bcyber-attacks%2Busing%2Ba%2BCRPS-based%2Bmonitoring%2Bapproach%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BSymposium%2BSeries%2Bon%2BComputational%2BIntelligence%2B%2528SSCI%2529%252C%2BNovember%252C%2B2018%252C%2BBangalore%252C%2BIndia%252C%2B618%25E2%2580%2593622.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABouyeddou%2BB.%252C%2B%250AHarrou%2BF.%252C%2B%250ASun%2BY.%252C%2Band%2B%250AKadri%2BB.%252C%2BAn%2Beffective%2Bnetwork%2Bintrusion%2Bdetection%2Busing%2Bhellinger%2Bdistance-based%2Bmonitoring%2Bmechanism%252C%2BProceedings%2Bof%2Bthe%2B2018%2BInternational%2BConference%2Bon%2BApplied%2BSmart%2BSystems%2B%2528ICASS%2529%252C%2BNovember%252C%2B2018%252C%2BMedea%252C%2BAlgeria%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABouyeddou%2BB.%252C%2B%250AHarrou%2BF.%252C%2B%250ASun%2BY.%252C%2Band%2B%250AKadri%2BB.%252C%2BDetection%2Bof%2Bsmurf%2Bflooding%2Battacks%2Busing%2BKullback-Leibler-based%2Bscheme%252C%2BProceedings%2Bof%2Bthe%2B2018%2B4th%2BInternational%2BConference%2Bon%2BComputer%2Band%2BTechnology%2BApplications%2B%2528ICCTA%2529%252C%2BMay%252C%2B2018%252C%2BIstanbul%252C%2BTurkey%252C%2B11%25E2%2580%259315.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFan%2BG.%2Band%2B%250AMin%2BY.%252C%2BAutomatic%2Battack%2Bscenario%2Bconstruction%2Bby%2Bmining%2Bmeta-alert%2Bsequences%252C%2BProceedings%2Bof%2Bthe%2B2009%2BSecond%2BPacific-Asia%2BConference%2Bon%2BWeb%2BMining%2Band%2BWeb-Based%2BApplication%252C%2BJune%252C%2B2009%252C%2BWuhan%252C%2BChina%252C%2B149%25E2%2580%2593153.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFan%2BG.%252C%2B%250AJiHua%2BY.%252C%2Band%2B%250AMin%2BY.%252C%2BDesign%2Band%2Bimplementation%2Bof%2Ba%2Bdistributed%2Bids%2Balert%2Baggregation%2Bmodel%252C%2BProceedings%2Bof%2Bthe%2B2009%2B4th%2BInternational%2BConference%2Bon%2BComputer%2BScience%2BEducation%252C%2BJuly%252C%2B2009%252C%2BNanning%252C%2BChina%252C%2B975%25E2%2580%2593980.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASalehi%2BH.%252C%2B%250AShirazi%2BH.%252C%2Band%2B%250AMoghadam%2BR.%2BA.%252C%2BIncreasing%2Boverall%2Bnetwork%2Bsecurity%2Bby%2Bintegrating%2Bsignature-based%2BNIDS%2Bwith%2Bpacket%2Bfiltering%2Bfirewall%252C%2BProceedings%2Bof%2Bthe%2B2009%2BInternational%2BJoint%2BConference%2Bon%2BArtificial%2BIntelligence%252C%2BApril%252C%2B2009%252C%2BHainan%252C%2BChina%252C%2B357%25E2%2580%2593362.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1016/S1389-1286(00)00139-0
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000089203500004&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1016%2FS1389-1286%2800%2900139-0&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D34%26publication_year%3D2000%26pages%3D579-595%26journal%3DComputer%2BNetworks%26author%3DR.%2BLippmann%26author%3DJ.%2BW.%2BHaines%26author%3DD.%2BJ.%2BFried%26author%3DJ.%2BKorba%26author%3DK.%2BDas%26title%3DThe%2B1999%2BDARPA%2Boff-line%2Bintrusion%2Bdetection%2Bevaluation&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2FS1389-1286%2800%2900139-0&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMoustafa%2BN.%2Band%2B%250ASlay%2BJ.%252C%2BThe%2Bsignificant%2Bfeatures%2Bof%2Bthe%2BUNSW-NB15%2Band%2Bthe%2BKDD99%2Bdata%2Bsets%2Bfor%2Bnetwork%2Bintrusion%2Bdetection%2Bsystems%252C%2BProceedings%2Bof%2Bthe%2B2015%2B4th%2BInternational%2BWorkshop%2Bon%2BBuilding%2BAnalysis%2BDatasets%2Band%2BGathering%2BExperience%2BReturns%2Bfor%2BSecurity%2B%2528BADGERS%2529%252C%2BNovember%252C%2B2015%252C%2BKyoto%252C%2BJapan%252C%2B25%25E2%2580%259331.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

74/91

195
Jing D. and Chen H.-B., SVM based network intrusion detection for the UNSW-NB15 dataset,
Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), October, 2019,
Chongqing, China, 1–4.
Google Scholar
196
Husain A., Salem A., Jim C., and Dimitoglou G., Development of an efficient network intrusion
detection model using extreme gradient boosting (XGBoost) on the UNSW-NB15 dataset, Proceedings
of the 2019 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), December, 2019, Ajman, United Arab Emirates, 1–7.
Google Scholar
197
Zhiqiang L., Mohi-Ud-Din G., Bing L., Jianchao L., Ye Z., and Zhijun L., Modeling network intrusion
detection system using feed-forward neural network using UNSW-NB15 dataset, Proceedings of the
2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), August, 2019,
Oshawa, Canada, 299–303.
Google Scholar
198
Janarthanan T. and Zargari S., Feature selection in UNSW-NB15 and KDDCUP’99 datasets,
Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), June,
2017, Edinburgh, UK, 1881–1886.
Google Scholar
199
Divekar A., Parekh M., Savla V., Mishra R., and Shirole M., Benchmarking datasets for anomaly-
based network intrusion detection: KDD CUP 99 alternatives, Proceedings of the 2018 IEEE 3rd
International Conference on Computing, Communication and Security (ICCCS), October, 2018,
Kathmandu, Nepal, 1–8.
Google Scholar
200
Wheelus C., Bou-Harb E., and Zhu X., Tackling class imbalance in cyber security datasets,
Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration (IRI),
July, 2018, Salt Lake City, UT, USA, 229–232.
Google Scholar
201
Al-Zewairi M., Almajali S., and Awajan A., Experimental evaluation of a multi-layer feed-forward
artificial neural network classifier for network intrusion detection system, Proceedings of the 2017
International Conference on New Trends in Computing Sciences (ICTCS), October, 2017, Amman,
Jordan, 167–172.
Google Scholar
202
Sethi K., Kumar R., Prajapati N., and Bera P., Deep reinforcement learning based intrusion
detection system for cloud infrastructure, Proceedings of the 2020 International Conference on
COMmunication Systems NETworkS (COMSNETS), January, 2020, Bengaluru, India, 1–6.
Google Scholar
203
Moustafa N., Creech G., Sitnikova E., and Keshk M., Collaborative anomaly detection framework
for handling big data of cloud computing, Proceedings of the 2017 Military Communications and
Information Systems Conference (MilCIS), November, 2017, Canberra, Australia, 1–6.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJing%2BD.%2Band%2B%250AChen%2BH.-B.%252C%2BSVM%2Bbased%2Bnetwork%2Bintrusion%2Bdetection%2Bfor%2Bthe%2BUNSW-NB15%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B13th%2BInternational%2BConference%2Bon%2BASIC%2B%2528ASICON%2529%252C%2BOctober%252C%2B2019%252C%2BChongqing%252C%2BChina%252C%2B1%25E2%2580%25934.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHusain%2BA.%252C%2B%250ASalem%2BA.%252C%2B%250AJim%2BC.%252C%2Band%2B%250ADimitoglou%2BG.%252C%2BDevelopment%2Bof%2Ban%2Befficient%2Bnetwork%2Bintrusion%2Bdetection%2Bmodel%2Busing%2Bextreme%2Bgradient%2Bboosting%2B%2528XGBoost%2529%2Bon%2Bthe%2BUNSW-NB15%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BInternational%2BSymposium%2Bon%2BSignal%2BProcessing%2Band%2BInformation%2BTechnology%2B%2528ISSPIT%2529%252C%2BDecember%252C%2B2019%252C%2BAjman%252C%2BUnited%2BArab%2BEmirates%252C%2B1%25E2%2580%25937.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZhiqiang%2BL.%252C%2B%250AMohi-Ud-Din%2BG.%252C%2B%250ABing%2BL.%252C%2B%250AJianchao%2BL.%252C%2B%250AYe%2BZ.%252C%2Band%2B%250AZhijun%2BL.%252C%2BModeling%2Bnetwork%2Bintrusion%2Bdetection%2Bsystem%2Busing%2Bfeed-forward%2Bneural%2Bnetwork%2Busing%2BUNSW-NB15%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B7th%2BInternational%2BConference%2Bon%2BSmart%2BEnergy%2BGrid%2BEngineering%2B%2528SEGE%2529%252C%2BAugust%252C%2B2019%252C%2BOshawa%252C%2BCanada%252C%2B299%25E2%2580%2593303.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJanarthanan%2BT.%2Band%2B%250AZargari%2BS.%252C%2BFeature%2Bselection%2Bin%2BUNSW-NB15%2Band%2BKDDCUP%25E2%2580%259999%2Bdatasets%252C%2BProceedings%2Bof%2Bthe%2B2017%2BIEEE%2B26th%2BInternational%2BSymposium%2Bon%2BIndustrial%2BElectronics%2B%2528ISIE%2529%252C%2BJune%252C%2B2017%252C%2BEdinburgh%252C%2BUK%252C%2B1881%25E2%2580%25931886.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADivekar%2BA.%252C%2B%250AParekh%2BM.%252C%2B%250ASavla%2BV.%252C%2B%250AMishra%2BR.%252C%2Band%2B%250AShirole%2BM.%252C%2BBenchmarking%2Bdatasets%2Bfor%2Banomaly-based%2Bnetwork%2Bintrusion%2Bdetection%253A%2BKDD%2BCUP%2B99%2Balternatives%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B3rd%2BInternational%2BConference%2Bon%2BComputing%252C%2BCommunication%2Band%2BSecurity%2B%2528ICCCS%2529%252C%2BOctober%252C%2B2018%252C%2BKathmandu%252C%2BNepal%252C%2B1%25E2%2580%25938.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWheelus%2BC.%252C%2B%250ABou-Harb%2BE.%252C%2Band%2B%250AZhu%2BX.%252C%2BTackling%2Bclass%2Bimbalance%2Bin%2Bcyber%2Bsecurity%2Bdatasets%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BInternational%2BConference%2Bon%2BInformation%2BReuse%2Band%2BIntegration%2B%2528IRI%2529%252C%2BJuly%252C%2B2018%252C%2BSalt%2BLake%2BCity%252C%2BUT%252C%2BUSA%252C%2B229%25E2%2580%2593232.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAl-Zewairi%2BM.%252C%2B%250AAlmajali%2BS.%252C%2Band%2B%250AAwajan%2BA.%252C%2BExperimental%2Bevaluation%2Bof%2Ba%2Bmulti-layer%2Bfeed-forward%2Bartificial%2Bneural%2Bnetwork%2Bclassifier%2Bfor%2Bnetwork%2Bintrusion%2Bdetection%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BNew%2BTrends%2Bin%2BComputing%2BSciences%2B%2528ICTCS%2529%252C%2BOctober%252C%2B2017%252C%2BAmman%252C%2BJordan%252C%2B167%25E2%2580%2593172.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASethi%2BK.%252C%2B%250AKumar%2BR.%252C%2B%250APrajapati%2BN.%252C%2Band%2B%250ABera%2BP.%252C%2BDeep%2Breinforcement%2Blearning%2Bbased%2Bintrusion%2Bdetection%2Bsystem%2Bfor%2Bcloud%2Binfrastructure%252C%2BProceedings%2Bof%2Bthe%2B2020%2BInternational%2BConference%2Bon%2BCOMmunication%2BSystems%2BNETworkS%2B%2528COMSNETS%2529%252C%2BJanuary%252C%2B2020%252C%2BBengaluru%252C%2BIndia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMoustafa%2BN.%252C%2B%250ACreech%2BG.%252C%2B%250ASitnikova%2BE.%252C%2Band%2B%250AKeshk%2BM.%252C%2BCollaborative%2Banomaly%2Bdetection%2Bframework%2Bfor%2Bhandling%2Bbig%2Bdata%2Bof%2Bcloud%2Bcomputing%252C%2BProceedings%2Bof%2Bthe%2B2017%2BMilitary%2BCommunications%2Band%2BInformation%2BSystems%2BConference%2B%2528MilCIS%2529%252C%2BNovember%252C%2B2017%252C%2BCanberra%252C%2BAustralia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

75/91

204
Siddiqui S., Khan M. S., and Ferens K., Multiscale Hebbian neural network for cyber threat
detection, Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), May
2017, Anchorage, AK, USA, ISSN, 2161–4407.
Google Scholar
205
Aravind M. A. M. and Kalaiselvi V., Design of an intrusion detection system based on distance
feature using ensemble classifier, Proceedings of the 2017 Fourth International Conference on Signal
Processing, Communication and Networking (ICSCN), March 2017, Chennai, India, 1–6.
Google Scholar
206
Yang S., Research on network behavior anomaly analysis based on bidirectional LSTM,
Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), March 2019, Chengdu, China, 798–802.
Google Scholar
207
Dlamini G., Galieva R., and Fahim M., A lightweight deep autoencoder-based approach for
unsupervised anomaly detection, Proceedings of the 2019 IEEE/ACS 16th International Conference
on Computer Systems and Applications (AICCSA), November, 2019, Abu Dhabi, United Arab
Emirates, 1–5.
Google Scholar
208
Azizjon M., Jumabek A., and Kim W., 1D CNN based network intrusion detection with
normalization on imbalanced data, Proceedings of the 2020 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), February, 2020, Fukuoka, Japan, 218–224.
Google Scholar
209
Ahmad U., Asim H., Hassan M. T., and Naseer S., Analysis of classification techniques for
intrusion detection, Proceedings of the 2019 International Conference on Innovative Computing (ICIC),
November, 2019, Lahore, Pakistan, 1–6.
Google Scholar
210
Tama B. A., Comuzzi M., and Rhee K. H., Tse-IDS A two-stage classifier ensemble for intelligent
anomaly-based intrusion detection system, IEEE Access. (2019) 7, 94497–94507.
10.1109/ACCESS.2019.2928048
Web of Science®Google Scholar
211
Olasehinde O. O., Johnson O. V., and Olayemi O. C., Evaluation of selected meta learning
algorithms for the prediction improvement of network intrusion detection system, Proceedings of the
2020 International Conference in Mathematics, Computer Engineering and Computer Science
(ICMCECS), March, 2020, Ayobo, Nigeria, 1–7.
Google Scholar
212
He H., Sun X., He H., Zhao G., He L., and Ren J., A novel multimodal-sequential approach based
on multi-view features for network intrusion detection, IEEE Access. (2019) 7, 183207–183221.
10.1109/ACCESS.2019.2959131
Google Scholar
213
Kamarudin M. H., Maple C., Watson T., and Safa N. S., A LogitBoost-based algorithm for
detecting known and unknown web attacks, IEEE Access. (2017) 5, 26190–26200.
10.1109/ACCESS.2017.2766844
Web of Science®Google Scholar
214
Gibert D., Mateu C., and Planes J., A hierarchical convolutional neural network for malware
classification, Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN),

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASiddiqui%2BS.%252C%2B%250AKhan%2BM.%2BS.%252C%2Band%2B%250AFerens%2BK.%252C%2BMultiscale%2BHebbian%2Bneural%2Bnetwork%2Bfor%2Bcyber%2Bthreat%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BJoint%2BConference%2Bon%2BNeural%2BNetworks%2B%2528IJCNN%2529%252C%2BMay%2B2017%252C%2BAnchorage%252C%2BAK%252C%2BUSA%252C%2BISSN%252C%2B2161%25E2%2580%25934407.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAravind%2BM.%2BA.%2BM.%2Band%2B%250AKalaiselvi%2BV.%252C%2BDesign%2Bof%2Ban%2Bintrusion%2Bdetection%2Bsystem%2Bbased%2Bon%2Bdistance%2Bfeature%2Busing%2Bensemble%2Bclassifier%252C%2BProceedings%2Bof%2Bthe%2B2017%2BFourth%2BInternational%2BConference%2Bon%2BSignal%2BProcessing%252C%2BCommunication%2Band%2BNetworking%2B%2528ICSCN%2529%252C%2BMarch%2B2017%252C%2BChennai%252C%2BIndia%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYang%2BS.%252C%2BResearch%2Bon%2Bnetwork%2Bbehavior%2Banomaly%2Banalysis%2Bbased%2Bon%2Bbidirectional%2BLSTM%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B3rd%2BInformation%2BTechnology%252C%2BNetworking%252C%2BElectronic%2Band%2BAutomation%2BControl%2BConference%2B%2528ITNEC%2529%252C%2BMarch%2B2019%252C%2BChengdu%252C%2BChina%252C%2B798%25E2%2580%2593802.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADlamini%2BG.%252C%2B%250AGalieva%2BR.%252C%2Band%2B%250AFahim%2BM.%252C%2BA%2Blightweight%2Bdeep%2Bautoencoder-based%2Bapproach%2Bfor%2Bunsupervised%2Banomaly%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%252FACS%2B16th%2BInternational%2BConference%2Bon%2BComputer%2BSystems%2Band%2BApplications%2B%2528AICCSA%2529%252C%2BNovember%252C%2B2019%252C%2BAbu%2BDhabi%252C%2BUnited%2BArab%2BEmirates%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAzizjon%2BM.%252C%2B%250AJumabek%2BA.%252C%2Band%2B%250AKim%2BW.%252C%2B1D%2BCNN%2Bbased%2Bnetwork%2Bintrusion%2Bdetection%2Bwith%2Bnormalization%2Bon%2Bimbalanced%2Bdata%252C%2BProceedings%2Bof%2Bthe%2B2020%2BInternational%2BConference%2Bon%2BArtificial%2BIntelligence%2Bin%2BInformation%2Band%2BCommunication%2B%2528ICAIIC%2529%252C%2BFebruary%252C%2B2020%252C%2BFukuoka%252C%2BJapan%252C%2B218%25E2%2580%2593224.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAhmad%2BU.%252C%2B%250AAsim%2BH.%252C%2B%250AHassan%2BM.%2BT.%252C%2Band%2B%250ANaseer%2BS.%252C%2BAnalysis%2Bof%2Bclassification%2Btechniques%2Bfor%2Bintrusion%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BConference%2Bon%2BInnovative%2BComputing%2B%2528ICIC%2529%252C%2BNovember%252C%2B2019%252C%2BLahore%252C%2BPakistan%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000478676600028&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FACCESS.2019.2928048&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2019%26pages%3D94497-94507%26journal%3DIEEE%2BAccess%26author%3DB.%2BA.%2BTama%26author%3DM.%2BComuzzi%26author%3DK.%2BH.%2BRhee%26title%3DTse-IDS%2BA%2Btwo-stage%2Bclassifier%2Bensemble%2Bfor%2Bintelligent%2Banomaly-based%2Bintrusion%2Bdetection%2Bsystem&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2019.2928048&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AOlasehinde%2BO.%2BO.%252C%2B%250AJohnson%2BO.%2BV.%252C%2Band%2B%250AOlayemi%2BO.%2BC.%252C%2BEvaluation%2Bof%2Bselected%2Bmeta%2Blearning%2Balgorithms%2Bfor%2Bthe%2Bprediction%2Bimprovement%2Bof%2Bnetwork%2Bintrusion%2Bdetection%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B2020%2BInternational%2BConference%2Bin%2BMathematics%252C%2BComputer%2BEngineering%2Band%2BComputer%2BScience%2B%2528ICMCECS%2529%252C%2BMarch%252C%2B2020%252C%2BAyobo%252C%2BNigeria%252C%2B1%25E2%2580%25937.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2019%26pages%3D183207-183221%26journal%3DIEEE%2BAccess%26author%3DH.%2BHe%26author%3DX.%2BSun%26author%3DH.%2BHe%26author%3DG.%2BZhao%26author%3DL.%2BHe%26author%3DJ.%2BRen%26title%3DA%2Bnovel%2Bmultimodal-sequential%2Bapproach%2Bbased%2Bon%2Bmulti-view%2Bfeatures%2Bfor%2Bnetwork%2Bintrusion%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2019.2959131&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000418881100011&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FACCESS.2017.2766844&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2017%26pages%3D26190-26200%26journal%3DIEEE%2BAccess%26author%3DM.%2BH.%2BKamarudin%26author%3DC.%2BMaple%26author%3DT.%2BWatson%26author%3DN.%2BS.%2BSafa%26title%3DA%2BLogitBoost-based%2Balgorithm%2Bfor%2Bdetecting%2Bknown%2Band%2Bunknown%2Bweb%2Battacks&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2017.2766844&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

76/91

July, 2019, Budapest, Hungary, 1–8.
Google Scholar
215
Selvin V. R. S., Malware Scores Based on Image Processing, 2017, San Jose State University,
San Jose, CA, USA.
10.31979/etd.347x-pf32
Google Scholar
216
Makandar A. and Patrot A., Malware class recognition using image processing techniques,
Proceedings of the 2017 International Conference on Data Management, Analytics and Innovation
(ICDMAI), February, 2017, Pune, India, 76–80.
Google Scholar
217
Makandar A. and Patrot A., Detection and retrieval of malware using classification, Proceedings of
the 2017 International Conference on Computing, Communication, Control and Automation
(ICCUBEA), August, 2017, Pune, India, 1–5.
Google Scholar
218
Claycomb W. R., Huth C. L., Phillips B., Flynn L., and McIntire D., Identifying indicators of insider
threats: insider IT sabotage, Proceedings of the 2013 47th International Carnahan Conference on
Security Technology (ICCST), October, 2013, Medellin, Colombia, 1–5.
Google Scholar
219
Moore A. P., Cassidy T. M., Theis M. C., Bauer D., Rousseau D. M., and Moore S. B., Balancing
Organizational Incentives to Counter Insider Threat, Proceedings of the 2018 IEEE Security and
Privacy Workshops (SPW), May, 2018, San Francisco, CA, USA, 237–246.
Google Scholar
220
Mundie D. A., Perl S., and Huth C. L., Toward an ontology for insider threat research: varieties of
insider threat definitions, Proceedings of the 2013 3rd Workshop on Socio-Technical Aspects in
Security and Trust, June. 2013, Orlando, FL, USA, 26–36.
Google Scholar
221
Igbe O. and Saadawi T., Insider threat detection using an artificial immune system algorithm,
Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication
Conference (UEMCON), November, 2018, New York, NY, USA, 297–302.
Google Scholar
222
Flynn L., Huth C., Trzeciak R., and Buttles P., Best practices against insider threats for all nations,
Proceedings of the 2012 Third Worldwide Cybersecurity Summit (WCS), October. 2012, New Delhi,
India, 1–8.
Google Scholar
223
Claycomb W. R. and Nicoll A., Insider threats to cloud computing: directions for new research
challenges, Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications
Conference, July. 2012, Izmir, Turkey, 387–394.
Google Scholar
224
Aldairi M., Karimi L., and Joshi J., A trust aware unsupervised learning approach for insider threat
detection, Proceedings of the 2019 IEEE 20th International Conference on Information Reuse and
Integration for Data Science (IRI), July, 2019, Los Angeles, CA, USA, 89–98.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AGibert%2BD.%252C%2B%250AMateu%2BC.%252C%2Band%2B%250APlanes%2BJ.%252C%2BA%2Bhierarchical%2Bconvolutional%2Bneural%2Bnetwork%2Bfor%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2019%2BInternational%2BJoint%2BConference%2Bon%2BNeural%2BNetworks%2B%2528IJCNN%2529%252C%2BJuly%252C%2B2019%252C%2BBudapest%252C%2BHungary%252C%2B1%25E2%2580%25938.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2017%26author%3DV.%2BR.%2BS.%2BSelvin%26title%3DMalware%2BScores%2BBased%2Bon%2BImage%2BProcessing&doi=10.1155%2F2023%2F8227751&doiOfLink=10.31979%2Fetd.347x-pf32&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMakandar%2BA.%2Band%2B%250APatrot%2BA.%252C%2BMalware%2Bclass%2Brecognition%2Busing%2Bimage%2Bprocessing%2Btechniques%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BData%2BManagement%252C%2BAnalytics%2Band%2BInnovation%2B%2528ICDMAI%2529%252C%2BFebruary%252C%2B2017%252C%2BPune%252C%2BIndia%252C%2B76%25E2%2580%259380.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMakandar%2BA.%2Band%2B%250APatrot%2BA.%252C%2BDetection%2Band%2Bretrieval%2Bof%2Bmalware%2Busing%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BComputing%252C%2BCommunication%252C%2BControl%2Band%2BAutomation%2B%2528ICCUBEA%2529%252C%2BAugust%252C%2B2017%252C%2BPune%252C%2BIndia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AClaycomb%2BW.%2BR.%252C%2B%250AHuth%2BC.%2BL.%252C%2B%250APhillips%2BB.%252C%2B%250AFlynn%2BL.%252C%2Band%2B%250AMcIntire%2BD.%252C%2BIdentifying%2Bindicators%2Bof%2Binsider%2Bthreats%253A%2Binsider%2BIT%2Bsabotage%252C%2BProceedings%2Bof%2Bthe%2B2013%2B47th%2BInternational%2BCarnahan%2BConference%2Bon%2BSecurity%2BTechnology%2B%2528ICCST%2529%252C%2BOctober%252C%2B2013%252C%2BMedellin%252C%2BColombia%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMoore%2BA.%2BP.%252C%2B%250ACassidy%2BT.%2BM.%252C%2B%250ATheis%2BM.%2BC.%252C%2B%250ABauer%2BD.%252C%2B%250ARousseau%2BD.%2BM.%252C%2Band%2B%250AMoore%2BS.%2BB.%252C%2BBalancing%2BOrganizational%2BIncentives%2Bto%2BCounter%2BInsider%2BThreat%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BSecurity%2Band%2BPrivacy%2BWorkshops%2B%2528SPW%2529%252C%2BMay%252C%2B2018%252C%2BSan%2BFrancisco%252C%2BCA%252C%2BUSA%252C%2B237%25E2%2580%2593246.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMundie%2BD.%2BA.%252C%2B%250APerl%2BS.%252C%2Band%2B%250AHuth%2BC.%2BL.%252C%2BToward%2Ban%2Bontology%2Bfor%2Binsider%2Bthreat%2Bresearch%253A%2Bvarieties%2Bof%2Binsider%2Bthreat%2Bdefinitions%252C%2BProceedings%2Bof%2Bthe%2B2013%2B3rd%2BWorkshop%2Bon%2BSocio-Technical%2BAspects%2Bin%2BSecurity%2Band%2BTrust%252C%2BJune.%2B2013%252C%2BOrlando%252C%2BFL%252C%2BUSA%252C%2B26%25E2%2580%259336.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AIgbe%2BO.%2Band%2B%250ASaadawi%2BT.%252C%2BInsider%2Bthreat%2Bdetection%2Busing%2Ban%2Bartificial%2Bimmune%2Bsystem%2Balgorithm%252C%2BProceedings%2Bof%2Bthe%2B2018%2B9th%2BIEEE%2BAnnual%2BUbiquitous%2BComputing%252C%2BElectronics%2BMobile%2BCommunication%2BConference%2B%2528UEMCON%2529%252C%2BNovember%252C%2B2018%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2B297%25E2%2580%2593302.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFlynn%2BL.%252C%2B%250AHuth%2BC.%252C%2B%250ATrzeciak%2BR.%252C%2Band%2B%250AButtles%2BP.%252C%2BBest%2Bpractices%2Bagainst%2Binsider%2Bthreats%2Bfor%2Ball%2Bnations%252C%2BProceedings%2Bof%2Bthe%2B2012%2BThird%2BWorldwide%2BCybersecurity%2BSummit%2B%2528WCS%2529%252C%2BOctober.%2B2012%252C%2BNew%2BDelhi%252C%2BIndia%252C%2B1%25E2%2580%25938.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AClaycomb%2BW.%2BR.%2Band%2B%250ANicoll%2BA.%252C%2BInsider%2Bthreats%2Bto%2Bcloud%2Bcomputing%253A%2Bdirections%2Bfor%2Bnew%2Bresearch%2Bchallenges%252C%2BProceedings%2Bof%2Bthe%2B2012%2BIEEE%2B36th%2BAnnual%2BComputer%2BSoftware%2Band%2BApplications%2BConference%252C%2BJuly.%2B2012%252C%2BIzmir%252C%2BTurkey%252C%2B387%25E2%2580%2593394.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAldairi%2BM.%252C%2B%250AKarimi%2BL.%252C%2Band%2B%250AJoshi%2BJ.%252C%2BA%2Btrust%2Baware%2Bunsupervised%2Blearning%2Bapproach%2Bfor%2Binsider%2Bthreat%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B20th%2BInternational%2BConference%2Bon%2BInformation%2BReuse%2Band%2BIntegration%2Bfor%2BData%2BScience%2B%2528IRI%2529%252C%2BJuly%252C%2B2019%252C%2BLos%2BAngeles%252C%2BCA%252C%2BUSA%252C%2B89%25E2%2580%259398.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

77/91

225
Liu L., Chen C., Zhang J., De Vel O., and Xiang Y., Insider threat identification using the
simultaneous neural learning of multi-source logs, IEEE Access. (2019) 7, 183162–183176.
10.1109/ACCESS.2019.2957055
Web of Science®Google Scholar
226
Meng F., Lou F., Fu Y., and Tian Z., Deep learning based attribute classification insider threat
detection for data security, Proceedings of the 2018 IEEE Third International Conference on Data
Science in Cyberspace (DSC), June. 2018, Guangzhou, China, 576–581.
Google Scholar
227
Lin L., Zhong S., Jia C., and Chen K., Insider threat detection based on deep belief network
feature representation, Proceedings of the 2017 International Conference on Green Informatics (ICGI),
August. 2017, Fuzhou, China, 54–59.
Google Scholar
228
Saaudi A., Al-Ibadi Z., Tong Y., and Farkas C., Insider threats detection using CNN-LSTM model,
Proceedings of the 2018 International Conference on Computational Science and Computational
Intelligence (CSCI), December, 2018, Las Vegas, NV, USA, 94–99.
Google Scholar
229
Wang J., Cai L., Yu A., and Meng D., Embedding learning with heterogeneous event sequence for
insider threat detection, Proceedings of the 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), November. 2019, 947–954.
Google Scholar
230
Greitzer F. L., Moore A. P., Cappelli D. M., Andrews D. H., Carroll L. A., and Hull T. D., Combating
the insider cyber threat, IEEE Security Privacy. (2008) 6, no. 1, 61–64.
10.1109/MSP.2008.8
Web of Science®Google Scholar
231
Legg P. A., Visualizing the insider threat: challenges and tools for identifying malicious user
activity, Proceedings of the 2015 IEEE Symposium on Visualization for Cyber Security (VizSec),
October, 2015, Chicago, IL, USA, 1–7.
Google Scholar
232
Hall A. J., Pitropakis N., Buchanan W. J., and Moradpoor N., Predicting malicious insider threat
scenarios using organizational data and a heterogeneous stack-classifier, Proceedings of the 2018
IEEE International Conference on Big Data (Big Data), December, 2018, Seattle, WA, USA, 5034–
5039.
Google Scholar
233
Jiang J., Chen J., Gu T., Choo K.-K. R., Liu C., Yu M., Huang W., and Mohapatra P., Warder:
online insider threat detection system using multi-feature modeling and graph-based correlation,
Proceedings of the 2019 IEEE Military Communications Conference, November, 2019, Norfolk, VA,
USA, 1–6.
Google Scholar
234
Liu A., Du X., and Wang N., Recognition of access control role based on convolutional neural
network, Proceedings of the 2018 IEEE 4th International Conference on Computer and
Communications (ICCC), December, 2018, Chengdu, China, 2069–2074.
Google Scholar
235
Noever D., Classifier Suites for Insider Threat Detection, 2019, http://arxiv.org/abs/1901.10948.

https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000509527200031&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FACCESS.2019.2957055&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2019%26pages%3D183162-183176%26journal%3DIEEE%2BAccess%26author%3DL.%2BLiu%26author%3DC.%2BChen%26author%3DJ.%2BZhang%26author%3DO.%2BDe%2BVel%26author%3DY.%2BXiang%26title%3DInsider%2Bthreat%2Bidentification%2Busing%2Bthe%2Bsimultaneous%2Bneural%2Blearning%2Bof%2Bmulti-source%2Blogs&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FACCESS.2019.2957055&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMeng%2BF.%252C%2B%250ALou%2BF.%252C%2B%250AFu%2BY.%252C%2Band%2B%250ATian%2BZ.%252C%2BDeep%2Blearning%2Bbased%2Battribute%2Bclassification%2Binsider%2Bthreat%2Bdetection%2Bfor%2Bdata%2Bsecurity%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BThird%2BInternational%2BConference%2Bon%2BData%2BScience%2Bin%2BCyberspace%2B%2528DSC%2529%252C%2BJune.%2B2018%252C%2BGuangzhou%252C%2BChina%252C%2B576%25E2%2580%2593581.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALin%2BL.%252C%2B%250AZhong%2BS.%252C%2B%250AJia%2BC.%252C%2Band%2B%250AChen%2BK.%252C%2BInsider%2Bthreat%2Bdetection%2Bbased%2Bon%2Bdeep%2Bbelief%2Bnetwork%2Bfeature%2Brepresentation%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BGreen%2BInformatics%2B%2528ICGI%2529%252C%2BAugust.%2B2017%252C%2BFuzhou%252C%2BChina%252C%2B54%25E2%2580%259359.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASaaudi%2BA.%252C%2B%250AAl-Ibadi%2BZ.%252C%2B%250ATong%2BY.%252C%2Band%2B%250AFarkas%2BC.%252C%2BInsider%2Bthreats%2Bdetection%2Busing%2BCNN-LSTM%2Bmodel%252C%2BProceedings%2Bof%2Bthe%2B2018%2BInternational%2BConference%2Bon%2BComputational%2BScience%2Band%2BComputational%2BIntelligence%2B%2528CSCI%2529%252C%2BDecember%252C%2B2018%252C%2BLas%2BVegas%252C%2BNV%252C%2BUSA%252C%2B94%25E2%2580%259399.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWang%2BJ.%252C%2B%250ACai%2BL.%252C%2B%250AYu%2BA.%252C%2Band%2B%250AMeng%2BD.%252C%2BEmbedding%2Blearning%2Bwith%2Bheterogeneous%2Bevent%2Bsequence%2Bfor%2Binsider%2Bthreat%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B31st%2BInternational%2BConference%2Bon%2BTools%2Bwith%2BArtificial%2BIntelligence%2B%2528ICTAI%2529%252C%2BNovember.%2B2019%252C%2B947%25E2%2580%2593954.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000252934200009&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1109%2FMSP.2008.8&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D6%26publication_year%3D2008%26pages%3D61-64%26journal%3DIEEE%2BSecurity%2BPrivacy%26author%3DF.%2BL.%2BGreitzer%26author%3DA.%2BP.%2BMoore%26author%3DD.%2BM.%2BCappelli%26author%3DD.%2BH.%2BAndrews%26author%3DL.%2BA.%2BCarroll%26author%3DT.%2BD.%2BHull%26title%3DCombating%2Bthe%2Binsider%2Bcyber%2Bthreat&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FMSP.2008.8&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALegg%2BP.%2BA.%252C%2BVisualizing%2Bthe%2Binsider%2Bthreat%253A%2Bchallenges%2Band%2Btools%2Bfor%2Bidentifying%2Bmalicious%2Buser%2Bactivity%252C%2BProceedings%2Bof%2Bthe%2B2015%2BIEEE%2BSymposium%2Bon%2BVisualization%2Bfor%2BCyber%2BSecurity%2B%2528VizSec%2529%252C%2BOctober%252C%2B2015%252C%2BChicago%252C%2BIL%252C%2BUSA%252C%2B1%25E2%2580%25937.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHall%2BA.%2BJ.%252C%2B%250APitropakis%2BN.%252C%2B%250ABuchanan%2BW.%2BJ.%252C%2Band%2B%250AMoradpoor%2BN.%252C%2BPredicting%2Bmalicious%2Binsider%2Bthreat%2Bscenarios%2Busing%2Borganizational%2Bdata%2Band%2Ba%2Bheterogeneous%2Bstack-classifier%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2BInternational%2BConference%2Bon%2BBig%2BData%2B%2528Big%2BData%2529%252C%2BDecember%252C%2B2018%252C%2BSeattle%252C%2BWA%252C%2BUSA%252C%2B5034%25E2%2580%25935039.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJiang%2BJ.%252C%2B%250AChen%2BJ.%252C%2B%250AGu%2BT.%252C%2B%250AChoo%2BK.-K.%2BR.%252C%2B%250ALiu%2BC.%252C%2B%250AYu%2BM.%252C%2B%250AHuang%2BW.%252C%2Band%2B%250AMohapatra%2BP.%252C%2BWarder%253A%2Bonline%2Binsider%2Bthreat%2Bdetection%2Bsystem%2Busing%2Bmulti-feature%2Bmodeling%2Band%2Bgraph-based%2Bcorrelation%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BMilitary%2BCommunications%2BConference%252C%2BNovember%252C%2B2019%252C%2BNorfolk%252C%2BVA%252C%2BUSA%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALiu%2BA.%252C%2B%250ADu%2BX.%252C%2Band%2B%250AWang%2BN.%252C%2BRecognition%2Bof%2Baccess%2Bcontrol%2Brole%2Bbased%2Bon%2Bconvolutional%2Bneural%2Bnetwork%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B4th%2BInternational%2BConference%2Bon%2BComputer%2Band%2BCommunications%2B%2528ICCC%2529%252C%2BDecember%252C%2B2018%252C%2BChengdu%252C%2BChina%252C%2B2069%25E2%2580%25932074.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1901.10948

78/91

Google Scholar
236
Chen C.-W., Su C.-H., Lee K.-W., and Bair P.-H., Malware Family Classification Using Active
Learning by Learning, Proceedings of the 2020 22nd International Conference on Advanced
Communication Technology (ICACT), February, 2020, Phoenix Park, Korea (South), 590–595.
Google Scholar
237
Karim A., Salleh R., and Khan M. K., SMARTbot: a behavioral analysis framework augmented with
machine learning to identify mobile botnet applications, PLoS One. (2016) 11, no. 3.
10.1371/journal.pone.0150077
Web of Science®Google Scholar
238
Zhang X., Marwah M., Lee I.-T., Arlitt M., and Goldwasser D., Ace – an anomaly contribution
explainer for cyber-security applications, Proceedings of the 2019 IEEE International Conference on
Big Data (Big Data), December, 2019, Los Angeles, CA, USA, 1991–2000.
Google Scholar
239
Buono P. and Carella P., Towards secure mobile learning. Visual discovery of malware patterns in
android apps, Proceedings of the 2019 23rd International Conference Information Visualisation (IV),
July. 2019, Paris, France, 364–369.
Google Scholar
240
Skovoroda A. and Gamayunov D., Automated static analysis and classification of android malware
using permission and API calls models, Proceedings of the 2017 15th Annual Conference on Privacy,
Security and Trust (PST), August, 2017, Calgary, AB, Canada, 243–24309.
Google Scholar
241
Demontis A., Melis M., Pintor M., Jagielski M., Biggio B., Oprea A., Nita-Rotaru C., and Roli F.,
Why do adversarial attacks transfer? explaining transferability of evasion and poisoning attacks, Jun.
2019, http://arxiv.org/abs/1809.02861.
Google Scholar
242
Ronen R., Radu M., Feuerstein C., Yom-Tov E., and Ahmadi M., Microsoft malware classification
challenge, 2018, http://arxiv.org/abs/1802.10135.
Google Scholar
243
Bhattacharya S., Menendez H. D., Barr E., and Clark D., Itect: scalable information theoretic
similarity for malware detection, 2016, http://arxiv.org/abs/1609.02404.
Google Scholar
244
Drew J., Moore T., and Hahsler M., Polymorphic malware detection using sequence classification
methods, Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), May 2016, San
Jose, CA, USA, 81–87.
Google Scholar
245
Ahmadi M., Ulyanov D., Semenov S., Trofimov M., and Giacinto G., Novel feature extraction,
selection and fusion for effective malware family classification, 2016, http://arxiv.org/abs/1511.04317.
Google Scholar
246
Hassen M. and Chan P. K., Scalable function call graph-based malware classification,
Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, Ser.
CODASPY ’17, March. 2017, New York, NY, USA, Association for Computing Machinery, 239–248,
https://doi.org/10.1145/3029806.3029824, 2-s2.0-85018516896.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANoever%2BD.%252C%2BClassifier%2BSuites%2Bfor%2BInsider%2BThreat%2BDetection%252C%2B2019%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1901.10948.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChen%2BC.-W.%252C%2B%250ASu%2BC.-H.%252C%2B%250ALee%2BK.-W.%252C%2Band%2B%250ABair%2BP.-H.%252C%2BMalware%2BFamily%2BClassification%2BUsing%2BActive%2BLearning%2Bby%2BLearning%252C%2BProceedings%2Bof%2Bthe%2B2020%2B22nd%2BInternational%2BConference%2Bon%2BAdvanced%2BCommunication%2BTechnology%2B%2528ICACT%2529%252C%2BFebruary%252C%2B2020%252C%2BPhoenix%2BPark%252C%2BKorea%2B%2528South%2529%252C%2B590%25E2%2580%2593595.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=000372572800021&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1371%2Fjournal.pone.0150077&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D11%26publication_year%3D2016%26journal%3DPLoS%2BOne%26author%3DA.%2BKarim%26author%3DR.%2BSalleh%26author%3DM.%2BK.%2BKhan%26title%3DSMARTbot%253A%2Ba%2Bbehavioral%2Banalysis%2Bframework%2Baugmented%2Bwith%2Bmachine%2Blearning%2Bto%2Bidentify%2Bmobile%2Bbotnet%2Bapplications&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1371%2Fjournal.pone.0150077&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZhang%2BX.%252C%2B%250AMarwah%2BM.%252C%2B%250ALee%2BI.-T.%252C%2B%250AArlitt%2BM.%252C%2Band%2B%250AGoldwasser%2BD.%252C%2BAce%2B%25E2%2580%2593%2Ban%2Banomaly%2Bcontribution%2Bexplainer%2Bfor%2Bcyber-security%2Bapplications%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BInternational%2BConference%2Bon%2BBig%2BData%2B%2528Big%2BData%2529%252C%2BDecember%252C%2B2019%252C%2BLos%2BAngeles%252C%2BCA%252C%2BUSA%252C%2B1991%25E2%2580%25932000.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABuono%2BP.%2Band%2B%250ACarella%2BP.%252C%2BTowards%2Bsecure%2Bmobile%2Blearning.%2BVisual%2Bdiscovery%2Bof%2Bmalware%2Bpatterns%2Bin%2Bandroid%2Bapps%252C%2BProceedings%2Bof%2Bthe%2B2019%2B23rd%2BInternational%2BConference%2BInformation%2BVisualisation%2B%2528IV%2529%252C%2BJuly.%2B2019%252C%2BParis%252C%2BFrance%252C%2B364%25E2%2580%2593369.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASkovoroda%2BA.%2Band%2B%250AGamayunov%2BD.%252C%2BAutomated%2Bstatic%2Banalysis%2Band%2Bclassification%2Bof%2Bandroid%2Bmalware%2Busing%2Bpermission%2Band%2BAPI%2Bcalls%2Bmodels%252C%2BProceedings%2Bof%2Bthe%2B2017%2B15th%2BAnnual%2BConference%2Bon%2BPrivacy%252C%2BSecurity%2Band%2BTrust%2B%2528PST%2529%252C%2BAugust%252C%2B2017%252C%2BCalgary%252C%2BAB%252C%2BCanada%252C%2B243%25E2%2580%259324309.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1809.02861
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADemontis%2BA.%252C%2B%250AMelis%2BM.%252C%2B%250APintor%2BM.%252C%2B%250AJagielski%2BM.%252C%2B%250ABiggio%2BB.%252C%2B%250AOprea%2BA.%252C%2B%250ANita-Rotaru%2BC.%252C%2Band%2B%250ARoli%2BF.%252C%2BWhy%2Bdo%2Badversarial%2Battacks%2Btransfer%253F%2Bexplaining%2Btransferability%2Bof%2Bevasion%2Band%2Bpoisoning%2Battacks%252C%2BJun.%2B2019%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1809.02861.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1802.10135
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARonen%2BR.%252C%2B%250ARadu%2BM.%252C%2B%250AFeuerstein%2BC.%252C%2B%250AYom-Tov%2BE.%252C%2Band%2B%250AAhmadi%2BM.%252C%2BMicrosoft%2Bmalware%2Bclassification%2Bchallenge%252C%2B2018%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1802.10135.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1609.02404
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABhattacharya%2BS.%252C%2B%250AMenendez%2BH.%2BD.%252C%2B%250ABarr%2BE.%252C%2Band%2B%250AClark%2BD.%252C%2BItect%253A%2Bscalable%2Binformation%2Btheoretic%2Bsimilarity%2Bfor%2Bmalware%2Bdetection%252C%2B2016%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1609.02404.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADrew%2BJ.%252C%2B%250AMoore%2BT.%252C%2Band%2B%250AHahsler%2BM.%252C%2BPolymorphic%2Bmalware%2Bdetection%2Busing%2Bsequence%2Bclassification%2Bmethods%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BSecurity%2Band%2BPrivacy%2BWorkshops%2B%2528SPW%2529%252C%2BMay%2B2016%252C%2BSan%2BJose%252C%2BCA%252C%2BUSA%252C%2B81%25E2%2580%259387.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1511.04317
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAhmadi%2BM.%252C%2B%250AUlyanov%2BD.%252C%2B%250ASemenov%2BS.%252C%2B%250ATrofimov%2BM.%252C%2Band%2B%250AGiacinto%2BG.%252C%2BNovel%2Bfeature%2Bextraction%252C%2Bselection%2Band%2Bfusion%2Bfor%2Beffective%2Bmalware%2Bfamily%2Bclassification%252C%2B2016%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1511.04317.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/3029806.3029824

79/91

10.1145/3029806.3029824
Google Scholar
247
Gibert D., Mateu C., Planes J., and Vicens R., S. A. McIlraith and K. Q. Weinberger, Classification
of malware by using structural entropy on convolutional neural networks, Proceedings of the Thirty-
Second AAAI Conference on Artificial, Intelligence, (AAAI-18), February, 2018, New Orleans, LA, USA,
AAAI Press, 7759–7764.
Google Scholar
248
Gibert D., Using convolutional neural networks for classification of malware represented as
images, Journal of Computer Virology and Hacking Techniques. (2019) 15, no. 1, 15–28,
https://doi.org/10.1007/s11416-018-0323-0, 2-s2.0-85053391255.
10.1007/s11416-018-0323-0
Web of Science®Google Scholar
249
Kebede T. M., Djaneye-Boundjou O., Narayanan B. N., Ralescu A., and Kapp D., Classification of
malware programs using autoencoders based deep learning architecture and its application to the
microsoft malware classification challenge (big 2015) dataset, Proceedings of the 2017 IEEE National
Aerospace and Electronics Conference (NAECON), June. 2017, Dayton, OH, USA, 70–75.
Google Scholar
250
Messay-Kebede T., Narayanan B. N., and Djaneye-Boundjou O., Combination of traditional and
deep learning based architectures to overcome class imbalance and its application to malware
classification, Proceedings of the NAECON 2018- IEEE National Aerospace and Electronics
Conference, July. 2018, Dayton, OH, USA, 73–77.
Google Scholar
251
Narayanan B. N., Djaneye-Boundjou O., and Kebede T. M., Performance analysis of machine
learning and pattern recognition algorithms for Malware classification, Proceedings of the 2016 IEEE
National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), July.
2016, Dayton, OH, USA, 338–342.
Google Scholar
252
Kumari M., Hsieh G., and Okonkwo C. A., Deep learning approach to malware multi-class
classification using image processing techniques, Proceedings of the 2017 International Conference
on Computational Science and Computational Intelligence (CSCI), December, 2017, Las Vegas, NV,
USA, 13–18.
Google Scholar
253
Safa H., Nassar M., and Rahal Al Orabi W. A., Benchmarking convolutional and recurrent neural
networks for malware classification, Proceedings of the 2019 15th International Wireless
Communications Mobile Computing Conference (IWCMC), June. 2019, Tangier, Morocco, 561–566.
Google Scholar
254
Priyamvada Davuluru V. S., Narayanan Narayanan B., and Balster E. J., Convolutional Neural
Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs,
Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), July.
2019, Dayton, OH, USA, 273–278.
Google Scholar
255
Burnaev E. and Smolyakov D., One-class SVM with privileged information and its application to
malware detection, Proceedings of the 2016 IEEE 16th International Conference on Data Mining

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AHassen%2BM.%2Band%2B%250AChan%2BP.%2BK.%252C%2BScalable%2Bfunction%2Bcall%2Bgraph-based%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2BSeventh%2BACM%2Bon%2BConference%2Bon%2BData%2Band%2BApplication%2BSecurity%2Band%2BPrivacy%252C%2BSer.%2BCODASPY%2B%25E2%2580%259917%252C%2BMarch.%2B2017%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B239%25E2%2580%2593248%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F3029806.3029824%252C%2B2-s2.0-85018516896.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F3029806.3029824&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AGibert%2BD.%252C%2B%250AMateu%2BC.%252C%2B%250APlanes%2BJ.%252C%2Band%2B%250AVicens%2BR.%252C%2BS.%2BA.%2BMcIlraith%2Band%2BK.%2BQ.%2BWeinberger%252C%2BClassification%2Bof%2Bmalware%2Bby%2Busing%2Bstructural%2Bentropy%2Bon%2Bconvolutional%2Bneural%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2BThirty-Second%2BAAAI%2BConference%2Bon%2BArtificial%252C%2BIntelligence%252C%2B%2528AAAI-18%2529%252C%2BFebruary%252C%2B2018%252C%2BNew%2BOrleans%252C%2BLA%252C%2BUSA%252C%2BAAAI%2BPress%252C%2B7759%25E2%2580%25937764.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-018-0323-0
https://undefined/servlet/linkout?suffix=null&dbid=128&doi=10.1155%2F2023%2F8227751&key=WOS%3A000462473900002&getFTLinkType=true&doiForPubOfPage=10.1155%2F2023%2F8227751&refDoi=10.1007%2Fs11416-018-0323-0&linkType=ISI&linkSource=FULL_TEXT&linkLocation=Reference
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D15%26publication_year%3D2019%26pages%3D15-28%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DD.%2BGibert%26title%3DUsing%2Bconvolutional%2Bneural%2Bnetworks%2Bfor%2Bclassification%2Bof%2Bmalware%2Brepresented%2Bas%2Bimages&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-018-0323-0&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKebede%2BT.%2BM.%252C%2B%250ADjaneye-Boundjou%2BO.%252C%2B%250ANarayanan%2BB.%2BN.%252C%2B%250ARalescu%2BA.%252C%2Band%2B%250AKapp%2BD.%252C%2BClassification%2Bof%2Bmalware%2Bprograms%2Busing%2Bautoencoders%2Bbased%2Bdeep%2Blearning%2Barchitecture%2Band%2Bits%2Bapplication%2Bto%2Bthe%2Bmicrosoft%2Bmalware%2Bclassification%2Bchallenge%2B%2528big%2B2015%2529%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2017%2BIEEE%2BNational%2BAerospace%2Band%2BElectronics%2BConference%2B%2528NAECON%2529%252C%2BJune.%2B2017%252C%2BDayton%252C%2BOH%252C%2BUSA%252C%2B70%25E2%2580%259375.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMessay-Kebede%2BT.%252C%2B%250ANarayanan%2BB.%2BN.%252C%2Band%2B%250ADjaneye-Boundjou%2BO.%252C%2BCombination%2Bof%2Btraditional%2Band%2Bdeep%2Blearning%2Bbased%2Barchitectures%2Bto%2Bovercome%2Bclass%2Bimbalance%2Band%2Bits%2Bapplication%2Bto%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2BNAECON%2B2018-%2BIEEE%2BNational%2BAerospace%2Band%2BElectronics%2BConference%252C%2BJuly.%2B2018%252C%2BDayton%252C%2BOH%252C%2BUSA%252C%2B73%25E2%2580%259377.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANarayanan%2BB.%2BN.%252C%2B%250ADjaneye-Boundjou%2BO.%252C%2Band%2B%250AKebede%2BT.%2BM.%252C%2BPerformance%2Banalysis%2Bof%2Bmachine%2Blearning%2Band%2Bpattern%2Brecognition%2Balgorithms%2Bfor%2BMalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2BNational%2BAerospace%2Band%2BElectronics%2BConference%2B%2528NAECON%2529%2Band%2BOhio%2BInnovation%2BSummit%2B%2528OIS%2529%252C%2BJuly.%2B2016%252C%2BDayton%252C%2BOH%252C%2BUSA%252C%2B338%25E2%2580%2593342.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKumari%2BM.%252C%2B%250AHsieh%2BG.%252C%2Band%2B%250AOkonkwo%2BC.%2BA.%252C%2BDeep%2Blearning%2Bapproach%2Bto%2Bmalware%2Bmulti-class%2Bclassification%2Busing%2Bimage%2Bprocessing%2Btechniques%252C%2BProceedings%2Bof%2Bthe%2B2017%2BInternational%2BConference%2Bon%2BComputational%2BScience%2Band%2BComputational%2BIntelligence%2B%2528CSCI%2529%252C%2BDecember%252C%2B2017%252C%2BLas%2BVegas%252C%2BNV%252C%2BUSA%252C%2B13%25E2%2580%259318.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASafa%2BH.%252C%2B%250ANassar%2BM.%252C%2Band%2B%250ARahal%2BAl%2BOrabi%2BW.%2BA.%252C%2BBenchmarking%2Bconvolutional%2Band%2Brecurrent%2Bneural%2Bnetworks%2Bfor%2Bmalware%2Bclassification%252C%2BProceedings%2Bof%2Bthe%2B2019%2B15th%2BInternational%2BWireless%2BCommunications%2BMobile%2BComputing%2BConference%2B%2528IWCMC%2529%252C%2BJune.%2B2019%252C%2BTangier%252C%2BMorocco%252C%2B561%25E2%2580%2593566.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APriyamvada%2BDavuluru%2BV.%2BS.%252C%2B%250ANarayanan%2BNarayanan%2BB.%252C%2Band%2B%250ABalster%2BE.%2BJ.%252C%2BConvolutional%2BNeural%2BNetworks%2Bas%2BClassification%2BTools%2Band%2BFeature%2BExtractors%2Bfor%2BDistinguishing%2BMalware%2BPrograms%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BNational%2BAerospace%2Band%2BElectronics%2BConference%2B%2528NAECON%2529%252C%2BJuly.%2B2019%252C%2BDayton%252C%2BOH%252C%2BUSA%252C%2B273%25E2%2580%2593278.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

80/91

Workshops (ICDMW), December. 2016, Barcelona, Spain, 273–280.
Google Scholar
256
Kim S. J., Kim B. J., Kim H. C., and Lee D. H., Update state tampering: a novel adversary post-
compromise technique on cyber threats, Proceedings of the 15th International Conference Detection
of Intrusions and Malware, and Vulnerability Assessment 2018, January. 2018, Saclay, France,
Springer Verlag, 141–161.
Google Scholar
257
Alkasassbeh M. and Al-Daleen S., Classification of malware based on file content and
characteristics, 2018, https://arxiv.org/abs/1810.07252.
Google Scholar
258
Roseline S. A. and Geetha S., An efficient malware detection system using hybrid feature
selection methods, International Journal of Engineering and Advanced Technology. (2019) 9, no. 1S3,
224–228.
10.35940/ijeat.A1043.1291S319
Google Scholar
259
Dada E. G., Bassi J. S., Hurcha Y. J., and Alkali A. H., Performance evaluation of machine
learning algorithms for detection and prevention of malware attacks, IOSR Journal of Computer
Engineering. (2019) 21, no. 3, 18–27.
Google Scholar
260
Pramanik S. and Teja H., Ember- analysis of malware dataset using convolutional neural
networks, Proceedings of the 2019 Third International Conference on Inventive Systems and Control
(ICISC), January. 2019, Coimbatore, India, 286–291.
Google Scholar
261
Oyama Y., Miyashita T., and Kokubo H., Identifying useful features for malware detection in the
ember dataset, Proceedings of the 2019 Seventh International Symposium on Computing and
Networking Workshops (CANDARW), November. 2019, Nagasaki, Japan, 360–366.
Google Scholar
262
Nguyen A. T., Raff E., and Sant-Miller A., Would a file by any other name seem as malicious?,
Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), December. 2019, Los
Angeles, CA, USA, 1322–1331.
Google Scholar
264
Choi J., Shin D., Kim H., Seotis J., and Hong J. B., AMVG: Adaptive malware variant generation
framework using machine learning, Proceedings of the 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC), December. 2019, Kyoto, Japan, 246–24609.
Google Scholar
265
Verma R. M. and Marchette D. J., Cybersecurity Analytics, 2019, CRC Press, Boca Raton, FL,
USA.
10.1201/9780429326813
Google Scholar
266
Eagle C., The IDA Pro book, The Unofficial Guide to the World’s Most Popular Disassembler.
(2011) 2nd edition, No Starch Press, San Francisco, CA, USA.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABurnaev%2BE.%2Band%2B%250ASmolyakov%2BD.%252C%2BOne-class%2BSVM%2Bwith%2Bprivileged%2Binformation%2Band%2Bits%2Bapplication%2Bto%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2016%2BIEEE%2B16th%2BInternational%2BConference%2Bon%2BData%2BMining%2BWorkshops%2B%2528ICDMW%2529%252C%2BDecember.%2B2016%252C%2BBarcelona%252C%2BSpain%252C%2B273%25E2%2580%2593280.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKim%2BS.%2BJ.%252C%2B%250AKim%2BB.%2BJ.%252C%2B%250AKim%2BH.%2BC.%252C%2Band%2B%250ALee%2BD.%2BH.%252C%2BUpdate%2Bstate%2Btampering%253A%2Ba%2Bnovel%2Badversary%2Bpost-compromise%2Btechnique%2Bon%2Bcyber%2Bthreats%252C%2BProceedings%2Bof%2Bthe%2B15th%2BInternational%2BConference%2BDetection%2Bof%2BIntrusions%2Band%2BMalware%252C%2Band%2BVulnerability%2BAssessment%2B2018%252C%2BJanuary.%2B2018%252C%2BSaclay%252C%2BFrance%252C%2BSpringer%2BVerlag%252C%2B141%25E2%2580%2593161.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://arxiv.org/abs/1810.07252
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAlkasassbeh%2BM.%2Band%2B%250AAl-Daleen%2BS.%252C%2BClassification%2Bof%2Bmalware%2Bbased%2Bon%2Bfile%2Bcontent%2Band%2Bcharacteristics%252C%2B2018%252C%2Bhttps%253A%252F%252Farxiv.org%252Fabs%252F1810.07252.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2019%26pages%3D224-228%26journal%3DInternational%2BJournal%2Bof%2BEngineering%2Band%2BAdvanced%2BTechnology%26author%3DS.%2BA.%2BRoseline%26author%3DS.%2BGeetha%26title%3DAn%2Befficient%2Bmalware%2Bdetection%2Bsystem%2Busing%2Bhybrid%2Bfeature%2Bselection%2Bmethods&doi=10.1155%2F2023%2F8227751&doiOfLink=10.35940%2Fijeat.A1043.1291S319&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D21%26publication_year%3D2019%26pages%3D18-27%26journal%3DIOSR%2BJournal%2Bof%2BComputer%2BEngineering%26author%3DE.%2BG.%2BDada%26author%3DJ.%2BS.%2BBassi%26author%3DY.%2BJ.%2BHurcha%26author%3DA.%2BH.%2BAlkali%26title%3DPerformance%2Bevaluation%2Bof%2Bmachine%2Blearning%2Balgorithms%2Bfor%2Bdetection%2Band%2Bprevention%2Bof%2Bmalware%2Battacks&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APramanik%2BS.%2Band%2B%250ATeja%2BH.%252C%2BEmber-%2Banalysis%2Bof%2Bmalware%2Bdataset%2Busing%2Bconvolutional%2Bneural%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2B2019%2BThird%2BInternational%2BConference%2Bon%2BInventive%2BSystems%2Band%2BControl%2B%2528ICISC%2529%252C%2BJanuary.%2B2019%252C%2BCoimbatore%252C%2BIndia%252C%2B286%25E2%2580%2593291.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AOyama%2BY.%252C%2B%250AMiyashita%2BT.%252C%2Band%2B%250AKokubo%2BH.%252C%2BIdentifying%2Buseful%2Bfeatures%2Bfor%2Bmalware%2Bdetection%2Bin%2Bthe%2Bember%2Bdataset%252C%2BProceedings%2Bof%2Bthe%2B2019%2BSeventh%2BInternational%2BSymposium%2Bon%2BComputing%2Band%2BNetworking%2BWorkshops%2B%2528CANDARW%2529%252C%2BNovember.%2B2019%252C%2BNagasaki%252C%2BJapan%252C%2B360%25E2%2580%2593366.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANguyen%2BA.%2BT.%252C%2B%250ARaff%2BE.%252C%2Band%2B%250ASant-Miller%2BA.%252C%2BWould%2Ba%2Bfile%2Bby%2Bany%2Bother%2Bname%2Bseem%2Bas%2Bmalicious%253F%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2BInternational%2BConference%2Bon%2BBig%2BData%2B%2528Big%2BData%2529%252C%2BDecember.%2B2019%252C%2BLos%2BAngeles%252C%2BCA%252C%2BUSA%252C%2B1322%25E2%2580%25931331.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChoi%2BJ.%252C%2B%250AShin%2BD.%252C%2B%250AKim%2BH.%252C%2B%250ASeotis%2BJ.%252C%2Band%2B%250AHong%2BJ.%2BB.%252C%2BAMVG%253A%2BAdaptive%2Bmalware%2Bvariant%2Bgeneration%2Bframework%2Busing%2Bmachine%2Blearning%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B24th%2BPacific%2BRim%2BInternational%2BSymposium%2Bon%2BDependable%2BComputing%2B%2528PRDC%2529%252C%2BDecember.%2B2019%252C%2BKyoto%252C%2BJapan%252C%2B246%25E2%2580%259324609.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2019%26author%3DR.%2BM.%2BVerma%26author%3DD.%2BJ.%2BMarchette%26title%3DCybersecurity%2BAnalytics&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1201%2F9780429326813&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2011%26journal%3DThe%2BUnofficial%2BGuide%2Bto%2Bthe%2BWorld%25E2%2580%2599s%2BMost%2BPopular%2BDisassembler%26author%3DC.%2BEagle%26title%3DThe%2BIDA%2BPro%2Bbook&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

81/91

267
Khodamoradi P., Fazlali M., Mardukhi F., and Nosrati M., Heuristic metamorphic malware
detection based on statistics of assembly instructions using classification algorithms, Proceedings of
the 2015 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS),
October. 2015, Tehran, Iran, 1–6.
Google Scholar
268
Çarkacı N. and Soğukpınar B., Frequency based metamorphic malware detection, Proceedings of
the 2016 24th Signal Processing and Communication Application Conference (SIU), May 2016,
Zonguldak, Turkey, 421–424.
Google Scholar
269
Sahay S. K. and Sharma A., Grouping the executables to detect malwares with high accuracy,
Procedia Computer Science. (2016) 78, 667–674.
10.1016/j.procs.2016.02.115
Google Scholar
270
Kakisim A. G., Nar M., Carkaci N., and Sogukpinar I., Analysis and evaluation of dynamic feature-
based malware detection methods, Proceedings of the Innovative Security Solutions for Information
Technology and Communications: 11th International Conference, SecITC 2018, February. 2019,
Bucharest, Romania, Springer.
Google Scholar
271
Vishal B., Data Mining and Analysis in The Engineering Field, 2014, IGI Global, Hershey,
Pennsylvania.
Google Scholar
272
Yassine M., Security and Privacy Management, Techniques, and Protocols, 2018, IGI Global,
Hershey, Pennsylvania.
Google Scholar
273
Khalilian A., Nourazar A., Vahidi-Asl M., and Haghighi H., G3MD: mining frequent opcode sub-
graphs for metamorphic malware detection of existing families, Expert Systems with Applications.
(2018) 112, 15–33.
274
Wong W. and Stamp M., Hunting for metamorphic engines, Journal in Computer Virology. (2006)
2, no. 3, 211–229.
10.1007/s11416-006-0028-7
Google Scholar
275
Nair V. P., Jain H., Golecha Y. K., Gaur M. S., and Laxmi V., MEDUSA: MEtamorphic malware
dynamic analysis usingsignature from API, Proceedings of the 3rd International Conference on
Security of Information and Networks, September. 2010, New York, NY, USA, Association for
Computing Machinery, 263–269, https://doi.org/10.1145/1854099.1854152, 2-s2.0-77958075045.
10.1145/1854099.1854152
Google Scholar
276
Zolkipli M. F. and Jantan A., A Framework for Malware Detection Using Combination Technique
and Signature Generation, Proceedings of the 2010 2nd International Conference on Computer
Research and Development, May 2010, Kuala Lumpur, Malaysia, 196–199.
Google Scholar
277
Agarwal S. K. and Shrivastava V., An opcode statistical analysis for metamorphic malware, 2013,
https://www.semanticscholar.org/paper/An-Opcode-Statistical-Analysis-for-Metamorphic-Agarwal-
Shrivastava/2c5f5c82b4d814ec1327e97404e79945bde7a354.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKhodamoradi%2BP.%252C%2B%250AFazlali%2BM.%252C%2B%250AMardukhi%2BF.%252C%2Band%2B%250ANosrati%2BM.%252C%2BHeuristic%2Bmetamorphic%2Bmalware%2Bdetection%2Bbased%2Bon%2Bstatistics%2Bof%2Bassembly%2Binstructions%2Busing%2Bclassification%2Balgorithms%252C%2BProceedings%2Bof%2Bthe%2B2015%2B18th%2BCSI%2BInternational%2BSymposium%2Bon%2BComputer%2BArchitecture%2Band%2BDigital%2BSystems%2B%2528CADS%2529%252C%2BOctober.%2B2015%252C%2BTehran%252C%2BIran%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250A%25C3%2587arkac%25C4%25B1%2BN.%2Band%2B%250ASo%25C4%259Fukp%25C4%25B1nar%2BB.%252C%2BFrequency%2Bbased%2Bmetamorphic%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2016%2B24th%2BSignal%2BProcessing%2Band%2BCommunication%2BApplication%2BConference%2B%2528SIU%2529%252C%2BMay%2B2016%252C%2BZonguldak%252C%2BTurkey%252C%2B421%25E2%2580%2593424.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D78%26publication_year%3D2016%26pages%3D667-674%26journal%3DProcedia%2BComputer%2BScience%26author%3DS.%2BK.%2BSahay%26author%3DA.%2BSharma%26title%3DGrouping%2Bthe%2Bexecutables%2Bto%2Bdetect%2Bmalwares%2Bwith%2Bhigh%2Baccuracy&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.procs.2016.02.115&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKakisim%2BA.%2BG.%252C%2B%250ANar%2BM.%252C%2B%250ACarkaci%2BN.%252C%2Band%2B%250ASogukpinar%2BI.%252C%2BAnalysis%2Band%2Bevaluation%2Bof%2Bdynamic%2Bfeature-based%2Bmalware%2Bdetection%2Bmethods%252C%2BProceedings%2Bof%2Bthe%2BInnovative%2BSecurity%2BSolutions%2Bfor%2BInformation%2BTechnology%2Band%2BCommunications%253A%2B11th%2BInternational%2BConference%252C%2BSecITC%2B2018%252C%2BFebruary.%2B2019%252C%2BBucharest%252C%2BRomania%252C%2BSpringer.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3DB.%2BVishal%26title%3DData%2BMining%2Band%2BAnalysis%2Bin%2BThe%2BEngineering%2BField&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2018%26author%3DM.%2BYassine%26title%3DSecurity%2Band%2BPrivacy%2BManagement%252C%2BTechniques%252C%2Band%2BProtocols&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D2%26publication_year%3D2006%26pages%3D211-229%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DW.%2BWong%26author%3DM.%2BStamp%26title%3DHunting%2Bfor%2Bmetamorphic%2Bengines&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-006-0028-7&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/1854099.1854152
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ANair%2BV.%2BP.%252C%2B%250AJain%2BH.%252C%2B%250AGolecha%2BY.%2BK.%252C%2B%250AGaur%2BM.%2BS.%252C%2Band%2B%250ALaxmi%2BV.%252C%2BMEDUSA%253A%2BMEtamorphic%2Bmalware%2Bdynamic%2Banalysis%2Busingsignature%2Bfrom%2BAPI%252C%2BProceedings%2Bof%2Bthe%2B3rd%2BInternational%2BConference%2Bon%2BSecurity%2Bof%2BInformation%2Band%2BNetworks%252C%2BSeptember.%2B2010%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B263%25E2%2580%2593269%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F1854099.1854152%252C%2B2-s2.0-77958075045.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1854099.1854152&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZolkipli%2BM.%2BF.%2Band%2B%250AJantan%2BA.%252C%2BA%2BFramework%2Bfor%2BMalware%2BDetection%2BUsing%2BCombination%2BTechnique%2Band%2BSignature%2BGeneration%252C%2BProceedings%2Bof%2Bthe%2B2010%2B2nd%2BInternational%2BConference%2Bon%2BComputer%2BResearch%2Band%2BDevelopment%252C%2BMay%2B2010%252C%2BKuala%2BLumpur%252C%2BMalaysia%252C%2B196%25E2%2580%2593199.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.semanticscholar.org/paper/An-Opcode-Statistical-Analysis-for-Metamorphic-Agarwal-Shrivastava/2c5f5c82b4d814ec1327e97404e79945bde7a354

82/91

Google Scholar
278
Shelar M. and Rao S., Malicious threats detection of executable file, The International Journal of
Innovative Technology and Exploring Engineering. (2020) 9, no. 3, 3257–3262.
10.35940/ijitee.C8918.019320
Google Scholar
279
Daoud E. A., Metamorphic viruses detection using artificial immune system, Proceedings of the
2009 International Conference on Communication Software and Networks, February. 2009, Chengdu,
China, 168–172.
Google Scholar
280
Chouchane R., Stakhanova N., Walenstein A., and Lakhotia A., Detecting machine-morphed
malware variants via engine attribution, Journal of Computer Virology and Hacking Techniques. Aug.
2013, 9, no. 3, 137–157, https://doi.org/10.1007/s11416-013-0183-6, 2-s2.0-84880599534.
10.1007/s11416-013-0183-6
Google Scholar
281
Bist A. S. and Sharma A., Analysis of computer virus using feature fusion, Proceedings of the
2016 Second International Conference on Computational Intelligence Communication Technology
(CICT), February. 2016, Ghaziabad, India, 609–614.
Google Scholar
282
Mirzazadeh R., Moattar M. H., and Jahan M. V., Metamorphic malware detection using linear
discriminant analysis and graph similarity, Proceedings of the 2015 5th International Conference on
Computer and Knowledge Engineering (ICCKE), October. 2015, Mashhad, Iran, 61–66.
Google Scholar
283
Raphel J., Pruned feature space for metamorphic malware detection using Markov Blanket,
Proceedings of the 2015 Eighth International Conference on Contemporary Computing (IC3), August.
2015, Noida, India, 377–382.
Google Scholar
284
Kuriakose J. and Vinod P., Ranked linear discriminant analysis features for metamorphic malware
detection, Proceedings of the 2014 IEEE International Advance Computing Conference (IACC),
February. 2014, New Delhi, India, 112–117.
Google Scholar
285
Venkatesan A., Code Obfuscation and Virus Detection, 2008, San Jose State University, San
Jose, CA, USA.
10.31979/etd.ez5v-x8jc
Google Scholar
286
Stamp M., Introduction to Machine Learning with Applications in Information Security, 2017, CRC
Press, Boca Raton, FL, USA.
10.1201/9781315213262
Google Scholar
287
Attaluri S., McGhee S., and Stamp M., Profile hidden Markov models and metamorphic virus
detection, Journal in Computer Virology. (2009) 5, no. 2, 151–169, https://doi.org/10.1007/s11416-008-
0105-1, 2-s2.0-67349123665.
10.1007/s11416-008-0105-1
Google Scholar
288
Runwal N., Low R. M., and Stamp M., Opcode graph similarity and metamorphic detection,
Journal in Computer Virology. (2012) 8, no. 1, 37–52, https://doi.org/10.1007/s11416-012-0160-5, 2-
s2.0-84860621757.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAgarwal%2BS.%2BK.%2Band%2B%250AShrivastava%2BV.%252C%2BAn%2Bopcode%2Bstatistical%2Banalysis%2Bfor%2Bmetamorphic%2Bmalware%252C%2B2013%252C%2Bhttps%253A%252F%252Fwww.semanticscholar.org%252Fpaper%252FAn-Opcode-Statistical-Analysis-for-Metamorphic-Agarwal-Shrivastava%252F2c5f5c82b4d814ec1327e97404e79945bde7a354.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2020%26pages%3D3257-3262%26journal%3DThe%2BInternational%2BJournal%2Bof%2BInnovative%2BTechnology%2Band%2BExploring%2BEngineering%26author%3DM.%2BShelar%26author%3DS.%2BRao%26title%3DMalicious%2Bthreats%2Bdetection%2Bof%2Bexecutable%2Bfile&doi=10.1155%2F2023%2F8227751&doiOfLink=10.35940%2Fijitee.C8918.019320&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ADaoud%2BE.%2BA.%252C%2BMetamorphic%2Bviruses%2Bdetection%2Busing%2Bartificial%2Bimmune%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B2009%2BInternational%2BConference%2Bon%2BCommunication%2BSoftware%2Band%2BNetworks%252C%2BFebruary.%2B2009%252C%2BChengdu%252C%2BChina%252C%2B168%25E2%2580%2593172.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-013-0183-6
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D9%26publication_year%3D2013%26pages%3D137-157%26journal%3DJournal%2Bof%2BComputer%2BVirology%2Band%2BHacking%2BTechniques%26author%3DR.%2BChouchane%26author%3DN.%2BStakhanova%26author%3DA.%2BWalenstein%26author%3DA.%2BLakhotia%26title%3DDetecting%2Bmachine-morphed%2Bmalware%2Bvariants%2Bvia%2Bengine%2Battribution&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-013-0183-6&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABist%2BA.%2BS.%2Band%2B%250ASharma%2BA.%252C%2BAnalysis%2Bof%2Bcomputer%2Bvirus%2Busing%2Bfeature%2Bfusion%252C%2BProceedings%2Bof%2Bthe%2B2016%2BSecond%2BInternational%2BConference%2Bon%2BComputational%2BIntelligence%2BCommunication%2BTechnology%2B%2528CICT%2529%252C%2BFebruary.%2B2016%252C%2BGhaziabad%252C%2BIndia%252C%2B609%25E2%2580%2593614.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMirzazadeh%2BR.%252C%2B%250AMoattar%2BM.%2BH.%252C%2Band%2B%250AJahan%2BM.%2BV.%252C%2BMetamorphic%2Bmalware%2Bdetection%2Busing%2Blinear%2Bdiscriminant%2Banalysis%2Band%2Bgraph%2Bsimilarity%252C%2BProceedings%2Bof%2Bthe%2B2015%2B5th%2BInternational%2BConference%2Bon%2BComputer%2Band%2BKnowledge%2BEngineering%2B%2528ICCKE%2529%252C%2BOctober.%2B2015%252C%2BMashhad%252C%2BIran%252C%2B61%25E2%2580%259366.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARaphel%2BJ.%252C%2BPruned%2Bfeature%2Bspace%2Bfor%2Bmetamorphic%2Bmalware%2Bdetection%2Busing%2BMarkov%2BBlanket%252C%2BProceedings%2Bof%2Bthe%2B2015%2BEighth%2BInternational%2BConference%2Bon%2BContemporary%2BComputing%2B%2528IC3%2529%252C%2BAugust.%2B2015%252C%2BNoida%252C%2BIndia%252C%2B377%25E2%2580%2593382.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKuriakose%2BJ.%2Band%2B%250AVinod%2BP.%252C%2BRanked%2Blinear%2Bdiscriminant%2Banalysis%2Bfeatures%2Bfor%2Bmetamorphic%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2014%2BIEEE%2BInternational%2BAdvance%2BComputing%2BConference%2B%2528IACC%2529%252C%2BFebruary.%2B2014%252C%2BNew%2BDelhi%252C%2BIndia%252C%2B112%25E2%2580%2593117.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2008%26author%3DA.%2BVenkatesan%26title%3DCode%2BObfuscation%2Band%2BVirus%2BDetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.31979%2Fetd.ez5v-x8jc&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2017%26author%3DM.%2BStamp%26title%3DIntroduction%2Bto%2BMachine%2BLearning%2Bwith%2BApplications%2Bin%2BInformation%2BSecurity&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1201%2F9781315213262&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-008-0105-1
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2009%26pages%3D151-169%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DS.%2BAttaluri%26author%3DS.%2BMcGhee%26author%3DM.%2BStamp%26title%3DProfile%2Bhidden%2BMarkov%2Bmodels%2Band%2Bmetamorphic%2Bvirus%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-008-0105-1&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-012-0160-5

83/91

10.1007/s11416-012-0160-5
Google Scholar
289
Davis M. A., Bodmer S., and LeMasters A., Hacking Exposed Malware & Rootkits: Malware &
Rootkits Security Secrets & Solutions, 2010, McGraw Hill, New York, NY, USA.
Google Scholar
290
Singh A. and Islam A., An encounter with trojan nap, 2020.
Google Scholar
291
Singh A. and Khalid Y., Don’t click the left mouse button: introducing trojan upclicker, 2020.
Google Scholar
292
Bencsáth B., Pék G., Buttyán L., and Félegyházi M., Duqu: a stuxnet-like malware found in the
wild, 2011, Budapest University of Technology and Economics, Budapest, Technical Report.
Google Scholar
293
Kamluk V., The mystery of duqu: part six (the command and control servers), 2011, Kaspersky,
APT Reports, https://securelist.com/the-mystery-of-duqu-part-six-the-command-and-control-servers-
36/31863/.
Google Scholar
294
Singh A. and Bu Z., Hot Knives through Butter: Evading File-Based Sandboxes, 2014, White
Paper, Milpitas, CA, USA.
Google Scholar
295
Garfinkel T., Adams K., Warfield A., and Franklin J., Compatibility is not transparency: VMM
detection myths and realities, Proceedings of the 11th USENIX Workshop on Hot Topics in Operating
Systems, May 2007, San Diego, CA, USA, USENIX Association, 1–6.
Google Scholar
296
Faruki P., Bharmal A., Laxmi V., Gaur M., Conti M., and Rajarajan M., Evaluation of android anti-
malware techniques against Dalvik bytecode obfuscation, Proceedings of the 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing and Communications,
September. 2014, Beijing, China, 414–421.
Google Scholar
297
Kirat D. and Vigna G., Malgene: automatic extraction of malware analysis evasion signature,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
October, 2015, Denver, CO, USA.
Google Scholar
298
Petsas T., Voyatzis G., Athanasopoulos E., Polychronakis M., and Ioannidis S., Rage against the
virtual machine: hindering dynamic analysis of Android malware, Proceedings of the Seventh
European Workshop on System Security, May, 2014, Amsterdam, The Netherlands.
Google Scholar
299
Faruki P., Bhandari S., Laxmi V., Gaur M., and Conti M., R. Abielmona, R. Falcon, N. Zincir-
Heywood, and H. A. Abbass, DroidAnalyst: synergic app framework for static and dynamic app
analysis, Recent Advances in Computational Intelligence in Defense and Security, Ser. Studies in
Computational Intelligence, 2016, Springer International Publishing, New York, NY, USA, 519–552,
https://doi.org/10.1007/978-3-319-26450-9_20, 2-s2.0-84951334881.
10.1007/978-3-319-26450-9_20
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D8%26publication_year%3D2012%26pages%3D37-52%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DN.%2BRunwal%26author%3DR.%2BM.%2BLow%26author%3DM.%2BStamp%26title%3DOpcode%2Bgraph%2Bsimilarity%2Band%2Bmetamorphic%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-012-0160-5&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2010%26author%3DM.%2BA.%2BDavis%26author%3DS.%2BBodmer%26author%3DA.%2BLeMasters%26title%3DHacking%2BExposed%2BMalware%2B%2526%2BRootkits%253A%2BMalware%2B%2526%2BRootkits%2BSecurity%2BSecrets%2B%2526%2BSolutions&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASingh%2BA.%2Band%2B%250AIslam%2BA.%252C%2BAn%2Bencounter%2Bwith%2Btrojan%2Bnap%252C%2B2020.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASingh%2BA.%2Band%2B%250AKhalid%2BY.%252C%2BDon%25E2%2580%2599t%2Bclick%2Bthe%2Bleft%2Bmouse%2Bbutton%253A%2Bintroducing%2Btrojan%2Bupclicker%252C%2B2020.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABencs%25C3%25A1th%2BB.%252C%2B%250AP%25C3%25A9k%2BG.%252C%2B%250AButty%25C3%25A1n%2BL.%252C%2Band%2B%250AF%25C3%25A9legyh%25C3%25A1zi%2BM.%252C%2BDuqu%253A%2Ba%2Bstuxnet-like%2Bmalware%2Bfound%2Bin%2Bthe%2Bwild%252C%2B2011%252C%2BBudapest%2BUniversity%2Bof%2BTechnology%2Band%2BEconomics%252C%2BBudapest%252C%2BTechnical%2BReport.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://securelist.com/the-mystery-of-duqu-part-six-the-command-and-control-servers-36/31863/
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKamluk%2BV.%252C%2BThe%2Bmystery%2Bof%2Bduqu%253A%2Bpart%2Bsix%2B%2528the%2Bcommand%2Band%2Bcontrol%2Bservers%2529%252C%2B2011%252C%2BKaspersky%252C%2BAPT%2BReports%252C%2Bhttps%253A%252F%252Fsecurelist.com%252Fthe-mystery-of-duqu-part-six-the-command-and-control-servers-36%252F31863%252F.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2014%26author%3DA.%2BSingh%26author%3DZ.%2BBu%26title%3DHot%2BKnives%2Bthrough%2BButter%253A%2BEvading%2BFile-Based%2BSandboxes&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AGarfinkel%2BT.%252C%2B%250AAdams%2BK.%252C%2B%250AWarfield%2BA.%252C%2Band%2B%250AFranklin%2BJ.%252C%2BCompatibility%2Bis%2Bnot%2Btransparency%253A%2BVMM%2Bdetection%2Bmyths%2Band%2Brealities%252C%2BProceedings%2Bof%2Bthe%2B11th%2BUSENIX%2BWorkshop%2Bon%2BHot%2BTopics%2Bin%2BOperating%2BSystems%252C%2BMay%2B2007%252C%2BSan%2BDiego%252C%2BCA%252C%2BUSA%252C%2BUSENIX%2BAssociation%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFaruki%2BP.%252C%2B%250ABharmal%2BA.%252C%2B%250ALaxmi%2BV.%252C%2B%250AGaur%2BM.%252C%2B%250AConti%2BM.%252C%2Band%2B%250ARajarajan%2BM.%252C%2BEvaluation%2Bof%2Bandroid%2Banti-malware%2Btechniques%2Bagainst%2BDalvik%2Bbytecode%2Bobfuscation%252C%2BProceedings%2Bof%2Bthe%2B2014%2BIEEE%2B13th%2BInternational%2BConference%2Bon%2BTrust%252C%2BSecurity%2Band%2BPrivacy%2Bin%2BComputing%2Band%2BCommunications%252C%2BSeptember.%2B2014%252C%2BBeijing%252C%2BChina%252C%2B414%25E2%2580%2593421.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKirat%2BD.%2Band%2B%250AVigna%2BG.%252C%2BMalgene%253A%2Bautomatic%2Bextraction%2Bof%2Bmalware%2Banalysis%2Bevasion%2Bsignature%252C%2BProceedings%2Bof%2Bthe%2B22nd%2BACM%2BSIGSAC%2BConference%2Bon%2BComputer%2Band%2BCommunications%2BSecurity%252C%2BOctober%252C%2B2015%252C%2BDenver%252C%2BCO%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APetsas%2BT.%252C%2B%250AVoyatzis%2BG.%252C%2B%250AAthanasopoulos%2BE.%252C%2B%250APolychronakis%2BM.%252C%2Band%2B%250AIoannidis%2BS.%252C%2BRage%2Bagainst%2Bthe%2Bvirtual%2Bmachine%253A%2Bhindering%2Bdynamic%2Banalysis%2Bof%2BAndroid%2Bmalware%252C%2BProceedings%2Bof%2Bthe%2BSeventh%2BEuropean%2BWorkshop%2Bon%2BSystem%2BSecurity%252C%2BMay%252C%2B2014%252C%2BAmsterdam%252C%2BThe%2BNetherlands.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/978-3-319-26450-9_20
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2016%26pages%3D519-552%26author%3DP.%2BFaruki%26author%3DS.%2BBhandari%26author%3DV.%2BLaxmi%26author%3DM.%2BGaur%26author%3DM.%2BConti%26title%3DRecent%2BAdvances%2Bin%2BComputational%2BIntelligence%2Bin%2BDefense%2Band%2BSecurity%252C%2BSer.%2BStudies%2Bin%2BComputational%2BIntelligence&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-319-26450-9_20&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

84/91

302
Lindorfer M., Neugschwandtner M., Weichselbaum L., Fratantonio Y., Veen V. V. D., and Platzer
C., Andrubis – 1,000,000 apps later: a view on current android malware behaviors, Proceedings of the
2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS), September. 2014, Kyoto, Japan, 3–17.
Google Scholar
303
Bosworth S. and Kabay M. E., Computer Security Handbook, 2002, John Wiley & Sons, Hoboken,
NJ, USA.
Google Scholar
304
Sihag V., Vardhan M., and Singh P., A survey of android application and malware hardening,
Computer Science Review. (2021) 39, 100365, https://doi.org/10.1016/j.cosrev.2021.100365.
305
El Merabet H. and Hajraoui A., A survey of malware detection techniques based on machine
learning, International Journal of Advanced Computer Science and Applications. (2019) 10.
306
Souri A. and Hosseini R., A state-of-the-art survey of malware detection approaches using data
mining techniques, Human-centric Computing and Information Sciences. (2018) 8, no. 1,
https://doi.org/10.1186/s13673-018-0125-x, 2-s2.0-85045289472.
307
Idika N. and Mathur A., A survey of malware detection techniques, Proceedings of the 2007
International Conference on Information Technology (ICIT), July, 2007, Amman, Jordan.
Google Scholar
308
Aslan M. and Samet R., A comprehensive review on malware detection approaches, IEEE
Access. (2020) 8.
309
Gibert D., Mateu C., and Planes J., The rise of machine learning for detection and classification of
malware: research developments, trends and challenges, Journal of Network and Computer
Applications. (2020) 153, 102526, https://doi.org/10.1016/j.jnca.2019.102526.
310
Chess D. M. and White S. R., Un undectable computer virus, Proceedings of Virus Bulletin. (2000)
5.
Google Scholar
311
Narouei M., Ahmadi M., Giacinto G., Takabi H., and Sami A., DLLMiner: structural mining for
malware detection, Security and Communication Networks. (2015) 8, no. 18, 3311–3322.
312
Schultz M. G., Eskin E., Zadok E., and Stolfo S. J., Data mining methods for detection of new
malicious executables, Proceedings of the 2001 IEEE Symposium on Security and Privacy. Science
Progress 2001, May, 2001, Oakland, CA, USA.
Google Scholar
313
Choudhary S. P. and Vidyarthi M. D., A simple method for detection of metamorphic malware
using dynamic analysis and text mining, Procedia Computer Science. (2015) 54, 265–270.
10.1016/j.procs.2015.06.031
Google Scholar
314
Galal H. S., Mahdy Y. B., and Atiea M. A., Behavior-based features model for malware detection,
Journal of Computer Virology and Hacking Techniques. (2016) 12, no. 2, 59–67,
https://doi.org/10.1007/s11416-015-0244-0, 2-s2.0-84964253645.
315
Brezinski K. and Ferens K., Sandy toolbox: a framework for dynamic malware analysis and model
development, Transactions on Computational Science and Computational Intelligence, 2021, Springer
Nature, Berlin, Germany.

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALindorfer%2BM.%252C%2B%250ANeugschwandtner%2BM.%252C%2B%250AWeichselbaum%2BL.%252C%2B%250AFratantonio%2BY.%252C%2B%250AVeen%2BV.%2BV.%2BD.%252C%2Band%2B%250APlatzer%2BC.%252C%2BAndrubis%2B%25E2%2580%2593%2B1%252C000%252C000%2Bapps%2Blater%253A%2Ba%2Bview%2Bon%2Bcurrent%2Bandroid%2Bmalware%2Bbehaviors%252C%2BProceedings%2Bof%2Bthe%2B2014%2BThird%2BInternational%2BWorkshop%2Bon%2BBuilding%2BAnalysis%2BDatasets%2Band%2BGathering%2BExperience%2BReturns%2Bfor%2BSecurity%2B%2528BADGERS%2529%252C%2BSeptember.%2B2014%252C%2BKyoto%252C%2BJapan%252C%2B3%25E2%2580%259317.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2002%26author%3DS.%2BBosworth%26author%3DM.%2BE.%2BKabay%26title%3DComputer%2BSecurity%2BHandbook&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1016/j.cosrev.2021.100365
https://doi.org/10.1186/s13673-018-0125-x
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AIdika%2BN.%2Band%2B%250AMathur%2BA.%252C%2BA%2Bsurvey%2Bof%2Bmalware%2Bdetection%2Btechniques%252C%2BProceedings%2Bof%2Bthe%2B2007%2BInternational%2BConference%2Bon%2BInformation%2BTechnology%2B%2528ICIT%2529%252C%2BJuly%252C%2B2007%252C%2BAmman%252C%2BJordan.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1016/j.jnca.2019.102526
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2000%26journal%3DProceedings%2Bof%2BVirus%2BBulletin%26author%3DD.%2BM.%2BChess%26author%3DS.%2BR.%2BWhite%26title%3DUn%2Bundectable%2Bcomputer%2Bvirus&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASchultz%2BM.%2BG.%252C%2B%250AEskin%2BE.%252C%2B%250AZadok%2BE.%252C%2Band%2B%250AStolfo%2BS.%2BJ.%252C%2BData%2Bmining%2Bmethods%2Bfor%2Bdetection%2Bof%2Bnew%2Bmalicious%2Bexecutables%252C%2BProceedings%2Bof%2Bthe%2B2001%2BIEEE%2BSymposium%2Bon%2BSecurity%2Band%2BPrivacy.%2BScience%2BProgress%2B2001%252C%2BMay%252C%2B2001%252C%2BOakland%252C%2BCA%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D54%26publication_year%3D2015%26pages%3D265-270%26journal%3DProcedia%2BComputer%2BScience%26author%3DS.%2BP.%2BChoudhary%26author%3DM.%2BD.%2BVidyarthi%26title%3DA%2Bsimple%2Bmethod%2Bfor%2Bdetection%2Bof%2Bmetamorphic%2Bmalware%2Busing%2Bdynamic%2Banalysis%2Band%2Btext%2Bmining&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.procs.2015.06.031&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-015-0244-0

85/91

Google Scholar
316
Salehi Z., Sami A., and Ghiasi M., MAAR: robust features to detect malicious activity based on
API calls, their arguments and return values, Engineering Applications of Artificial Intelligence. (2017)
59, 93–102.
317
Comparetti P. M., Salvaneschi G., Kirda E., Kolbitsch C., Kruegel C., and Zanero S., Identifying
dormant functionality in malware programs, Proceedings of the 2010 IEEE Symposium on Security
and Privacy, May 2010, Oakland, CA, USA, 61–76.
Google Scholar
318
Firdaus A., Anuar N. B., Razak M. F. A., and Sangaiah A. K., Bio-inspired computational paradigm
for feature investigation and malware detection: interactive analytics, Multimedia Tools and
Applications. (2018) 77, no. 14, 17519–17555, https://doi.org/10.1007/s11042-017-4586-0, 2-s2.0-
85015675032.
319
Kakisim A. G., Nar M., and Sogukpinar I., Metamorphic malware identification using engine-
specific patterns based on co-opcode graphs, Computer Standards and Interfaces. (2020) 71, 103443,
https://doi.org/10.1016/j.csi.2020.103443.
320
Baldangombo U., Jambaljav N., and Horng S.-J., A static malware detection system using data
mining methods, 2013, http://arxiv.org/abs/1308.2831.
Google Scholar
321
Brezinski K. and Ferens K., An adaptive tribal topology for particle swarm optimization,
Transactions on Computational Science & Computational Intelligence, Ser. Advances in Security,
Networks, and Internet of Things, 2018, Springer Nature, New York, NY, USA.
Google Scholar
322
Sikorski M. and Honig A., Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software, 2012, No Starch Press, San Francisco, CA, USA.
Google Scholar
323
Ahmed M. E., Nepal S., and Kim H., Medusa: malware detection using statistical analysis of
system’s behavior, Proceedings of the 2018 IEEE 4th International Conference on Collaboration and
Internet Computing (CIC), October. 2018, Philadelphia, PA, USA, 272–278.
Google Scholar
324
Pavithran J., Patnaik M., and Rebeiro C., {D-TIME}: distributed threadless independent malware
execution for runtime obfuscation, 2019,
https://www.usenix.org/conference/woot19/presentation/pavithran.
Google Scholar
325
Zamir S., Margalit Y., and Margalit D., Method for detecting unwanted executables, 2006, US
Patent US20060015940A1.
Google Scholar
326
Experiments R. T., Persisting in svchost.exe with a service dll, 2022,
https://www.ired.team/offensive-security/persistence/persisting-in-svchost.exe-with-a-service-dll-
servicemain.
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2021%26author%3DK.%2BBrezinski%26author%3DK.%2BFerens%26title%3DTransactions%2Bon%2BComputational%2BScience%2Band%2BComputational%2BIntelligence&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AComparetti%2BP.%2BM.%252C%2B%250ASalvaneschi%2BG.%252C%2B%250AKirda%2BE.%252C%2B%250AKolbitsch%2BC.%252C%2B%250AKruegel%2BC.%252C%2Band%2B%250AZanero%2BS.%252C%2BIdentifying%2Bdormant%2Bfunctionality%2Bin%2Bmalware%2Bprograms%252C%2BProceedings%2Bof%2Bthe%2B2010%2BIEEE%2BSymposium%2Bon%2BSecurity%2Band%2BPrivacy%252C%2BMay%2B2010%252C%2BOakland%252C%2BCA%252C%2BUSA%252C%2B61%25E2%2580%259376.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11042-017-4586-0
https://doi.org/10.1016/j.csi.2020.103443
http://arxiv.org/abs/1308.2831
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABaldangombo%2BU.%252C%2B%250AJambaljav%2BN.%252C%2Band%2B%250AHorng%2BS.-J.%252C%2BA%2Bstatic%2Bmalware%2Bdetection%2Bsystem%2Busing%2Bdata%2Bmining%2Bmethods%252C%2B2013%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1308.2831.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2018%26author%3DK.%2BBrezinski%26author%3DK.%2BFerens%26title%3DTransactions%2Bon%2BComputational%2BScience%2B%2526%2BComputational%2BIntelligence%252C%2BSer.%2BAdvances%2Bin%2BSecurity%252C%2BNetworks%252C%2Band%2BInternet%2Bof%2BThings&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2012%26author%3DM.%2BSikorski%26author%3DA.%2BHonig%26title%3DPractical%2BMalware%2BAnalysis%253A%2BThe%2BHands-On%2BGuide%2Bto%2BDissecting%2BMalicious%2BSoftware&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAhmed%2BM.%2BE.%252C%2B%250ANepal%2BS.%252C%2Band%2B%250AKim%2BH.%252C%2BMedusa%253A%2Bmalware%2Bdetection%2Busing%2Bstatistical%2Banalysis%2Bof%2Bsystem%25E2%2580%2599s%2Bbehavior%252C%2BProceedings%2Bof%2Bthe%2B2018%2BIEEE%2B4th%2BInternational%2BConference%2Bon%2BCollaboration%2Band%2BInternet%2BComputing%2B%2528CIC%2529%252C%2BOctober.%2B2018%252C%2BPhiladelphia%252C%2BPA%252C%2BUSA%252C%2B272%25E2%2580%2593278.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.usenix.org/conference/woot19/presentation/pavithran
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250APavithran%2BJ.%252C%2B%250APatnaik%2BM.%252C%2Band%2B%250ARebeiro%2BC.%252C%2B%257BD-TIME%257D%253A%2Bdistributed%2Bthreadless%2Bindependent%2Bmalware%2Bexecution%2Bfor%2Bruntime%2Bobfuscation%252C%2B2019%252C%2Bhttps%253A%252F%252Fwww.usenix.org%252Fconference%252Fwoot19%252Fpresentation%252Fpavithran.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AZamir%2BS.%252C%2B%250AMargalit%2BY.%252C%2Band%2B%250AMargalit%2BD.%252C%2BMethod%2Bfor%2Bdetecting%2Bunwanted%2Bexecutables%252C%2B2006%252C%2BUS%2BPatent%2BUS20060015940A1.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.ired.team/offensive-security/persistence/persisting-in-svchost.exe-with-a-service-dll-servicemain
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AExperiments%2BR.%2BT.%252C%2BPersisting%2Bin%2Bsvchost.exe%2Bwith%2Ba%2Bservice%2Bdll%252C%2B2022%252C%2Bhttps%253A%252F%252Fwww.ired.team%252Foffensive-security%252Fpersistence%252Fpersisting-in-svchost.exe-with-a-service-dll-servicemain.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

86/91

327
Alazab M., Venkataraman S., and Watters P., Towards understanding malware behaviour by the
extraction of API calls, Proceedings of the 2010 Second Cybercrime and Trustworthy Computing
Workshop, July 2010, Ballarat, Australia, 52–59.
Google Scholar
328
Bahtiyar M. B. Y. and Altıniğne C. Y., A multi-dimensional machine learning approach to predict
advanced malware, Computer Networks. (2019) 160, 118–129.
329
Gupta S., Sharma H., and Kaur S., C. Carlet, M. A. Hasan, and V. Saraswat, Malware
characterization using windows API call sequences, Security, Privacy, and Applied Cryptography
Engineering, 2016, Springer International Publishing, New York, NY, USA, 271–280.
10.1007/978-3-319-49445-6_15
Google Scholar
330
Gupta S., Sag D. R. D. O., Delhi I., Sharma H., NIIT University, Neemrana I., Kaur S., Sag D. R.
D. O., and Delhi I., Malware characterization using WindowsAPI call sequences, Journal of Clinical
Sleep Medicine. (2018) 7, no. 4, 363–378.
Google Scholar
331
Belaoued M. and Mazouzi S., Statistical study of imported APIs by PE type malware, Proceedings
of the 2014 International Conference on Advanced Networking Distributed Systems and Applications,
June 2014, Bejaia, Algeria, 82–86.
Google Scholar
332
Vinod P., Jain H., Golecha Y., Gaur M., and Laxmi V., MEDUSA: MEtamorphic malware dynamic
analysis usingsignature from API, Proceedings of the 3rd International Conference of Security of
Information and Networks, January 2010, Rostov-on-Don, Russia.
Google Scholar
333
Matrosov A., Rodionov E., Harley D., and Malcho J., Stuxnet under the microscope, 2010,
https://www.esetnod32.ru/company/viruslab/analytics/doc/Stuxnet_Under_the_Microscope.pdf.
Google Scholar
334
Ding Y., Xia X., Chen S., and Li Y., A malware detection method based on family behavior graph,
Computers and Security. (2018) 73, 73–86.
335
Hofmeyr S. A., Forrest S., and Somayaji A., Intrusion detection using sequences of system calls,
Journal of Computer Security. (1998) 6, no. 3, 151–180.
10.3233/JCS-980109
Google Scholar
336
Ye Y., Chen L., Wang D., Li T., Jiang Q., and Zhao M., SBMDS: an interpretable string based
malware detection system using SVM ensemble with bagging, Journal in Computer Virology. (2008) 5,
no. 4, https://doi.org/10.1007/s11416-008-0108-y, 2-s2.0-70350621370.
10.1007/s11416-008-0108-y
Google Scholar
337
Ki Y., Kim E., and Kim H. K., A novel approach to detect malware based on API call sequence
analysis, International Journal of Distributed Sensor Networks. (2015) 11, no. 6, 659101,
https://doi.org/10.1155/2015/659101, 2-s2.0-84935006761.
338
Hellal A. and Ben Romdhane L., Minimal contrast frequent pattern mining for malware detection,
Computers and Security. (2016) 62, 19–32.
339
Han W., Xue J., Wang Y., Huang L., Kong Z., Mao L., and MalDAE, Detecting and explaining
malware based on correlation and fusion of static and dynamic characteristics, Computers and

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAlazab%2BM.%252C%2B%250AVenkataraman%2BS.%252C%2Band%2B%250AWatters%2BP.%252C%2BTowards%2Bunderstanding%2Bmalware%2Bbehaviour%2Bby%2Bthe%2Bextraction%2Bof%2BAPI%2Bcalls%252C%2BProceedings%2Bof%2Bthe%2B2010%2BSecond%2BCybercrime%2Band%2BTrustworthy%2BComputing%2BWorkshop%252C%2BJuly%2B2010%252C%2BBallarat%252C%2BAustralia%252C%2B52%25E2%2580%259359.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2016%26pages%3D271-280%26author%3DS.%2BGupta%26author%3DH.%2BSharma%26author%3DS.%2BKaur%26title%3DSecurity%252C%2BPrivacy%252C%2Band%2BApplied%2BCryptography%2BEngineering&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F978-3-319-49445-6_15&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2018%26pages%3D363-378%26journal%3DJournal%2Bof%2BClinical%2BSleep%2BMedicine%26author%3DS.%2BGupta%26author%3DD.%2BR.%2BD.%2BO.%2BSag%26author%3DI.%2BDelhi%26author%3DH.%2BSharma%26author%3D%2BNIIT%2BUniversity%26author%3DI.%2BNeemrana%26author%3DS.%2BKaur%26author%3DD.%2BR.%2BD.%2BO.%2BSag%26author%3DI.%2BDelhi%26title%3DMalware%2Bcharacterization%2Busing%2BWindowsAPI%2Bcall%2Bsequences&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABelaoued%2BM.%2Band%2B%250AMazouzi%2BS.%252C%2BStatistical%2Bstudy%2Bof%2Bimported%2BAPIs%2Bby%2BPE%2Btype%2Bmalware%252C%2BProceedings%2Bof%2Bthe%2B2014%2BInternational%2BConference%2Bon%2BAdvanced%2BNetworking%2BDistributed%2BSystems%2Band%2BApplications%252C%2BJune%2B2014%252C%2BBejaia%252C%2BAlgeria%252C%2B82%25E2%2580%259386.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AVinod%2BP.%252C%2B%250AJain%2BH.%252C%2B%250AGolecha%2BY.%252C%2B%250AGaur%2BM.%252C%2Band%2B%250ALaxmi%2BV.%252C%2BMEDUSA%253A%2BMEtamorphic%2Bmalware%2Bdynamic%2Banalysis%2Busingsignature%2Bfrom%2BAPI%252C%2BProceedings%2Bof%2Bthe%2B3rd%2BInternational%2BConference%2Bof%2BSecurity%2Bof%2BInformation%2Band%2BNetworks%252C%2BJanuary%2B2010%252C%2BRostov-on-Don%252C%2BRussia.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://www.esetnod32.ru/company/viruslab/analytics/doc/Stuxnet_Under_the_Microscope.pdf
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMatrosov%2BA.%252C%2B%250ARodionov%2BE.%252C%2B%250AHarley%2BD.%252C%2Band%2B%250AMalcho%2BJ.%252C%2BStuxnet%2Bunder%2Bthe%2Bmicroscope%252C%2B2010%252C%2Bhttps%253A%252F%252Fwww.esetnod32.ru%252Fcompany%252Fviruslab%252Fanalytics%252Fdoc%252FStuxnet_Under_the_Microscope.pdf.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D6%26publication_year%3D1998%26pages%3D151-180%26journal%3DJournal%2Bof%2BComputer%2BSecurity%26author%3DS.%2BA.%2BHofmeyr%26author%3DS.%2BForrest%26author%3DA.%2BSomayaji%26title%3DIntrusion%2Bdetection%2Busing%2Bsequences%2Bof%2Bsystem%2Bcalls&doi=10.1155%2F2023%2F8227751&doiOfLink=10.3233%2FJCS-980109&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-008-0108-y
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D5%26publication_year%3D2008%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DY.%2BYe%26author%3DL.%2BChen%26author%3DD.%2BWang%26author%3DT.%2BLi%26author%3DQ.%2BJiang%26author%3DM.%2BZhao%26title%3DSBMDS%253A%2Ban%2Binterpretable%2Bstring%2Bbased%2Bmalware%2Bdetection%2Bsystem%2Busing%2BSVM%2Bensemble%2Bwith%2Bbagging&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-008-0108-y&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1155/2015/659101

87/91

Security. (2019) 83, 208–233.
340
Uppal D., Sinha R., Mehra V., and Jain V., Malware detection and classification based on
extraction of API sequences, Proceedings of the 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), September 2014, Delhi, India, 2337–2342.
Google Scholar
341
Bayer U., Comparetti P. M., Hlauschek C., Kruegel C., and Kirda E., Scalable, behavior-based
malware clustering, Proceedings of the Network and Distributed System Security Symposium,
February 2009, San Diego, California, USA.
Google Scholar
342
Pektaş A. and Acarman T., Classification of malware families based on runtime behaviors, Journal
of Information Security and Applications. (2017) 37, 91–100.
343
Rhode M., Tuson L., Burnap P., and Jones K., LAB to SOC: robust features for dynamic malware
detection, Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks – Industry Track, June. 2019, Portland, OR, USA, 13–16.
Google Scholar
344
Santos I., Devesa J., Brezo F., Nieves J., and Bringas P. G., l. Herrero, V. Snášel, A. Abraham, I.
Zelinka, B. Baruque, H. Quintián, J. L. Calvo, J. Sedano, and E. Corchado, OPEM: a static-dynamic
approach for machine-learning-based malware detection, Proceedings of the International Joint
Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions, March, 2013, Berlin, Germany,
Springer, 271–280.
Google Scholar
345
Shijo P. and Salim A., Integrated static and dynamic analysis for malware detection, Procedia
Computer Science. (2015) 46, 804–811.
10.1016/j.procs.2015.02.149
Google Scholar
346
Kaushal K., Swadas P., and Prajapati N., Metamorphic Malware Detection Using Statistical
Analysis, 2012, 2, no. 3.
Google Scholar
347
Shankarapani M. K., Ramamoorthy S., Movva R. S., and Mukkamala S., Malware detection using
assembly and API call sequences, Journal in Computer Virology. (2011) 7, no. 2, 107–119,
https://doi.org/10.1007/s11416-010-0141-5, 2-s2.0-79955114244.
10.1007/s11416-010-0141-5
Google Scholar
348
Ahmed F., Hameed H., Shafiq M. Z., and Farooq M., Using spatio-temporal information in API
calls with machine learning algorithms for malware detection, Proceedings of the 2nd ACM Workshop
on Security and Artificial Intelligence, ser. AISec ’09, November 2009, New York, NY, USA, Association
for Computing Machinery, 55–62, https://doi.org/10.1145/1654988.1655003, 2-s2.0-74049088532.
10.1145/1654988.1655003
Google Scholar
349
Wang C., Pang J., Zhao R., Fu W., and Liu X., Malware detection based on suspicious behavior
identification, Proceedings of the 2009 First International Workshop on Education Technology and
Computer Science, March. 2009, Hubei, China, IEEE Computer Society, USA, 198–202,
https://doi.org/10.1109/ETCS.2009.306, 2-s2.0-67650701354.
10.1109/ETCS.2009.306
Google Scholar

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AUppal%2BD.%252C%2B%250ASinha%2BR.%252C%2B%250AMehra%2BV.%252C%2Band%2B%250AJain%2BV.%252C%2BMalware%2Bdetection%2Band%2Bclassification%2Bbased%2Bon%2Bextraction%2Bof%2BAPI%2Bsequences%252C%2BProceedings%2Bof%2Bthe%2B2014%2BInternational%2BConference%2Bon%2BAdvances%2Bin%2BComputing%252C%2BCommunications%2Band%2BInformatics%2B%2528ICACCI%2529%252C%2BSeptember%2B2014%252C%2BDelhi%252C%2BIndia%252C%2B2337%25E2%2580%25932342.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABayer%2BU.%252C%2B%250AComparetti%2BP.%2BM.%252C%2B%250AHlauschek%2BC.%252C%2B%250AKruegel%2BC.%252C%2Band%2B%250AKirda%2BE.%252C%2BScalable%252C%2Bbehavior-based%2Bmalware%2Bclustering%252C%2BProceedings%2Bof%2Bthe%2BNetwork%2Band%2BDistributed%2BSystem%2BSecurity%2BSymposium%252C%2BFebruary%2B2009%252C%2BSan%2BDiego%252C%2BCalifornia%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ARhode%2BM.%252C%2B%250ATuson%2BL.%252C%2B%250ABurnap%2BP.%252C%2Band%2B%250AJones%2BK.%252C%2BLAB%2Bto%2BSOC%253A%2Brobust%2Bfeatures%2Bfor%2Bdynamic%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2019%2B49th%2BAnnual%2BIEEE%252FIFIP%2BInternational%2BConference%2Bon%2BDependable%2BSystems%2Band%2BNetworks%2B%25E2%2580%2593%2BIndustry%2BTrack%252C%2BJune.%2B2019%252C%2BPortland%252C%2BOR%252C%2BUSA%252C%2B13%25E2%2580%259316.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASantos%2BI.%252C%2B%250ADevesa%2BJ.%252C%2B%250ABrezo%2BF.%252C%2B%250ANieves%2BJ.%252C%2Band%2B%250ABringas%2BP.%2BG.%252C%2Bl.%2BHerrero%252C%2BV.%2BSn%25C3%25A1%25C5%25A1el%252C%2BA.%2BAbraham%252C%2BI.%2BZelinka%252C%2BB.%2BBaruque%252C%2BH.%2BQuinti%25C3%25A1n%252C%2BJ.%2BL.%2BCalvo%252C%2BJ.%2BSedano%252C%2Band%2BE.%2BCorchado%252C%2BOPEM%253A%2Ba%2Bstatic-dynamic%2Bapproach%2Bfor%2Bmachine-learning-based%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2BInternational%2BJoint%2BConference%2BCISIS%25E2%2580%259912-ICEUTE%25C2%25B412-SOCO%25C2%25B412%2BSpecial%2BSessions%252C%2BMarch%252C%2B2013%252C%2BBerlin%252C%2BGermany%252C%2BSpringer%252C%2B271%25E2%2580%2593280.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D46%26publication_year%3D2015%26pages%3D804-811%26journal%3DProcedia%2BComputer%2BScience%26author%3DP.%2BShijo%26author%3DA.%2BSalim%26title%3DIntegrated%2Bstatic%2Band%2Bdynamic%2Banalysis%2Bfor%2Bmalware%2Bdetection&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.procs.2015.02.149&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AKaushal%2BK.%252C%2B%250ASwadas%2BP.%252C%2Band%2B%250APrajapati%2BN.%252C%2BMetamorphic%2BMalware%2BDetection%2BUsing%2BStatistical%2BAnalysis%252C%2B2012%252C%2B2%252C%2Bno.%2B3.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-010-0141-5
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D7%26publication_year%3D2011%26pages%3D107-119%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DM.%2BK.%2BShankarapani%26author%3DS.%2BRamamoorthy%26author%3DR.%2BS.%2BMovva%26author%3DS.%2BMukkamala%26title%3DMalware%2Bdetection%2Busing%2Bassembly%2Band%2BAPI%2Bcall%2Bsequences&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-010-0141-5&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/1654988.1655003
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAhmed%2BF.%252C%2B%250AHameed%2BH.%252C%2B%250AShafiq%2BM.%2BZ.%252C%2Band%2B%250AFarooq%2BM.%252C%2BUsing%2Bspatio-temporal%2Binformation%2Bin%2BAPI%2Bcalls%2Bwith%2Bmachine%2Blearning%2Balgorithms%2Bfor%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2nd%2BACM%2BWorkshop%2Bon%2BSecurity%2Band%2BArtificial%2BIntelligence%252C%2Bser.%2BAISec%2B%25E2%2580%259909%252C%2BNovember%2B2009%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B55%25E2%2580%259362%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F1654988.1655003%252C%2B2-s2.0-74049088532.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1654988.1655003&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1109/ETCS.2009.306
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWang%2BC.%252C%2B%250APang%2BJ.%252C%2B%250AZhao%2BR.%252C%2B%250AFu%2BW.%252C%2Band%2B%250ALiu%2BX.%252C%2BMalware%2Bdetection%2Bbased%2Bon%2Bsuspicious%2Bbehavior%2Bidentification%252C%2BProceedings%2Bof%2Bthe%2B2009%2BFirst%2BInternational%2BWorkshop%2Bon%2BEducation%2BTechnology%2Band%2BComputer%2BScience%252C%2BMarch.%2B2009%252C%2BHubei%252C%2BChina%252C%2BIEEE%2BComputer%2BSociety%252C%2BUSA%252C%2B198%25E2%2580%2593202%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1109%252FETCS.2009.306%252C%2B2-s2.0-67650701354.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2FETCS.2009.306&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

88/91

350
Sami A., Yadegari B., Rahimi H., Peiravian N., Hashemi S., and Hamze A., Malware detection
based on mining API calls, Proceedings of the 2010 ACM Symposium on Applied Computing, Ser.
SAC ’10, March 2010, Sierre, Switzerland, Association for Computing Machinery, 1020–1025,
https://doi.org/10.1145/1774088.1774303, 2-s2.0-77954707625.
10.1145/1774088.1774303
Google Scholar
351
Shen Y.-D., Zhang Z., and Yang Q., Objective-oriented utility-based association mining,
Proceedings of the 2002 IEEE international conference on data mining, December 2002, Maebashi,
Japan, 426–433.
Google Scholar
352
Ye Y., Wang D., Li T., and Ye D., Imds: intelligent malware detection system, Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2007,
San Jose, CA, USA.
Google Scholar
353
Ye Y., Wang D., Li T., Ye D., and Jiang Q., An intelligent PE-malware detection system based on
association mining, Journal in Computer Virology. (2008) 4, no. 4, 323–334,
https://doi.org/10.1007/s11416-008-0082-4, 2-s2.0-54849412646.
10.1007/s11416-008-0082-4
Google Scholar
354
Ye Y., Li T., Jiang Q., and Wang Y., CIMDS: adapting postprocessing techniques of associative
classification for malware detection, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews). (2010) 40, no. 3, 298–307.
355
Al-Hamodi A. A. G., Lu S., and Alsalhi Y., An enhanced frequent pattern growth based on map
reduce for mining association rules, International Journal of Data Mining and Knowledge Management
Process. (2016) 6.
10.5121/ijdkp.2016.6202
Google Scholar
356
Ding Y., Yuan X., Tang K., Xiao X., and Zhang Y., A fast malware detection algorithm based on
objective-oriented association mining, Computers and Security. (2013) 39, 315–324.
357
Buczak A. L. and Guven E., A survey of data mining and machine learning methods for cyber
security intrusion detection, IEEE Communications Surveys Tutorials. (2016) 18, no. 2, 1153–1176.
358
Tesauro G., Kephart J., and Sorkin G., Neural networks for computer virus recognition, IEEE
Expert. (1996) 11, no. 4, 5–6.
10.1109/64.511768
Google Scholar
359
Walenstein A., Hefner D. J., and Wichers J., Header information in malware families and impact
on automated classifiers, Proceedings of the 2010 5th International Conference on Malicious and
Unwanted Software, October 2010, Nancy, France, 15–22.
Google Scholar
360
Kolter J. Z. and Maloof M. A., Learning to detect and classify malicious executables in the wild,
Journal of Machine Learning Research. (2006) 7, 2721–2744.
361
Ravi C. and Manoharan R., Malware detection using windows api sequence and machine
learning, International Journal of Computer Applications. (2012) 43.
10.5120/6194-8715
Google Scholar

https://doi.org/10.1145/1774088.1774303
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ASami%2BA.%252C%2B%250AYadegari%2BB.%252C%2B%250ARahimi%2BH.%252C%2B%250APeiravian%2BN.%252C%2B%250AHashemi%2BS.%252C%2Band%2B%250AHamze%2BA.%252C%2BMalware%2Bdetection%2Bbased%2Bon%2Bmining%2BAPI%2Bcalls%252C%2BProceedings%2Bof%2Bthe%2B2010%2BACM%2BSymposium%2Bon%2BApplied%2BComputing%252C%2BSer.%2BSAC%2B%25E2%2580%259910%252C%2BMarch%2B2010%252C%2BSierre%252C%2BSwitzerland%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B1020%25E2%2580%25931025%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F1774088.1774303%252C%2B2-s2.0-77954707625.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1774088.1774303&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AShen%2BY.-D.%252C%2B%250AZhang%2BZ.%252C%2Band%2B%250AYang%2BQ.%252C%2BObjective-oriented%2Butility-based%2Bassociation%2Bmining%252C%2BProceedings%2Bof%2Bthe%2B2002%2BIEEE%2Binternational%2Bconference%2Bon%2Bdata%2Bmining%252C%2BDecember%2B2002%252C%2BMaebashi%252C%2BJapan%252C%2B426%25E2%2580%2593433.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYe%2BY.%252C%2B%250AWang%2BD.%252C%2B%250ALi%2BT.%252C%2Band%2B%250AYe%2BD.%252C%2BImds%253A%2Bintelligent%2Bmalware%2Bdetection%2Bsystem%252C%2BProceedings%2Bof%2Bthe%2B13th%2BACM%2BSIGKDD%2BInternational%2BConference%2Bon%2BKnowledge%2BDiscovery%2Band%2BData%2BMining%252C%2BAugust%2B2007%252C%2BSan%2BJose%252C%2BCA%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1007/s11416-008-0082-4
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D4%26publication_year%3D2008%26pages%3D323-334%26journal%3DJournal%2Bin%2BComputer%2BVirology%26author%3DY.%2BYe%26author%3DD.%2BWang%26author%3DT.%2BLi%26author%3DD.%2BYe%26author%3DQ.%2BJiang%26title%3DAn%2Bintelligent%2BPE-malware%2Bdetection%2Bsystem%2Bbased%2Bon%2Bassociation%2Bmining&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2Fs11416-008-0082-4&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D6%26publication_year%3D2016%26journal%3DInternational%2BJournal%2Bof%2BData%2BMining%2Band%2BKnowledge%2BManagement%2BProcess%26author%3DA.%2BA.%2BG.%2BAl-Hamodi%26author%3DS.%2BLu%26author%3DY.%2BAlsalhi%26title%3DAn%2Benhanced%2Bfrequent%2Bpattern%2Bgrowth%2Bbased%2Bon%2Bmap%2Breduce%2Bfor%2Bmining%2Bassociation%2Brules&doi=10.1155%2F2023%2F8227751&doiOfLink=10.5121%2Fijdkp.2016.6202&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D11%26publication_year%3D1996%26pages%3D5-6%26journal%3DIEEE%2BExpert%26author%3DG.%2BTesauro%26author%3DJ.%2BKephart%26author%3DG.%2BSorkin%26title%3DNeural%2Bnetworks%2Bfor%2Bcomputer%2Bvirus%2Brecognition&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1109%2F64.511768&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AWalenstein%2BA.%252C%2B%250AHefner%2BD.%2BJ.%252C%2Band%2B%250AWichers%2BJ.%252C%2BHeader%2Binformation%2Bin%2Bmalware%2Bfamilies%2Band%2Bimpact%2Bon%2Bautomated%2Bclassifiers%252C%2BProceedings%2Bof%2Bthe%2B2010%2B5th%2BInternational%2BConference%2Bon%2BMalicious%2Band%2BUnwanted%2BSoftware%252C%2BOctober%2B2010%252C%2BNancy%252C%2BFrance%252C%2B15%25E2%2580%259322.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D43%26publication_year%3D2012%26journal%3DInternational%2BJournal%2Bof%2BComputer%2BApplications%26author%3DC.%2BRavi%26author%3DR.%2BManoharan%26title%3DMalware%2Bdetection%2Busing%2Bwindows%2Bapi%2Bsequence%2Band%2Bmachine%2Blearning&doi=10.1155%2F2023%2F8227751&doiOfLink=10.5120%2F6194-8715&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

89/91

362
Bruschi D., Martignoni L., and Monga M., R. Büschkes and P. Laskov, Detecting self-mutating
malware using control-flow graph matching, Detection of Intrusions and Malware and Vulnerability
Assessment, 2006, Springer, Berlin, Germany, 129–143.
10.1007/11790754_8
Google Scholar
363
Bonfante G., Kaczmarek M., and Marion J.-Y., Control flow graphs as malware signatures, 2007,
International Workshop on the Theory of Computer Viruses, Nancy, France.
Google Scholar
364
Jeong K. and Lee H., Code graph for malware detection, Proceedings of the 2008 International
Conference on Information Networking, January. 2008, Busan, Korea (South), 1–5.
Google Scholar
365
Eskandari M. and Raesi H., Frequent sub-graph mining for intelligent malware detection, Security
and Communication Networks. (2014) 7, no. 11, 1872–1886.
366
Faruki P., Laxmi V., Gaur M. S., and Vinod P., Mining control flow graph as API call-grams to
detect portable executable malware, Proceedings of the Fifth International Conference on Security of
Information and Networks, October 2012, Jaipur, India, Association for Computing Machinery, 130–
137, https://doi.org/10.1145/2388576.2388594, 2-s2.0-84870352482.
10.1145/2388576.2388594
Google Scholar
367
Blokhin K., Saxe J., and Mentis D., Malware similarity identification using call graph based system
call subsequence features, Proceedings of the 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops, July. 2013, Philadelphia, PA, USA, 6–10.
Google Scholar
368
Christodorescu M., Jha S., and Kruegel C., Mining specifications of malicious behavior,
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, September. 2007, New York,
NY, USA, Association for Computing Machinery, 5–14, https://doi.org/10.1145/1287624.1287628, 2-
s2.0-37849017546.
10.1145/1287624.1287628
Google Scholar
369
Ting R. M. H. and Bailey J., Mining minimal contrast subgraph patterns, Proceedings of the Sixth
SIAM International Conference on Data Mining, April 2006, Bethesda, MD, USA.
Google Scholar
370
Wüchner T., Ochoa M., and Pretschner A., Malware detection with quantitative data flow graphs,
Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security,
June 2014, New York, NY, USA, Association for Computing Machinery, 271–282,
https://doi.org/10.1145/2590296.2590319, 2-s2.0-84984905603.
10.1145/2590296.2590319
Google Scholar
371
Lee J., Jeong K., and Lee H., Detecting metamorphic malwares using code graphs, Proceedings
of the 2010 ACM Symposium on Applied Computing, March 2010, Sierre, Switzerland, Association for
Computing Machinery, 1970–1977, https://doi.org/10.1145/1774088.1774505, 2-s2.0-77954746422.
10.1145/1774088.1774505
Google Scholar
372
Mehra V., Jain V., and Uppal D., DaCoMM: detection and classification of metamorphic malware,
Proceedings of the 2015 Fifth International Conference on Communication Systems and Network

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2006%26pages%3D129-143%26author%3DD.%2BBruschi%26author%3DL.%2BMartignoni%26author%3DM.%2BMonga%26title%3DDetection%2Bof%2BIntrusions%2Band%2BMalware%2Band%2BVulnerability%2BAssessment&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1007%2F11790754_8&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2007%26author%3DG.%2BBonfante%26author%3DM.%2BKaczmarek%26author%3DJ.-Y.%2BMarion%26title%3DControl%2Bflow%2Bgraphs%2Bas%2Bmalware%2Bsignatures&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJeong%2BK.%2Band%2B%250ALee%2BH.%252C%2BCode%2Bgraph%2Bfor%2Bmalware%2Bdetection%252C%2BProceedings%2Bof%2Bthe%2B2008%2BInternational%2BConference%2Bon%2BInformation%2BNetworking%252C%2BJanuary.%2B2008%252C%2BBusan%252C%2BKorea%2B%2528South%2529%252C%2B1%25E2%2580%25935.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/2388576.2388594
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFaruki%2BP.%252C%2B%250ALaxmi%2BV.%252C%2B%250AGaur%2BM.%2BS.%252C%2Band%2B%250AVinod%2BP.%252C%2BMining%2Bcontrol%2Bflow%2Bgraph%2Bas%2BAPI%2Bcall-grams%2Bto%2Bdetect%2Bportable%2Bexecutable%2Bmalware%252C%2BProceedings%2Bof%2Bthe%2BFifth%2BInternational%2BConference%2Bon%2BSecurity%2Bof%2BInformation%2Band%2BNetworks%252C%2BOctober%2B2012%252C%2BJaipur%252C%2BIndia%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B130%25E2%2580%2593137%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F2388576.2388594%252C%2B2-s2.0-84870352482.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F2388576.2388594&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABlokhin%2BK.%252C%2B%250ASaxe%2BJ.%252C%2Band%2B%250AMentis%2BD.%252C%2BMalware%2Bsimilarity%2Bidentification%2Busing%2Bcall%2Bgraph%2Bbased%2Bsystem%2Bcall%2Bsubsequence%2Bfeatures%252C%2BProceedings%2Bof%2Bthe%2B2013%2BIEEE%2B33rd%2BInternational%2BConference%2Bon%2BDistributed%2BComputing%2BSystems%2BWorkshops%252C%2BJuly.%2B2013%252C%2BPhiladelphia%252C%2BPA%252C%2BUSA%252C%2B6%25E2%2580%259310.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/1287624.1287628
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AChristodorescu%2BM.%252C%2B%250AJha%2BS.%252C%2Band%2B%250AKruegel%2BC.%252C%2BMining%2Bspecifications%2Bof%2Bmalicious%2Bbehavior%252C%2BProceedings%2Bof%2Bthe%2Bthe%2B6th%2BJoint%2BMeeting%2Bof%2Bthe%2BEuropean%2BSoftware%2BEngineering%2BConference%2Band%2Bthe%2BACM%2BSIGSOFT%2BSymposium%2Bon%2Bthe%2BFoundations%2Bof%2BSoftware%2BEngineering%252C%2BSeptember.%2B2007%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B5%25E2%2580%259314%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F1287624.1287628%252C%2B2-s2.0-37849017546.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1287624.1287628&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ATing%2BR.%2BM.%2BH.%2Band%2B%250ABailey%2BJ.%252C%2BMining%2Bminimal%2Bcontrast%2Bsubgraph%2Bpatterns%252C%2BProceedings%2Bof%2Bthe%2BSixth%2BSIAM%2BInternational%2BConference%2Bon%2BData%2BMining%252C%2BApril%2B2006%252C%2BBethesda%252C%2BMD%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/2590296.2590319
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AW%25C3%25BCchner%2BT.%252C%2B%250AOchoa%2BM.%252C%2Band%2B%250APretschner%2BA.%252C%2BMalware%2Bdetection%2Bwith%2Bquantitative%2Bdata%2Bflow%2Bgraphs%252C%2BProceedings%2Bof%2Bthe%2B9th%2BACM%2BSymposium%2Bon%2BInformation%252C%2BComputer%2Band%2BCommunications%2BSecurity%252C%2BJune%2B2014%252C%2BNew%2BYork%252C%2BNY%252C%2BUSA%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B271%25E2%2580%2593282%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F2590296.2590319%252C%2B2-s2.0-84984905603.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F2590296.2590319&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://doi.org/10.1145/1774088.1774505
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ALee%2BJ.%252C%2B%250AJeong%2BK.%252C%2Band%2B%250ALee%2BH.%252C%2BDetecting%2Bmetamorphic%2Bmalwares%2Busing%2Bcode%2Bgraphs%252C%2BProceedings%2Bof%2Bthe%2B2010%2BACM%2BSymposium%2Bon%2BApplied%2BComputing%252C%2BMarch%2B2010%252C%2BSierre%252C%2BSwitzerland%252C%2BAssociation%2Bfor%2BComputing%2BMachinery%252C%2B1970%25E2%2580%25931977%252C%2Bhttps%253A%252F%252Fdoi.org%252F10.1145%252F1774088.1774505%252C%2B2-s2.0-77954746422.&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1145%2F1774088.1774505&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

90/91

Technologies, April. 2015, Gwalior, India, 668–673.
Google Scholar
373
Abusnaina A., Khormali A., Alasmary H., Park J., Anwar A., and Mohaisen A., Adversarial learning
attacks on graph-based IoT malware detection systems, Proceedings of the 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), July 2019, Dallas, TX, USA,
1296–1305.
Google Scholar
374
Vinayaka K. and Jaidhar C., Android malware detection using function call graph with graph
convolutional networks, Proceedings of the 2021 2nd International Conference on Secure Cyber
Computing and Communications (ICSCCC), May 2021, Jalandhar, India, 279–287.
Google Scholar
375
Feng P., Ma J., Li T., Ma X., Xi N., and Lu D., Android malware detection based on call graph via
graph neural network, Proceedings of the 2020 International Conference on Networking and Network
Applications (NaNA), December 2020, Haikou, China, 368–374.
Google Scholar
376
Taheri R., Ghahramani M., Javidan R., Shojafar M., Pooranian Z., and Conti M., Similarity-based
Android malware detection using Hamming distance of static binary features, Future Generation
Computer Systems. (2020) 105, 230–247.
377
Eskandari M. and Hashemi S., A graph mining approach for detecting unknown malwares, Journal
of Visual Languages and Computing. (2012) 23, no. 3, 154–162.
10.1016/j.jvlc.2012.02.002
Google Scholar
378
Karbab E. B. and Debbabi M., MalDy: portable, data-driven malware detection using natural
language processing and machine learning techniques on behavioral analysis reports, Digital
Investigation. (2019) 28, S77–S87.
379
Catak F. O., Yazı A. F., Elezaj O., and Ahmed J., Deep learning based Sequential model for
malware analysis using Windows exe API Calls, PeerJ computer science. (2020) 6.
380
Brezinski K. and Ferens K., Graph-oriented modelling of process event activity for the detection of
malware, 2023 International Conference on Computational Science and Computational Intelligence,
July 2023, Las Vegas, USA.
Google Scholar
381
Brezinski K. and Ferens K., Transformers-Malware in Disguise, Transactions on Computational
Science & Computational Intelligence, 2021, Springer Nature, Berlin, Germany.
Google Scholar
382
Mikolov T., Chen K., Corrado G., and Dean J., Efficient estimation of word representations in
vector space, 2013, http://arxiv.org/abs/1301.3781.
Google Scholar
383
Amer E., El-Sappagh S., and Hu J. W., Contextual identification of windows malware through
semantic interpretation of API call sequence, Applied Sciences. (2020) 10, no. 21.
10.3390/app10217673
Google Scholar
384
Amer E. and Zelinka I., A dynamic Windows malware detection and prediction method based on
contextual understanding of API call sequence, Computers and Security. (2020) 92, 101760,

https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMehra%2BV.%252C%2B%250AJain%2BV.%252C%2Band%2B%250AUppal%2BD.%252C%2BDaCoMM%253A%2Bdetection%2Band%2Bclassification%2Bof%2Bmetamorphic%2Bmalware%252C%2BProceedings%2Bof%2Bthe%2B2015%2BFifth%2BInternational%2BConference%2Bon%2BCommunication%2BSystems%2Band%2BNetwork%2BTechnologies%252C%2BApril.%2B2015%252C%2BGwalior%252C%2BIndia%252C%2B668%25E2%2580%2593673.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AAbusnaina%2BA.%252C%2B%250AKhormali%2BA.%252C%2B%250AAlasmary%2BH.%252C%2B%250APark%2BJ.%252C%2B%250AAnwar%2BA.%252C%2Band%2B%250AMohaisen%2BA.%252C%2BAdversarial%2Blearning%2Battacks%2Bon%2Bgraph-based%2BIoT%2Bmalware%2Bdetection%2Bsystems%252C%2BProceedings%2Bof%2Bthe%2B2019%2BIEEE%2B39th%2BInternational%2BConference%2Bon%2BDistributed%2BComputing%2BSystems%2B%2528ICDCS%2529%252C%2BJuly%2B2019%252C%2BDallas%252C%2BTX%252C%2BUSA%252C%2B1296%25E2%2580%25931305.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AVinayaka%2BK.%2Band%2B%250AJaidhar%2BC.%252C%2BAndroid%2Bmalware%2Bdetection%2Busing%2Bfunction%2Bcall%2Bgraph%2Bwith%2Bgraph%2Bconvolutional%2Bnetworks%252C%2BProceedings%2Bof%2Bthe%2B2021%2B2nd%2BInternational%2BConference%2Bon%2BSecure%2BCyber%2BComputing%2Band%2BCommunications%2B%2528ICSCCC%2529%252C%2BMay%2B2021%252C%2BJalandhar%252C%2BIndia%252C%2B279%25E2%2580%2593287.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AFeng%2BP.%252C%2B%250AMa%2BJ.%252C%2B%250ALi%2BT.%252C%2B%250AMa%2BX.%252C%2B%250AXi%2BN.%252C%2Band%2B%250ALu%2BD.%252C%2BAndroid%2Bmalware%2Bdetection%2Bbased%2Bon%2Bcall%2Bgraph%2Bvia%2Bgraph%2Bneural%2Bnetwork%252C%2BProceedings%2Bof%2Bthe%2B2020%2BInternational%2BConference%2Bon%2BNetworking%2Band%2BNetwork%2BApplications%2B%2528NaNA%2529%252C%2BDecember%2B2020%252C%2BHaikou%252C%2BChina%252C%2B368%25E2%2580%2593374.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D23%26publication_year%3D2012%26pages%3D154-162%26journal%3DJournal%2Bof%2BVisual%2BLanguages%2Band%2BComputing%26author%3DM.%2BEskandari%26author%3DS.%2BHashemi%26title%3DA%2Bgraph%2Bmining%2Bapproach%2Bfor%2Bdetecting%2Bunknown%2Bmalwares&doi=10.1155%2F2023%2F8227751&doiOfLink=10.1016%2Fj.jvlc.2012.02.002&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ABrezinski%2BK.%2Band%2B%250AFerens%2BK.%252C%2BGraph-oriented%2Bmodelling%2Bof%2Bprocess%2Bevent%2Bactivity%2Bfor%2Bthe%2Bdetection%2Bof%2Bmalware%252C%2B2023%2BInternational%2BConference%2Bon%2BComputational%2BScience%2Band%2BComputational%2BIntelligence%252C%2BJuly%2B2023%252C%2BLas%2BVegas%252C%2BUSA.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26publication_year%3D2021%26author%3DK.%2BBrezinski%26author%3DK.%2BFerens%26title%3DTransactions%2Bon%2BComputational%2BScience%2B%2526%2BComputational%2BIntelligence&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1301.3781
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMikolov%2BT.%252C%2B%250AChen%2BK.%252C%2B%250ACorrado%2BG.%252C%2Band%2B%250ADean%2BJ.%252C%2BEfficient%2Bestimation%2Bof%2Bword%2Brepresentations%2Bin%2Bvector%2Bspace%252C%2B2013%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1301.3781.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar_lookup%3Fhl%3Den%26volume%3D10%26publication_year%3D2020%26journal%3DApplied%2BSciences%26author%3DE.%2BAmer%26author%3DS.%2BEl-Sappagh%26author%3DJ.%2BW.%2BHu%26title%3DContextual%2Bidentification%2Bof%2Bwindows%2Bmalware%2Bthrough%2Bsemantic%2Binterpretation%2Bof%2BAPI%2Bcall%2Bsequence&doi=10.1155%2F2023%2F8227751&doiOfLink=10.3390%2Fapp10217673&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

91/91

https://doi.org/10.1016/j.cose.2020.101760.
385
Kang J., Jang S., Li S., Jeong Y.-S., and Sung Y., Long short-term memory-based Malware
classification method for information security, Computers and Electrical Engineering. (2019) 77, 366–
375.
386
Catak F. O. and Yazı A. F., A benchmark api call dataset for windows pe malware classification,
2021, http://arxiv.org/abs/1905.01999.
Google Scholar
387
Yazi A. F., Çatak F. Z., and Gül E., Classification of methamorphic malware with deep
learning(lstm), Proceedings of the 2019 27th Signal Processing and Communications Applications
Conference (SIU), April 2019, Sivas, Turkey, 1–4.
Google Scholar
388
McDonnell S., Nada O., Abid M. R., and Amjadian E., CyberBERT: a deep dynamic-state session-
based recommender system for cyber threat recognition, Proceedings of the 2021 IEEE Aerospace
Conference (50100), March 2021, Big Sky, MT, USA, 1–12.
Google Scholar
389
Yesir S. and Soğukpinar B., Malware detection and classification using fastText and BERT,
Proceedings of the 2021 9th International Symposium on Digital Forensics and Security (ISDFS), June
2021, Elazig, Turkey, 1–6.
Google Scholar
390
Joulin A., Grave E., Bojanowski P., Douze M., Jégou H., and Mikolov T., Fasttext.zip: compressing
text classification models, 2016, http://arxiv.org/abs/1612.03651.
Google Scholar

Citing Literature

https://doi.org/10.1016/j.cose.2020.101760
http://arxiv.org/abs/1905.01999
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250ACatak%2BF.%2BO.%2Band%2B%250AYaz%25C4%25B1%2BA.%2BF.%252C%2BA%2Bbenchmark%2Bapi%2Bcall%2Bdataset%2Bfor%2Bwindows%2Bpe%2Bmalware%2Bclassification%252C%2B2021%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1905.01999.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYazi%2BA.%2BF.%252C%2B%250A%25C3%2587atak%2BF.%2BZ.%252C%2Band%2B%250AG%25C3%25BCl%2BE.%252C%2BClassification%2Bof%2Bmethamorphic%2Bmalware%2Bwith%2Bdeep%2Blearning%2528lstm%2529%252C%2BProceedings%2Bof%2Bthe%2B2019%2B27th%2BSignal%2BProcessing%2Band%2BCommunications%2BApplications%2BConference%2B%2528SIU%2529%252C%2BApril%2B2019%252C%2BSivas%252C%2BTurkey%252C%2B1%25E2%2580%25934.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AMcDonnell%2BS.%252C%2B%250ANada%2BO.%252C%2B%250AAbid%2BM.%2BR.%252C%2Band%2B%250AAmjadian%2BE.%252C%2BCyberBERT%253A%2Ba%2Bdeep%2Bdynamic-state%2Bsession-based%2Brecommender%2Bsystem%2Bfor%2Bcyber%2Bthreat%2Brecognition%252C%2BProceedings%2Bof%2Bthe%2B2021%2BIEEE%2BAerospace%2BConference%2B%252850100%2529%252C%2BMarch%2B2021%252C%2BBig%2BSky%252C%2BMT%252C%2BUSA%252C%2B1%25E2%2580%259312.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AYesir%2BS.%2Band%2B%250ASo%25C4%259Fukpinar%2BB.%252C%2BMalware%2Bdetection%2Band%2Bclassification%2Busing%2BfastText%2Band%2BBERT%252C%2BProceedings%2Bof%2Bthe%2B2021%2B9th%2BInternational%2BSymposium%2Bon%2BDigital%2BForensics%2Band%2BSecurity%2B%2528ISDFS%2529%252C%2BJune%2B2021%252C%2BElazig%252C%2BTurkey%252C%2B1%25E2%2580%25936.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT
http://arxiv.org/abs/1612.03651
https://undefined/action/getFTRLinkout?url=http%3A%2F%2Fscholar.google.com%2Fscholar%3Fhl%3Den%26q%3D%250AJoulin%2BA.%252C%2B%250AGrave%2BE.%252C%2B%250ABojanowski%2BP.%252C%2B%250ADouze%2BM.%252C%2B%250AJ%25C3%25A9gou%2BH.%252C%2Band%2B%250AMikolov%2BT.%252C%2BFasttext.zip%253A%2Bcompressing%2Btext%2Bclassification%2Bmodels%252C%2B2016%252C%2Bhttp%253A%252F%252Farxiv.org%252Fabs%252F1612.03651.&doi=10.1155%2F2023%2F8227751&linkType=gs&linkLocation=Reference&linkSource=FULL_TEXT

