
1/17

INDUSTROYER.V2: Old Malware Learns New Tricks
mandiant.com/resources/blog/industroyer-v2-old-malware-new-tricks

On April 12, 2022, CERT-UA and ESET reported that a cyber physical attack impacted

operational technology (OT) supporting power grid operations in Ukraine. The attack

leveraged different pieces of malware including a variant of INDUSTROYER, a well-known

piece of attack-oriented ICS malware originally deployed in December 2016 to cause power

outages in Ukraine.

The attack is significant not only because OT-targeted attacks are rare, but also because this

is the first instance in which code from broadly known attack-oriented OT malware was

redeployed against a new victim. Despite five years of substantial analysis into

INDUSTROYER from a variety of researchers, the actor still attempted to repurpose the tool

and customized it to reach new targets. INDUSTROYER.V2 (Mandiant’s name for the new

variant) reinforces the notion that OT malware can be tailored for use against multiple

victims, which has serious implications for other publicly known OT malware families like

INCONTROLLER.

While much of the story surrounding INDUSTROYER.V2’s deployment is already publicly

available, Mandiant further analyzed the malware to share additional insights for defenders

and the OT community. In this blog post we document additional technical details of

INDUSTROYER.V2 based on our analysis of two different samples. We also provide

detection rules to identify related activity.

If you need support responding to related activity, please contact Mandiant Consulting.

Further analysis of related threats—including additional malware that was deployed

alongside INDUSTROYER.V2—is available as part of Mandiant Advantage Threat

Intelligence.

INDUSTROYER.V2 In a Nutshell

INDUSTROYER.V2 is similar to its predecessor, however this variant contains more targeted

functionality. Unlike the original INDUSTROYER, which was a framework that leveraged

external modules to implement four different OT protocols, this variant is self-contained and

only implements the IEC 60870-5-104 (IEC-104) communications protocol. IEC-104 is used

for power system monitoring and control over TCP and is mainly implemented in Europe

and the Middle East.

Most importantly, the new malware variant enables the actor to embed customized

configurations that modify the malware’s behavior to specific intelligent electronic devices

(IEDs) (e.g., protection relays, merging units, etc.) within the target environment. The design

https://www.mandiant.com/resources/blog/industroyer-v2-old-malware-new-tricks
https://cert.gov.ua/article/39518
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.welivesecurity.com/2017/06/12/industroyer-biggest-threat-industrial-control-systems-since-stuxnet/
https://www.mandiant.com/resources/incontroller-state-sponsored-ics-tool
https://www.mandiant.com/services/incident-response
https://www.mandiant.com/advantage/threat-intelligence

2/17

change to embed custom configurations in INDUSTROYER.V2 reduces the effort required by

the actor to reproduce the attack against different victim environments and enables the actor

to contain the impact to specific targeted IEDs.

Two Custom INDUSTROYER.V2 Samples Show the Breadth of the
Attack

To fully understand the implications of the new customization capabilities in

INDUSTROYER.V2, we analyzed and compared two different samples. The second sample,

which is likely a recompiled version, is publicly available and in online malware scanning

platforms (MD5: 7c05da2e4612fca213430b6c93e76b06).

We believe both samples are related to the same operation. The compilation

timestamps were within minutes of each other and about two weeks before the

intended attack. It is possible the actor was modifying the malware’s configuration to

customize the payload for different targets.

Each sample contains different configurations hardcoded within the binary. One

sample contains eight unique hardcoded target IP addresses, whereas the other only

contains three.

In both samples the malware terminated a specific process. However, the defined

filepath used to concatenate with the process differed between the two samples. This

shows a nuanced understanding of the victim environment.

Figure 1 shows an example of INDUSTROYER.V2 configuration for the publicly

available sample.

Figure 1: Example INDUSTROYER.V2 configuration for publicly available sample

Based on the slight differences between both samples, we can infer additional details about

the scale of the attack, the likely level of access that the actor had within the victim networks,

and the reconnaissance likely performed by the attacker prior to the deployment of the

malware.

As shown by the details embedded in the malware configurations, the actor conducted

at least some internal network reconnaissance to identify specific IEDs in the victim

environments and understand how to access them.

The malware configurations target devices across specific subnets, highlighting that the

actor succeeded in identifying and penetrating surrounding networks.

3/17

The actor’s successful implementation of IEC-104 to interact with the targeted devices

indicates a robust understanding of the protocol and knowledge of the victim

environment. For example, in the samples we analyzed the actor manipulated a

selected list of Information Object Addresses (IOAs), which are used to interact with

power line switches or circuit breakers in a remote terminal unit (RTU) or relay

configuration.

Conversely, the malware code itself shows some degree of carelessness or potential time

constraints. For example, the INDUSTROYER.V2 samples contain limited obfuscation

and defense evasion methods. The lack of obfuscation in the binaries provides

defenders with quick hints on its functionality and ability to target OT assets.

Outlook

Extensible frameworks, such as the original INDUSTROYER and INCONTROLLER, are

often preferred by threat actors due to the flexibility of their modular design, allowing

deployment of specific payloads to target different victim assets or communication protocols.

However, in the case of INDUSTROYER.V2, the actor reimplemented only one of the original

components from the earlier framework and created a new self-contained executable.

It is unclear why the threat actor made the particular modifications to INDUSTROYER.V2.

Perhaps the actor wanted to develop a more streamlined version to target a very specific

environment, or they did not want to expose more valuable or capable tools, or they simply

believed this approach would be efficient since it would not require additional resources to

impact the target.

Regardless of the motivations, the reuse of code from known OT malware highlights the

value of hunting and detections based on known indicators. For instance, some detections we

built for the original INDUSTROYER successfully identified INDUSTROYER.V2 in the wild.

While it is often believed that OT malware is not likely to be utilized in more than one

environment, tools that take advantage of insecure by design OT features—such as

INDUSTROYER.V2 does—can be employed multiple times to target multiple victims. The OT

security community should recognize these tools as frameworks or capabilities, and not

merely features of isolated cyber security incidents and one time use tools.

Technical Analysis of INDUSTROYER.V2

INDUSTROYER.V2 is written in C++ and implements the IEC-104 protocol to modify the

state of remote terminal units (RTUs) over TCP. IEC-104 protocol TCP clients are called

control stations and the TCP servers are called remote stations. The malware crafts

configurable IEC-104 Application Service Data Unit (ASDU) messages, also known as

telegrams, to change the state of a remote station’s Information Object Addresses (IOAs) to

ON or OFF. IOAs identify a specific data element on a device and may correspond to power

line switches or circuit breakers in an RTU or relay configuration.

4/17

The malware is a self-contained executable where the operator can set up configuration

parameters to target specific remote stations, define execution options, and craft ASDU

messages. It also accepts the optional command line arguments (-o) to print debug messages

to an output file or (-t) to create a time delay before execution.

Configuration Capabilities

After the command line interface arguments are parsed, INDUSTROYER.V2 iterates through

embedded configuration entries. The execution of the program is highly configurable. Based

on our analysis of two INDUSTROYER.V2 samples, the malware contains configuration

entries structured as strings in the order shown in Table 1.

Position Configuration Entry Description

1 Station IP Address

2 Station Port

3 Entry Index Value

4 Enable Hard-Coded Telegrams with specified Range

5 Enable Configuration Options 6 - 14

5b If Entry 4 is Enabled, Telegram Start Range

6 Enable Process Termination

6b If entry 4 is Enabled, Telegram End Range

7 Process Name to Terminate

8 Enable File Rename

9 Directory Path for File Rename

10 Sleep Prior to IEC-104 functionality

5/17

Table 1: Configuration Structure

11 Sleep Duration Seed Value

12 Execution Control

13 Sleep Duration Seed Value

14 Unused

15 Command State – ON/OFF

16 Change Option – Send Inverted ON/OFF commands

17 Number of ASDU Data Entries

18 First ASDU Data Entry

An example extracted configuration entry from sample

7c05da2e4612fca213430b6c93e76b06 is presented in Figure 2.

Figure 2: Example configuration entry

192.168.XXX.XXX 2404 2 0 1 1 Example StoppedProcess.exe 1 "Example PATH"
0 1 0 0 1 0 0 8 1104 0 0 0 1 1 1105 0 0 0 1 2 1106 0 0 0 1 3 1107 0 0 0 1
4 1108 0 0 0 1 5 1101 0 0 0 1 6 1102 0 0 0 1 7 1103 0 0 0 1 8

If configuration entry #4 is enabled, the malware crafts ASDU telegrams to deliver Select and

Execute commands and modify the state of a remote station's IOA to OFF. The IOA ranges

which these telegrams are sent to are provided by configuration entries #5 and #6. However,

this option was not enabled in recovered samples. A configuration mapping against the

example in Figure 2 is included in the Appendix.

All the configurations we examined had the following options enabled: process termination,

file rename, and use of ASDU data entries. The ASDU data entries are used to craft specific

ASDU messages to the remote station and the data entry is structured in the format shown in

Table 2.

Position ASDU Data Entry Description

6/17

Table 2: ASDU Entry Structure

1 Station Information Object Address (IOA)

2 Set Message Type – Single or Double Command

3 Set Command Type – Select or Execute

4 Invert Default ON/OFF State

5 Execution Control

6 ASDU Entry Index

After parsing each configuration entry, INDUSTROYER.V2 enumerates running processes to

identify if a specific hard-coded process is running and terminates it. Once this process is

stopped, the malware enumerates running processes again and terminates whichever process

is specified by the operator in the configuration.

If the file rename option is enabled, the malware creates a file path using its configuration

data and adds a .MZ extension to this file. This may be a technique to prevent the specified

process terminated earlier from relaunching.

For each configuration entry, a thread is created that implements IEC-104 communication

with the controlled system. IEC-104 uses the Application Protocol Data Unit (APDU)

specification.

An APDU frame can be composed of either just an Application Protocol Control Information

(APCI) frame; or an APCI header and a subsequent Application Service Data Unit (ASDU)

frame.

7/17

Figure 3: APDU frame format by Brno University of Technology

Execution

INDUSTROYER.V2 first sends control function messages, which are contained within an

APCI frame. The first control message is a Test Frame (TESTFR). The malware sends a

TESTFR ACT to the remote station which verifies an established connection. If one exists, a

remote station responds with a corresponding TESTFR CON.

Next, the malware opens a data transfer channel with the remote station using a subsequent

control message type of Start Data Transfer (STARTDT). By default, data transfer is not

enabled on an active connection between a control station and remote station. Therefore, the

malware sends a STARTDT ACT to activate a data transfer channel and a remote station

sends a corresponding STARTDT CON, to confirm a successful activation.

With data transfer enabled, the malware utilizes an ASDU frame to send subsequent

commands to the remote station. ASDU messages, also known as telegrams, are a set of

application functions defined by IEC-104 to monitor and control remote stations. Further

information describing the ASDU frame is available for reference here.

The malware sends a General Interrogation command, which allows it to obtain the current

status of monitored digital and analog signals of the remote station. The malware then uses

embedded ASDU data entries to craft a specific command to modify the target’s IOA to either

https://www.fit.vut.cz/research/publication-file/11570/TR-IEC104.pdf
https://www.fit.vut.cz/research/publication-file/11570/TR-IEC104.pdf

8/17

ON or OFF.

These commands are crafted using options defined within its configuration and the

individual ASDU data entry. For example, in the configuration we extracted from sample

7c05da2e4612fca213430b6c93e76b06 (presented in Figure 2) the first ASDU data entry is:

1104 0 0 0 1 1

Based on configuration entry 15 (OFF state), entry 16 (Disable Change option), and its ASDU

entry values (described in Table 2), the malware crafts an ASDU packet with the following

characteristics:

Information Object Address: 1104

ASDU message type: C-DC_NA_1 (Double Command)

ASDU command type: Execute

Set state value: OFF

The ASDU message is shown in decoded network traffic in Figure 4.

Figure 4: Crafted ASDU message

For each targeted remote station in a configuration entry, the malware iterates through

corresponding ASDU data entries, crafting specified telegrams, and sends it to the remote

station. The malware’s configuration settings may direct it to craft an additional ASDU

9/17

message, which inverts the ON/OFF state in a command and sends this additional message

to the remote station’s IOA.

A high-level description of the communication sequence is the following:

1. Send Test Frame messages to verify an established connection

2. Send Start Data Transfer messages to open a data transfer channel

3. Send a General Interrogation command retrieving the status of the remote station

4. Send crafted Single or Double command types to modify the state of the remote

station’s IOA

Figure 5 illustrates the described message sequence, captured between INDUSTROYER.V2

and a lab emulated IEC-104 remote station. It displays the initial TESTFR, STARTDT, and

Interrogation commands, followed by the crafted ASDU commands delivered to specific

remote station IOAs.

Figure 5: INDUSTROYER.V2 message sequence with emulated IEC-104 Remote Station

The detailed nature of how a specific remote station is targeted, down to the unique IOAs and

the state each IOA must be modified to create an intended effect, demonstrates a

comprehensive understanding of, or visibility into the victim environment.

We note that although the IOAs targeted by the malware can provide important context to

the actor's precise intent, IOA mappings often differ between manufacturers, devices, and

even users. For this reason, accurate interpretation of the actions intended by the actor

requires additional knowledge about the targeted assets.

While at this moment we do not have such information, we explored possible IOA matches

based on publicly available documentation about specific products. For example, knowing

that ABB RTU's and relays are heavily deployed in the targeted region we performed open

10/17

source analysis. In our earlier example we observed an IOA equivalent to 1104, which we

then mapped to public product documentation from an ABB Distribution Recloser

Relay corresponding to "50BFT:InStr status".

In this status, 50 is the ANSI number for circuit breaker, which is how relay elements are

numbered when setting a protection relay. Then 50BFT stands for circuit breaker failure

protection. We provide an appendix illustrating additional mapping of IOAs extracted from

the configuration of the public INDUSTROYER.V2 sample against the same distribution

recloser relay.

Overlaps With Previous INDUSTROYER Variant

The two versions of INDUSTROYER contain overlaps in code and similarities in execution

flow and functionality. We identified the following shared features in execution and

functionality:

Both versions contain code that first terminates a specific process on the victim

controller station, prior to establishing IEC-104 communication.

Both versions craft specific ASDU messages according to provided configuration

settings.

Both versions contain an ability to deliver pre-defined ASDU messages to a specified

IOA range.

Both versions contain an option to direct the malware to craft an additional ASDU

message which inverts the previous ON/OFF command and sends it to the target

remote station.

One difference we identified between both variants is that, unlike its predecessor,

INDUSTROYER.V2 contains altered debugging messages which obfuscate the meaning of the

outputs. However, we note these debugging messages are formatted and printed at similar

execution points of key functions. Further, the obfuscation was not implemented in key

portions of IEC-104 code which are reused in both versions, which enables us to visualize the

overlaps.

For example, both INDUSTROYER versions use very similar code to parse APDU traffic and

print specific parsed fields. Figure 6 is a screenshot of INDUSTROYER.V2 on the left and on

the right a screenshot of the original INDUSTROYER.

https://library.e.abb.com/public/dacf029fa4c4434a8060d09316726e48/RER620_Product_Guide_1MAC301920-PG_Rev_D.pdf

11/17

Figure 6: APDU traffic handling in INDUSTROYER.V2 (Left) and INDUSTROYER.104 (Right)

Additional notable code overlaps between the two versions exist in implementation of ASDU

frame creation, sending of APDU messages, change option execution, and thread setup for

IEC-104 functionality.

Appendix: YARA Rules

rule MTI_Hunting_INDUSTROYERv2_Bytes {

 meta:

 author = "Mandiant"

 date = "04-09-2022"

 description = "Searching for executables containing bytecode
associated with the INDUSTROYER.V2 malware family."

 strings:

 $bytes = {8B [2] 89 [2] 8B 0D [4] 89 [2] 8B 15 [4] 89 [2] A1 [4]
89 [2] 8B 0D [4] 89 [2] 8A 15 [4] 88 [2] 8D [2] 5? 8B [2] E8}

 condition:

 filesize < 3MB and

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

12/17

 $bytes

}

rule MTI_Hunting_INDUSTROYERv2_Strings {

 meta:

 author = "Mandiant"

 date = "04-09-2022"

 description = "Searching for executables containing strings
associated with the INDUSTROYER.V2 malware family."

 strings:

 $a1 = "M%X - %02d:%02d:%02d" nocase ascii wide

 $a2 = "%02hu:%02hu:%02hu:%04hu" nocase ascii wide

 $a3 = "%s M%X " nocase ascii wide

 $a4 = "%s: %d: %d" nocase ascii wide

 $a5 = "%s M%X %d (%s)" nocase ascii wide

 $a6 = "%s M%X SGCNT %d" nocase ascii wide

 $a7 = "%s ST%X %d" nocase ascii wide

 $a8 = "Current operation : %s" nocase ascii wide

 $a9 = "Sent=x%X | Received=x%X" nocase ascii wide

 $a10 = "ASDU:%u | OA:%u | IOA:%u | " nocase ascii wide

 $a11 = "Cause: %s (x%X) | Telegram type: %s (x%X" nocase ascii
wide

 $b1 = "Length:%u bytes | " nocase ascii wide

 $b2 = "Unknown APDU format !!!" nocase ascii wide

 $b3 = "MSTR ->> SLV" nocase ascii wide

 $b4 = "MSTR <<- SLV" nocase ascii wide

 condition:

 filesize < 3MB and

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (1 of ($a*) and 1 of ($b*))

}

13/17

Appendix: Mapped Configuration Example

Table 3: Mapped configuration example

Appendix: Example IOAs From Publicly Available Sample Mapping to
An ABB Distribution Recloser Relay

IOA Description

1101 50BFT:InPosCIsA Status

1102 50BFT:InPosCIsB Status

1103 50BFT:InPosCIsC Status

1104 50BFT:InStr status

1105 50BFT:InStrA status

1106 50BFT:InStrB status

1107 50BFT:InStrC status

1108 50BFT:general

14/17

1201  

1202  

1203  

1204  

1250  

1251  

1252  

1253  

1254  

1255  

1256  

1257  

1258  

1259  

1260  

1261  

1262  

1263  

15/17

1264  

1265  

1301  

1302  

1304

1401  

1402  

1403

1404

130202

160921

160923

160924

160925  

160927  

160928  

190202  

260202  

16/17

260901  

260902  

260903  

260904  

260905  

260906  

260907  

260908  

260909  

260910  

260911  

260912  

260914  

260915  

260916  

260918  

260920  

290202  

17/17

338501  

Acknowledgements

This research was made possible thanks to the hard work of many people not listed on the

byline. A huge thanks to CERT UA and ESET. Special thanks to Josh Triplett, Conor Quigley,

and Wesley Mok.

