dti.domaintools.com /securitysnack-repo-the-repo-npm-phishing/

SecuritySnack: Repo The Repo - NPM Phishing

: 10/16/2025

Recently, a series of high profile supply chain compromises were caused by malicious code written to NPM
repositories managed by stolen developer credentials. While developers of prominent NPM repositories
have been targeted for many years,these events prompted CISA to release an alert due to their widespread
nature. Attackers stole developer accounts through a phishing campaign involving fake NPM management
and login pages. This tactic enabled them to take over accounts for malicious activity and remains one of the
most common and effective methods of credential theft.

Details

NPJMS is the largest JavaScript repository, with two official domains: npmjs.com is the main site and
npmjs.org is also an official NPM domain. Phishers have historically used variations of this domain to
deceive users, leveraging common tactics such as typo-squatting through domains like “npnjs[.Jcom”, which
are particularly easy to overlook when presented in lower case characters.

Examining a recently spoofed NPM login page configuration with the domain “npmjs[.]Jpro” demonstrates
how the attack progresses through three distinct stages, each designed to capture a piece of information or
deceive the user into the next step.

Stage 1: Homepage Lure

This is the initial landing page of the phishing site, designed to build trust and initiate the login flow.

1/5

https://dti.domaintools.com/securitysnack-repo-the-repo-npm-phishing/
https://www.cisa.gov/news-events/alerts/2025/09/23/widespread-supply-chain-compromise-impacting-npm-ecosystem

npmijs|[.]Jpro w o tem micny cocumeision

NPM O search packages m signup

Build amazing
things

Take your JavaScript
development up a notch

This is a relative sign-in link. On the malicious domain, clicking “Sign In” sends the user to the /login path on
the attacker’s server, not the legitimate npmjs[.Jcom. The attacker’s server logs the request and serves the
fake login page (Stage 2) in response.

Stage 2: Initial Credential Capture

After being funneled from the fake homepage, the user is presented with the fake login form.

npmijs[.]Jpro/login

The form’s action="/login/” sends the submitted username and password to a script on the attacker’s server.
The attacker’s server captures and logs the credentials. It then uses them to initiate a login attempt on the
real npmjs[.Jcom, triggering a legitimate email OTP to be sent to the victim. At this point, the user’s primary
npm credentials (username and password) are compromised,and the next stage is to retrieve their
MFA/OTP code.

<form id="login" method="POST" action="/login/" class="ma@">
<div class="mb2">
<input type="text" id="login_username" name="username" />
</div>
<div class="">»
<input type="password” id="login_ password” name="password” />

</div>

<input type="hidden" name="csrftoken" value="SuFFIhbDu5alJldewzZDs1 7@Xis71FTLFRDuSAKK9wsn" />

<div>
<button type="submit" class=" 24a1e9c7 dab9924c">Sign In</button>
</div>

</form>

Stage 3: MFA / OTP Code Interception
The attacker’s server immediately presents a page to intercept the second-factor authentication code.

This form captures the value from the name="otp” field and sends it to the /login/email-otp endpoint on the
attacker’s server. The user receives a real OTP via email (triggered by the attacker), which reinforces their

3/5

belief that the process is secure. The attacker’s server receives the valid OTP and now possesses all

information required to hijack the account.

="mt@ tc">Enter One-time Password.</h2>

<div class="">

<input typ hidden" name="username” valu
<input type="hidden" name="password” valu

</div>

</div>

</form>

ogin" method="POST" action="/login/email-otp?next=%2F" class

<input type="text" id="login otp"™ name="otp" inputMode="numeric" />

<input type="hidden” name="csrftoken” value="SuFFIhbDu5alldewzDS1 7Z©Xis71FTLFRDu5AKK9wsn" />
<div>

<button type="submit" class="_24ale9c7 dab9924c">Login</button>

Stage 4: Session Hijack and Evasion

This final stage is a server-side action to complete the attack.

The attacker uses the captured credentials and OTP to establish their own authenticated session on the real

npmijs[.Jcom, then redirects the victim to avoid suspicion. The attacker now has full, authenticated access to
the victim’s npm account. The victim remains unaware that their account and session have been
compromised. Their browser redirects them to the real npm sign-in page, making them believe the process

did not complete.

npmijs[.]Jpro/login/e
mail-otp?next=%2F npm

Sign In

username

Password

Eorgot password?

45

HTTP/1.1 302 Found

Location: https:

Conclusion

This detailed attack flow for credential theft and account takeover shows that classic credential harvesting
tactics remain highly effective. As our reliance on shared software supply chains grows, developer vigilance
has never been more important. While multi-factor authentication (MFA) is an essential defense, this
example shows that OTP codes are only as secure as the domain they are entered into. Always verify the
URL in your address bar before entering credentials, and consider adopting phishing-resistant MFA, like
hardware security keys, to truly secure your accounts.

IOCs

The provided IOCs are recently registered typosquatted domains of NPMJS.

npmjscdn[.]xyz
npmjs[.Jus
npmjs|.]Jpro
npmjs|.]us
npmijs[.]pro
npmijs[.Jus[.Jorg
npmjs[.Jus[.Jcom
npmjs|.]se
npmjs[.Jwork
npmijs[.Jonline
npmjs[.]wtf
npmijs[.]Jhelp
npmjs[.Jcam
npmijs[.Jweb[.]id
npmjs[.]Jsupport
npnjs|.Jorg
npnjs[.Jcom

5/5

