unit42.paloaltonetworks.com /phantomvai-loader-delivers-infostealers/

PhantomVAI Loader Delivers a Range of Infostealers

Tom Fakterman : : 10/15/2025

110 61 1 1 drizfadi-]
3-010 e r——]
g 01011104-—0—0—\3

19%100 b 1 1010
3 110 1

BRI

Ii;as; 10
IIOOlelU

13‘00001.ﬂ

Executive Summary

Unit 42 researchers have been tracking phishing campaigns that use PhantomVAI Loader to deliver information-
stealing malware through a multi-stage, evasive infection chain. Threat actors wage these campaigns to deliver
obfuscated scripts and loaders that use steganography techniques to conceal payloads.

The loader initially used in these campaigns was dubbed Katz Stealer Loader, for the Katz Stealer malware that it
delivers. Hackers are selling this new infostealer on underground forums as malware as a service (MaaS). Recently,

we observed that the loader now delivers additional infostealers, such as AsyncRAT, XWorm, FormBook and DCRat.

Given this unique behavior, we now track the loader under a new name: PhantomVAI Loader. We chose the name
because of the loader’s stealth and the VAI method it executes.

Threat actors deploy PhantomVAI Loader in attacks worldwide, targeting organizations from a wide spectrum of
industries:

e Manufacturing
¢ Education

o Utilities

¢ Technology

¢ Healthcare

¢ Information

* Government

We explore each stage of the multi-layered infection chain, from the initial phishing email to the final deployment of
the infostealer payload. We also outline the functionality of Katz Stealer specifically.

Palo Alto Networks customers are better protected from this activity through the following products and services:

e Advanced WildFire
e Cortex XDR and XSIAM

If you think you might have been compromised or have an urgent matter, contact the Unit 42 Incident Response
team.

Related Unit 42 Topics Infostealers

Background

1/9

https://unit42.paloaltonetworks.com/phantomvai-loader-delivers-infostealers/
https://attack.mitre.org/techniques/T1027/003/
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.xworm
https://malpedia.caad.fkie.fraunhofer.de/details/win.formbook
https://malpedia.caad.fkie.fraunhofer.de/details/win.dcrat
https://docs.paloaltonetworks.com/wildfire
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/tag/infostealer/

On April 13, 2025, a user called katzadmin posted about a new infostealer named Katz Stealer. The user uploaded
these posts to the BreachForums underground forum, and later to the exploit[.]in and xss[.]is forums as well. Katz
Stealer is a type of MaaS that collects sensitive data from a variety of applications hosted on infected machines.

We observed threat actors delivering Katz Stealer through phishing emails containing obfuscated JavaScript or VBS
code, PowerShell scripts and a .NET loader. Initially called Katz Stealer Loader — and also known as
VVMDetectLoader — this loader now delivers infostealers such as AsyncRAT, XWorm, FormBook and DCRat. We
track this loader under a new name: PhantomVAI Loader.

Infection Chain Analysis

The PhantomVAI Loader attack chain starts with an initial phishing operation and culminates in the deployment of
payloads. Figure 1 summarizes the steps of this process.

Phishing JavaScript/
email VBS
: g:é.;i::s v
e
Loads Downloads
PhantomVAI and extracts
next stage
&
MSBuild.exe is PhantomVAI File concealing
injected with Loader loader

infostealer

Figure 1. The PhantomVAI Loader attack chain.
Phishing Emails

The infection chain starts with a phishing email that contains a malicious attachment. Figure 2 shows an example of
one of the phishing emails.

PowerS

2/9

https://www.ibm.com/think/x-force/dcrat-presence-growing-in-latin-america
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.xworm
https://malpedia.caad.fkie.fraunhofer.de/details/win.formbook
https://malpedia.caad.fkie.fraunhofer.de/details/win.dcrat

Shipping <sales@petroleumcapital-kz.com>
New Shipment Order Notice - Original Shipping Documents Attached 05-05-2025 WB#027190

To
Message ®IRFQ_New_Shipment Order 887235 document_77363547899273904765547 File_May_2025zip (132 KB)
Dear sales,
Good day!
Please find the ATTACHED Pre-alert documents for this new shipment order 5/5/2025 9:22:56 PM

AGENT : GIOBAL CARGO LOGISTICS CO., LTD
ETD : 05.05.2025

Please cross check the documents before declare to customs at your side. Also confirm back if there is any documeni

We need your reply in order to proceed further. Please check and advise back.

thanks & all the best,
Johnny

AOF Cargo Logistics Co., Ltd #EHIERPBR AT

11 FL.,,NO.48 NAN JING E.RAD., SEC. 5, TAIPE,TAIWAN R.O.C.

TEL : 886-02-2747-4815 #297

MOBILE : 886-937521741

e-mail: johnny.zhuang@ aofcargo.com.tw

GROUP: TPE/TXG/KHH/HKG/SHA/NGB/TAO/DLC/TSN/BJS/SZX/CAN/XMN/FOC/CTU/RGN | www.aofcargo.com.tw

Figure 2. Phishing email. Source: VirusTotal.

The emails contain themes like sales, payments and legal actions to trick the targeted users into opening the
malicious attachment. Some of these emails incorporate homograph attacks, which involve replacing Latin characters
in the email with other Unicode or math characters. Attackers use this technique to bypass email defenses by
disguising terms that email security mechanisms usually flag as suspicious.

Stage 1: JavaScript and VBS Scripts

The phishing email attachments are archived JavaScript or VBS files. Threat actors obfuscate these scripts in an
attempt to bypass detections. Figure 3 shows an example of obfuscated JavaScript from one of these files.

3/9

https://www.virustotal.com/
https://unit42.paloaltonetworks.com/homograph-attacks/

var = ([1+[([1["splendidous"]+[]1)[0] + ([]1["DASSOFENCO"]+[1)[1] + ([]1["DASSCVENCO"1+[])I[2] + ([]["ac]
([1["ethoxy"1+[]1)[4] + ([]["mucigenous"]+[]1)[5] + ([]["screwworms"]+[])[6] + ([]["DASSOFENCOMap"Il+[1)I[7]1 + (
1+[1)[8] + ([]1["slice"]+[])[9]]["ethoxy"]) [0];
= ([1+[([]l1["splendidous"]+[])[0] + ([]1["DASSOFENCO"]+[])[1] + ([]["DASSCVENCO"]+I[])[2] + ([1]
([1["ethoxy"]+[]1)[4] + ([]["mucigenous"]+[])[5] + ([]["screwworms"]+[])[6] + ([]["DASSOFENCOMap"]+[]1)[7]

"exotical"]+[])[8] + ([1["slice"1+[]1)[9]]1["splendidous"]) [1];
var = ([1+I[([]["splendidous"]1+[]1) [0] + ([]["DASSOFENCO"]+[])[1] + ([]["DASSCVENCO"]+[1)[2] + ([1[
1 + ([1["ethoxy"]1+[1)[4] + ([]["mucigenous"]+[]1)[5] + ([]["screwworms"]+[])[6] + ([]["DASSOFENCOMap"]+[1)[7]
"exotical"]+[])[8] + ([]1["slice"]+[]1)[9]]["DASSOFENCO"]) [2];
var = ([1+[([l1["splendidous"]+[])[0] + ([]["DASSOFENCO"]+[]1)[1] + ([]["DASSCVENCO"]+[])[2] + ([]1["a]
+ ([]["ethoxy"]+[])[4] + ([]["mucigenous"]+[])[5] + ([]["screwworms"]+[])[6] + ([]["DASSOFENCOMap"]+[])[7] +

Figure 3. Obfuscated avaScript.

The script embeds a Base64-encoded PowerShell script and executes it to download and deliver the next stage of
the infection.

Stage 2: PowerShell Script

The decoded PowerShell script downloads and loads the next stage of the infection. Figure 4 shows an example of a
decoded PowerShell script.

gangbusters

$picle 'ht
$émicroliths = N
smicroliths.Headers.
stipula smicroliths

Scyberspeech e | <«— Steganography

diander sudo_|
ibanie archeologist. ($cyberspeech);

$scornful archeologist. (sdiander); .

shanie ~ge @ -and sscornful ~gt sbanie; PhantomVAI Loader command-line argu
$banie += Scyberspeech.Length;

$crummier scornful — sbanie;

millilitres = $archeologist.Sut (<banie, $crummier);

Sayond & (smillilitres);

$sawhorse E fayond);

sLaverna .I0. =). Invoke(, lobjectll] @($gangbusters,'','',"", 'MSBuild',"'"',""," g s\Publ loads', 'address', 'js’,

Figure 4. PowerShell script used to download the next stages of the attack.

The PowerShell script downloads a GIF or other image file that conceals the loader payload. This technique is known
as steganography. In the infections that we observed, threat actors used this technique to embed text within the
image. The text is a Base64-encoded DLL file.

Next, the script extracts the Base64 data by searching for specific strings that represent the start and end of the
encoded text. In this case, the PowerShell script searches for all text between <<sudo_png>> and <<sudo_odt>>.
This text is an encoded DLL. In other cases, threat actors inserted the encoded text between different headers.
Figure 5 shows an example of encoded text embedded in a GIF file using steganography.

2 S2ZIRALiRIANZ ¢¢—) EEINRN? { PIOPASINN OV ANPA * iHONT { g¥daTu) FAIEA ® SEVA-AGN- *Ieidtpscs ' Xgs4 | SySa’ Sidt e
9%+ BICRINIP) < ! “i? ;FFING-2®§ &) A’ ¢Elvd * BEHOL U 7eINISEIREA 9Cph+Ch) i ° ek« " FIaNH , IHe3 > Q0 * QUEFNI¢N * IFNA * ' §tUEE-(
Sb;..a! SEARF T ; T ™ JIAAR ' AEEINROM! pybd '@<z»EE+aqrtIsl10.e?578 pgeyiliil*daoc« t-OJMAAEEp . "S K+W/ E'
° ' &°OAK-2n§ENT #4169 > QEEEIEM U4 * AFYEX # KyPIAANAD»Helin > % * 9n-“ &4k . ERRIPARASGE | ; OFIDi<Ye Zc QB02YE, YC{
(N xié’) %°8EFTS ¥ : 9z»Etugileklal tFiRac NG|, NFArsx , - *N@IRO-GkB
N YwooRHipbilsil' £S5, A7GS£ ;%\ cp > B YNSHCANEIRA YEHG ; S YD~ BiPd | FFiliqPalin | 1£C1 " S91A6ZA \ENBAQDEW«n<u (VEJ
PIFAO<MIRRY o » Flia RN+ “ kqEAUE>LE f™% "k ApFERERANeA ' b, yIFNOS | e Hs
h, G4 oMl 47 O¢3..— | FFTUDeHAEY 1. [@8¢£UG-H; Z <k | FIRIOLS { ZAA " RO*I#S , w-vatafmﬂpﬁﬁPg'éﬁiBm—m’Mk

E [B#3" [Py’ bZJLAIS9 x A1 nitins), I <T8ea~VS g > williilj *AelFNGDU{YY , 8%HT "U<_ <, YeE-ERUTETEf L *€0-,; 1EY i UER
*REREL | }ES=

1 : NEwOR [| ¢A " Kle -BISHIL ~ % (ONUT +FE « [¥¥Ri <<sudo_png>>TVqQAAMAAAAEAAAA//BAALGAAAAAAAAAQ

gAAAAA4 fug4AtAnNIbgBTMOhVthcwa CHSIICHEF CIGNIIbMS vdCBi ZSBydW4gaW4 gRE 9TIGlvZGUuDQOKJ;
OAATiATATAAAMgxARAGAAAAAAAADUYxAARGAAAAAAAARAAREAAGARAARGAARAAAAAARAARAGAAARARAAAARAMgAAAG
j1MOBTAAAAAAAYAAAFAAAAAARAAAAAAAAAAAARARAAACAYAAW,
TAAACAAAAAAAAAAAAAAACCAAAEGAAAAAAAAAAAAAACS0ZXhOAAAAFMY xAAAGAAAAYDEAAAT
AAAAAEAAAAADIAAAQAAADKMQAAAAAAAAAAAAAAAABAAABALNI1bGY jAAAMAAAAACAYAAACAAAAZ JEARAAAAAAAAAAAARAAQARAQY

After extracting the encoded text from the image or GIF file, the PowerShell script decodes the text and loads the
DLL. The loaded DLL is the .NET loader payload that we call PhantomVAI Loader.

The PowerShell script invokes a method called VAl within PhantomVAI Loader and provides it with several
parameters. The first parameter is a URL for the command and control (C2) server that hosts the final payload.

Stage 3: Executing PhantomVAI Loader

PhantomVAI Loader is written in C#, and the VAI method has three main functionalities:

4/9

https://attack.mitre.org/techniques/T1027/003/

¢ Running virtual machine checks
« Establishing persistence
¢ Retrieving the final payload

Virtual Machine Detection

When PhantomVAI Loader is executed, it performs checks to determine whether it is running on a virtual machine, as
the code below shows. The VM detection portion of the code appears to be based on a GitHub project named
VMDetector. If any of the checks return a true response, PhantomVAI Loader exits and stops executing.

1 Detected as a virtual machine given key computer information.
2

3 Detected as a virtual machine given bios information.

4

5 Detected as a virtual machine given hard disk information.

6

7 Detected as a virtual machine given PnP devices information.
8

9 Detected as a virtual machine given Windows services information.
Establishing Persistence

PhantomVAI Loader uses one or all of the following methods to create persistence:

¢ Ascheduled task executes PowerShell commands to download a file from an attacker-controlled URL. The task
saves the file with a specific name and extension and then executes it.

* Ascheduled task executes a script using wscript.exe. The path to this script is supplied as a command-line
parameter.

* ARun registry key to execute a specific file. The file’s path is also provided as a command-line argument.

Retrieving Payload and Injection

PhantomVAI Loader downloads the payload from the URL specified as a command-line parameter in the Stage 2
PowerShell script. It then injects this payload into a target process that is also defined by a command-line parameter,
using the process hollowing technique. The loader injects the payload into a process located in one of these four
paths, depending on the command-line argument and the payload architecture:

¢ C:\Windows\Microsoft. NET\Framework\v4.0.30319\
¢ C:\Windows\Microsoft. NET\Framework64\v4.0.30319\
e C:\Windows\System32\

e C:\Windows\SysWOW64\

In most of the cases observed at the time of writing this article, PhantomVAI Loader injected the payload into the
Microsoft Build Engine executable, MSBuild.exe. Figure 6 shows an example of such an injection, in the context of
the infection chain.

5/9

https://github.com/robsonfelix/VMDetector
https://attack.mitre.org/techniques/T1055/012/
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022

Loaded PhantomVAI Loader

A

msedge.exe wscript.exe powershell.exe

) §

C:\Windows\System32\WindowsPowerShell\v1.0\powersh
ell.exe" -nop -w hidden -c "$sixths =
'JABhAHMAYwWBVAGMAY QByAHAAbDWB1AHMAIAAIACA
AJWAJAHGAIWAUAGUADABPAEYAZABIACMACgBIAHYAD
gBvAEMALWBzAGQAYQ...

Figure 6. Infection chain that starts with the user opening an email using msedge.exe (Microsoft Edge browser) and ends with Phant
injecting the payload to MSBuild.exe.

Katz Stealer: A New Malware-as-a-Service Stealer

PhantomVAI Loader has evolved to deliver a number of infostealers. As Katz Stealer is the least well known and
documented, we cover it in additional detail here.

Threat actors use Katz Stealer to steal data from infected machines, such as:

* Browser credentials

* Browser data (such as cookies, history, login data)
¢ Cryptocurrency wallets

e Telegram data

¢ Discord data

¢ Operating system information

* Steam and game data

* VPN data

e FTP clients data

e« Communication and messaging applications data
¢ Email clients data

e Screenshots

¢ Clipboard data

Katz Stealer also checks the machine’s language and compares it to a hardcoded list of country codes by using the
following APIs:

¢ GetKeyboardLayout
¢ GetLocalelnfoA
e GetSystemDefaultLanglD

The country codes that Katz Stealer checks are all part of the Commonwealth of Independent States (CIS), as Figure
7 shows. If it finds a match, Katz Stealer stops executing. This language check and subsequent behavior could
provide a clue to the origin of the author of the malware.

country_codes dg offset aRu : DATA XREF: sub_l48@85366+3Bto0
"RU" = Russia
"BY" - Belarus
"KZI" = Kazakhstan
"KG" - Kyrgyzstan
"TJ" = Tajikistan
"UZ" = Uzbekistan
"AM" = Armenia

dgq offset aAz "AZ" - Azerbaijan

dg offset aMd "MD" - Moldova
Figure 7. Code snippet showing the country codes that Katz Stealer checks.

dg offset aBy
dq offset akz
dg offset akKg
dg offset aTj
dq offset alz
dg offset afm

6/9

https://www.britannica.com/topic/Commonwealth-of-Independent-States

Conclusion

This article highlights phishing campaigns that deliver PhantomVAI Loader, also known as Katz Stealer Loader.
Combining social engineering via phishing emails, obfuscated scripts, steganography and a .NET loader, this multi-
stage infection chain demonstrates the lengths attackers go to in attempts to evade detection and bypass defenses.

Our research highlights how this loader has evolved in the cybercrime ecosystem. While initially, threat actors used
the loader solely to deliver Katz Stealer, recent observations show that the loader now distributes additional malware
strains, including AsyncRAT, XWorm, FormBook and DCRat.

Maas offerings like Katz Stealer are a pervasive threat that can significantly impact security and privacy by exposing
sensitive data such as passwords, networking data, emails and files. Understanding the attack chains and techniques
that threat actors use to deliver these malicious payloads is vital to ensuring organization security.

Palo Alto Networks Protection and Mitigation

Palo Alto Networks customers are better protected from the threats discussed above through the following products
and services:

e The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in
light of the indicators shared in this research.

e Cortex XDR and XSIAM help prevent all the threats described above by employing the Malware Prevention
Engine. This approach combines several layers of protection, including Advanced WildFire, Behavioral Threat
Protection and the Local Analysis module, to prevent both known and unknown malware from causing harm to
endpoints.

Figure 8 shows two examples of detection alerts that the emails in this campaign trigger in Cortex XDR.

A . - (7 KA N
. Investigate 1 i) . Investigate
| Securlty - : OE) | Securlty - ¢

Suspicious theme and sentiment in email Usage of homograph characters deteci
Source: A\ XDR Analytics Source: A\ XDR Analytics

The email's body has a theme and sentiment that may indicate a Detected characters resembling Latin letters within an ema
malicious attempt. and/or body. This could indicate an attempt to impersonat¢

known brand or impersonate someone's identity. This coula

Figure 8. Detection of phishing emails that contain suspicious themes and homograph characters.

If you think you may have been compromised or have an urgent matter, get in touch with the Unit 42 Incident
Response team or call:

¢ North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
o UK: +44.20.3743.3660

o Europe and Middle East: +31.20.299.3130

e Asia: +65.6983.8730

e Japan: +81.50.1790.0200

o Australia: +61.2.4062.7950

¢ India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA) members. CTA members
use this intelligence to rapidly deploy protections to their customers and to systematically disrupt malicious cyber
actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise

SHA256 Hash for Archive Example
e 02aa167e4bb41e3e40a75954f5a0bd5915f9a16fd6c21b544a557f2a7df3c89b

SHA256 Hashes for JavaScript Examples

7/9

https://docs.paloaltonetworks.com/wildfire
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-4.x-Documentation/Malware-protection
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-4.x-Documentation/Malware-protection
https://docs.paloaltonetworks.com/wildfire
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/

e €663916cc91b4285a1ee762716ff7ce4537153¢7893e2d88c13c7e57bbb6462a9
o 45fddf55acb50df5b027701073dee604b4135f750c585b29d6dcac824f26ae00

o 9f28f82d21fe99d0efdcab403f73870d68fd94e6d0f762e658d923ccd1e7424c

* 05d66568017f2c2e417fa6680f9b4fada8a9bc1b7256fe46fbf3e71956b99773

e 4346c3c08df612b8bcd23a3b57845755bafb0efc57ff77203f8da3b46628a008

e 0c0dae4d7da069c928f06addb1c5c824e820e4556a1244142f56227954bf9c7d
¢ 3a039ce210a0b5ff65f57d304519b885bae91d1bec345c54e59e07bc39fcal97e

SHA256 Hashes for PhantomVAI Loader

e 4ab4a37db01eba53ee47b31cbab0c7a3771b759633717e2c7b9c75310f57f429
e 9ae50e74303cb3392a5f5221815cd210af6f4ebfo632ed8c4007a12defdfa50d

o 893ee952fa11f4bdc71aee3d828332f939f93722f2ec4aebel1edcd 7bed598345

¢ b60ee1cd3a2c0ffadaad24a992c1699bcc29e2d2¢73107f605264dbf5a10d9b6
o 0df13fd42fb4a4374981474ea87895a3830eddcc7f3bd494e76acd604c40047

e 6051384898e7c2e48a2ffb170d71dbf87e6410206614989a037dac7c11b8d346
e 01222c6c2dbb021275688b0965e72183876b7adb5363342d7ac49df6c3e36ebe
o 6f7c5bad09698592411560a236e87acae3195031646ff06a24f1cfada6774bab

e 6aa2989ebb38e77a247318b5a3410b5d4f72b283c7833a0b800ea7d1de84ccc6
o 4c5d7e437f59b41f9f321be8c17ae1f128c04628107a36f83df21b33d12ff8db

e 639eb0d2c2da5487412e7891638b334927232ff270781fad81dc5371f44f7c8e

e 553d76d0c449377be550570e65e2bcae4371964fc3b539a1e1022d80699da5db
e a7993775f4518c6c68db08e226¢11e51f9bc53314e4ff9385269baac582e2528

e 7ddce5be3642b66c7559821€26877c9f0242c748dab64b2e68a81844bb1abb148
o 84e0a543df302b18f1188139160fc5a8bd669da071e492453d5d6756064ee568
e 97b76d61941b790deffof025dec55484e32ebff32b1b6e173d6fbf42cd8996ef

¢ bf6a5e37097330d7d68b6ac3deb6a10a1d3269be575fd51315774d1e7el1eca34
e 262a81785714844a099a918c66df9367b5eb14df06e589d59bc81f392358c5¢c
* 920309f3822f993afeaa8ec70b4ef6b43dd2562be85cc2985efedc6cda2e7578

o 421c4b4b53d291da2b53c068a491b3913d92fe0eb6330861e7b60f3d9f8eee?
o 87fae395c0e9ce3631dece9497 1befa578623ff0540d06539f583df921568814

e 4b8bde867c06b617d731ea9e965bf64800330701942324e475b8119352122e7¢
e 3c6a8132df3351e2b7d186d0b3f41847e6920ebch940548e3c9ed274901104c2
e 76cbb0abd9511aab2cc9dda993e3b9ab77afb09d2959f143647065ca47e725¢cc
* ed1b4a03595c59e5a90dd4f02f1993a2c5a43cad46a33aab0d15a1bbb1f8b3d30
e c44bac8b66ad11756b4c5ff3b1cd7e1187c634088f9e7aa2250067033df24e8d

o 63dfdb4927c0bcab4f8952904f463330360eb052f2a2a749bf1a851a2be89b4
e 373c820cc395ea5b9c6f38b9470913e6684e8afea59e9dfeb3dad490014074bf1
e b263df6b58c9259000e45a238327de8c07e79f2e7462c2b687¢c1c5771bac1dd5
« f05bc36211301087e403df09daa014ea8f04f5bdae5cef75eb866b56b82af2d6

o c45d3b6d2237fc500688a73d3ba18335d0002917f1a1f09df6934c87deaa097f

o fcad234dc2ad5e2d8215bcf6caac29aef62666c34564e723fa6d2eee8b6468ed

o e05b7f44ef8d0b58cfc2f407b84dcff1cb24e0ec392f792a49ad71e7eab39143

o 87c9bede1feac2e3810f3d269b4492fe0902e6303020171e561face400e9bdb4
e ¢3de728850dc1e777ad50a211a4be212cabc4ac9d94bf7bb6d5f7fe5f4574021

o e5daa86418ac444d590a2c693cd7749d87134c47d8e0dbac30c69f23a8e8131f

SHA256 Hashes for Katz Stealer

e abb736988246610da83ce17c2c15af189d3a3a4f82233e4fedfabdcbbdelcffO
e 74052cf53b45399b31743a6¢c4d3a1643e125a277e4ddcfcad4f2903b32bc7dcd
e 20bde6276d6355d33396d5ebfc523b4f4587f706b599573de78246811aabd33¢c
e e345d793477abbecc2c455c8c76a925c0dfe99ecdc65b7c353e8a8c8b14da2bb
e 96ada593d54949707437fa39628960b1c5d142a5b1cb371339acc8f86dbc7678
e 925e6375deaa38d978e00a73f9353a9d0df81f023ab85cf9a1dc046e403830a8
o b249814a74dff9316dc29b670e1d8ed80eb941b507e206ca0dfdc4ff033b1c1f
e 9b6fb4cadd2c0fa86bffb4c64387e5a1a90adb04chb7b5f7e39352f9eae4b93fa
* d5ead682c9bed748fd13e3f9d0b7d7bacaf4af38839f2e4a35dc899ef1e261e2
e ece74382ec6f319890e24abbf8e0a022d0a4bd7e0aeaf13c20bab3a37035dcd1

2dba8e38ac557374ae8cbf28f5be0541338afba8977bffob732dee7cee7b43e
11e90765640cbb12b13afa1bcec31f96f50578a5e65e2aa7be24465001b92e4 1
b2245ca7672310681caa52dc72e448983d921463c94cdab0ba9c40ad6b2a58fe
¢929ee54bdd45df0fa26d0e357ba554ef01159533501ec40f003a374e1e36974
c0e3c93c59b45e47dda93438311f50ddb95808fd615a467285c9¢c359bce02¢f0
309da3c8422422089b7f9af3b1b3f89e2d5c36e48e4d9d9faal7affb7d9a7b17
fdc86a5b3d7df37a72c3272836f743747c47bfbc538f05af9ecf78547fa2e789
25b1ec4d62c67bd51b43de181e0f7d1bda389345b8c290e35f93cch444a2cf7a
964ec70fc2fdf23f928f78cB8af63ce50aff058b05787e43c034e04eabebe30ef
d92bb6e47cb0a0bdbb51403528ccfe643a9329476af53b5a729f04a4d2139647
5dd629b610aee4ed7777e81fc5135d20f59e43b5d9cc55cdad291fcf4b9d20eb
b912f06cf65233b9767953ccf4e60a1a7c262ae54506b311c65f411db6f70128
2852770f459c0c6a0ecfc450029201bd348a55fb3a7a5ecdcc9986127fdb786b

9/9

