
cyble.com /blog/ghostbat-rat-inside-the-resurgence-of-rto-themed-android-malware/

GhostBat RAT: Inside the Resurgence of RTO-Themed Android

Malware

⋮ 10/14/2025

Executive Summary

Cyble Research and Intelligence Labs (CRIL) observed a notable rise in Android malware campaigns masquerading

as the Indian RTO (Regional Transport Office) applications and target Indian users to steal sensitive information.

The malware spreads mainly through WhatsApp messages and SMS containing shortened URLs that appear as the

RTO app, mParivahan, which redirect to GitHub-hosted APKs, and via compromised websites.

Once installed, the malware uses phishing pages to capture banking credentials and UPI PINs, while also exfiltrating

SMS messages containing banking-related keywords.

See Cyble in Action

World's Best AI-Native Threat Intelligence

Certain variants of the malware include cryptocurrency mining capabilities. In addition, device registration is carried

out through a Telegram bot named GhostBatRat_bot, linking the malware campaign to the “GhostBat RAT” moniker.

Key Takeaways

The malware is distributed through WhatsApp, SMS with shortened URLs, GitHub-hosted APKs, and

compromised websites, highlighting diverse infection vectors.

It then implements multi-stage droppers, ZIP header manipulation, and heavy string obfuscation to bypass

antivirus detection and reverse engineering.

The campaign was observed using native libraries (.so) to dynamically resolve API calls and deploy payloads,

including banking credential stealers and cryptocurrency miners.

1/12

https://cyble.com/blog/ghostbat-rat-inside-the-resurgence-of-rto-themed-android-malware/
https://cyble.com/knowledge-hub/what-is-malware/
https://cyble.com/knowledge-hub/what-is-phishing/


The malware deploys phishing pages mimicking the mParivahan app, prompting users for mobile numbers,

vehicle details, and UPI payments.

All SMS messages containing banking-related keywords are exfiltrated to Command and Control (C&C)

servers, while incoming SMS messages may be forwarded or uploaded to attackers for OTP harvesting.

Device registration is performed via a Telegram bot (GhostBatRat_bot), linking the malware campaign to the

“GhostBat RAT” moniker.

Overview

In July 2024, CRIL published an analysis detailing Android malware that impersonates RTO applications designed to

steal contacts and SMS messages from infected devices. As we continued to monitor these developments, we

observed a resurgence of similar campaigns, again leveraging the RTO theme to distribute Android malware.

Once again, threat actors were propagating these malicious APKs mainly through WhatsApp (see Figure 1) or via

SMS messages containing shortened URLs that redirect to GitHub-hosted links (see Figure 2).

Cyble Vision

Some of the examples of these distribution methods are shown below:

Figure 1 – Malicious APKs circulating on WhatsApp

0:00 / 0:29

2/12

https://cyble.com/blog/regional-transport-office-phishing-scam-targets-android-users-in-india/
https://cyble.com/knowledge-hub/cyber-threat-actor-and-types/
https://cyble.com/request-demo/?utm_source=cril&utm_medium=mid


Figure 2 – Malicious short URLs distributed via Smishing

From September 2025 to the present, we have identified over 40 distinct Android malware samples. These

applications employ various anti-analysis techniques, including ZIP header manipulation, custom packers, and anti-

emulation mechanisms.

Despite differences in packing and obfuscation methods, all variants ultimately deliver the same malicious

mParivahan application, whose dropper includes a cryptominer and an infostealer designed to exfiltrate banking

information.

Once installed, the app prompts users to perform an “update,” which requests SMS-related permissions and triggers

phishing activities targeting banking credentials (see Figure 3).

Figure 3 – Phishing activity implemented by the malware to steal UPI PIN

During our analysis of samples from this campaign, CRIL observed that most of them used the same Telegram bot,

bot6751695148:AAHEYUWDN0BKvpvSycVHp_2kcXPhfeZk75o, for device registration.

This bot corresponds to the Telegram account GhostBatRat_bot, suggesting that the threat actor may be referring to

the malware delivered via this campaign as “GhostBat RAT” (see Figure 4).

3/12



Figure 4 – Telegram Bot metadata

The implementation of multi-layered dropper mechanisms, combined with string obfuscation, significantly enhanced

the malware’s ability to evade detection. At the time of analysis, several samples were detected by a few engines on

VirusTotal (see Figure 5).

Figure 5 – Low VT detection

The Technical Analysis section provides a comprehensive breakdown of this malware and how it operates to

compromise victims.

Technical Analysis

The GhostBat RAT samples included multi-stage dropper workflows, native binary packing, deliberate

corruption/manipulation of ZIP headers, runtime anti-emulation checks, and heavy string obfuscation, complicating

reverse engineering.

Zip Header Manipulation

A majority of samples associated with this campaign had deliberately manipulated ZIP headers to hinder reverse

engineering tools (see Figure 6).

Figure 6 – Tool indicating zip header manipulation

The threat actors modified the central directory and local file headers by altering the compression method value to

“STORE”, resulting in failed APK decompilation attempts (see Figure 7).

4/12



Figure 7 – JADX error for invalid zip header

Three-Stage Mining Dropper Execution

GhostBat RAT exhibited a consistent three-stage dropper across most samples. For this analysis, we examined the

sample SHA‑256 98991cd9557116b7942925d9c96378b224ad12e2746ac383752b261c31e02a1f.

After installation, the initial dropper performs an anti-emulation check by validating the device’s architecture and

manufacturer; if it detects x86 or x86_64, the malware terminates its process to avoid running in an emulated

environment.

Additionally, the malware has also implemented heavy string obfuscations, where the strings are obfuscated into long

numbers (See Figure 8).

Figure 8 – Malware implemented anti-emulation techniques

Once the malware verifies it is not running on any emulator, it reads an encrypted file from the app’s assets and

decrypts it using the XOR algorithm.

The dropper then loads the decrypted component with DexClassLoader and runs a method from the second-stage

payload (see Figures 9 and 10).

5/12



Figure 9 – Initial stage dropper routine to deploy the second-stage payload

Figure 10 – Decrypted second-stage payload

The second-stage payload reads an encrypted file from the app’s assets, derives an AES key from the SHA-1 hash of

the encrypted file’s name (first 16 bytes), decrypts the file, and loads the resulting content into classes.zip, which

contains the third-stage payload (See Figure 11).

Figure 11 – Third-stage payload decryption

The third-stage payload serves as the final payload of the initial dropper application. This stage includes an

embedded mining module (See Figure 12) and implements a session-based mechanism to install the malicious APK

file (See Figure 13).

6/12



Figure 12 – Downloading miner library

Figure 13 – Session-based installation

Implementation of the Native packer

A few other malicious samples (d3bfcb0fc5cb22a4ba033a38d0cf402bf82bbbc2ab6c8c7481096edd0ccf1563), aside

from the dropper described earlier, were observed using a native library to install the final payload.

The final stage follows the same multi-stage dropper pattern but relies on heavily obfuscated native code to deliver

different payloads.

The samples load and execute a .so library that uses XOR-based decryption to construct various API call names.

Those API names are built in memory and then resolved and invoked at runtime via JNI (for example, using

FindClass and related methods). Figure 14 illustrates the decryption routine implemented inside the native library.

7/12



Figure 14 – First-stage payload native implementation

The first-stage .so library decrypts a file present in the APK’s assets — like the dropper described earlier — but

instead of creating a DEX, it stores a native .so binary and loads it with the System.load function.

The second-stage native library uses the same XOR-based decryption to extract and load the final payload. This

library is responsible for installing the primary malicious APK, which steals banking credentials and can also perform

cryptocurrency mining.

mParivahan Malicious Application Installation

When the final dropper initiates installation of the mPairvahan malicious app, it presents a fake Google Play update

page. If the user taps the update button, the malware opens a download page, prompts the user to enable installation

from untrusted sources, and then installs the application once that permission is granted. (see Figure 15)

Figure 15 – Malicious application installation flow

After installation, the malware requests SMS-related permissions and then displays a mParivahan phishing page

asking users to enter their mobile number and vehicle details.

8/12

https://cyble.com/blog/crypto-phishing-applications-on-the-play-store/


As the user interacts with the page and enables the permissions notifications, the malware also registers the device

with a Telegram bot. (see Figures 16 and 17)

Figure 16 – Malware prompting the victim to grant permissions and loading a phishing page

Figure 17 – Device registration on Telegram Bot

The app then displays a page asking the user to pay ₹1 to verify ownership. If the victim taps “Pay now,” the malware

presents a fake UPI payment interface and subsequently a counterfeit UPI PIN entry page. This phishing flow tricks

the victim into submitting their PIN, which the malware forwards to a Firebase endpoint. (see Figures 18 and 19)

9/12



Figure 18 – UPI phishing activity

Figure 19 – Sending the victim’s UPI PIN to Firebase URL

Beyond phishing, the malware exfiltrates all SMS messages on the compromised device, filtering for bank-related

keywords and sending matches to its C2 server.

It also monitors incoming SMS and, depending on their content, either uploads them to the server or forwards them to

a phone number provided by the attacker.

These behaviors are used to harvest OTPs or to complete UPI device verification for unauthorized transactions (see

Figure 20).

10/12



Figure 20 – Collecting text messages based on keywords

Conclusion

The GhostBat RAT campaign represents a sophisticated evolution of RTO-themed Android malware. It combines

multi-stage dropper techniques, anti-analysis defenses, native code exploitation, and social engineering to

compromise users.

By targeting both banking credentials and UPI authentication flows, the malware demonstrates an ability to extract

financial information directly while evading traditional detection mechanisms.

Cyble’s Threat Intelligence Platforms continuously monitor emerging threats, infrastructure, and activity across the

dark web, deep web, and open sources. This proactive intelligence empowers organizations with early detection,

impersonation, infrastructure mapping, and attribution insights. Altogether, these capabilities provide a critical head

start in mitigating and responding to evolving cyber threats.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against attackers. We

recommend that our readers follow the best practices given below:

Install Apps Only from Trusted Sources:

Download apps exclusively from official platforms like the Google Play Store. Avoid third-party app stores or

links received via SMS, social media, or email.

Be Cautious with Permissions and Installs:

Never grant permissions and install an application unless you’re certain of an app’s legitimacy.

Watch for Phishing Pages:

Always verify the URL and avoid suspicious links and websites that ask for sensitive information.

Enable Multi-Factor Authentication (MFA):

Use MFA for banking and financial apps to add an extra layer of protection, even if credentials are

compromised.

Report Suspicious Activity:

If you suspect you’ve been targeted or infected, report the incident to your bank and local authorities

immediately. If necessary, reset your credentials and perform a factory reset.

Use Mobile Security Solutions:

Install a mobile security application that includes real-time scanning.

Keep Your Device Updated:

 Ensure your Android OS and apps are updated regularly. Security patches often address vulnerabilities

exploited by malware.

MITRE ATT&CK® Techniques

Tactic Technique ID Procedure

Initial Access

(TA0027)
Phishing (T1660)

Malware is distributed via

Smishing

Execution (TA0041) Native API (T1575)
Malware uses native code to

drop a payload

Defense Evasion

(TA0030)

Masquerading: Match Legitimate Name or

Location (T1655.001)

Malware pretending to be a

genuine application

11/12

https://cyble.com/knowledge-hub/what-is-the-dark-web/
https://cyble.com/knowledge-hub/what-is-the-deep-web/
https://cyble.com/knowledge-hub/what-are-cyber-threats/
https://cyble.com/knowledge-hub/what-is-cybersecurity/
https://cyble.com/blog/crypto-phishing-applications-on-the-play-store/
https://attack.mitre.org/tactics/TA0027
https://attack.mitre.org/techniques/T1660/
https://attack.mitre.org/tactics/TA0041
https://attack.mitre.org/techniques/T1575/
https://attack.mitre.org/tactics/TA0030/
https://attack.mitre.org/techniques/T1655/001/


Defense Evasion

(TA0030)

Obfuscated Files or Information: Software

Packing (T1406.002)
Malware uses a native packer

Defense Evasion

(TA0030)
Virtualization/Sandbox Evasion (T1633)

Malware implemented an anti-

emulation check

Discovery (TA0032) System Information Discovery (T1426)
Malware collects device

information

Collection (TA0035)
Protected User Data: SMS Messages

(T1636.004)
Collects SMSs

Command and

Control (TA0037)

Application Layer Protocol: Web Protocols

(T1437.001)

Malware uses FCM for C&C

communication

Exfiltration (TA0036) Exfiltration Over C2 Channel (T1646)
Sending exfiltrated data over

the C&C server

Impact (TA0034) SMS Control (T1582) Malware can send SMSs

Indicators of Compromise (IOCs)

Indicators
Indicator

Type
Description

74ad795f95cf6a4f9135698c912c4a862b89121e32b8297f1f1b794db92aefd5

98991cd9557116b7942925d9c96378b224ad12e2746ac383752b261c31e02a1f

fdb81133b158d3850cd29e8cb78e6328e53c6ac3918819f32cf2e8c780edfb02

17076b53b38cc7cc2a6d2f4434291bbd08c7281660fa8dfea56ccdfd40d75c34

d3bfcb0fc5cb22a4ba033a38d0cf402bf82bbbc2ab6c8c7481096edd0ccf1563

a75e6ad26c74458fe05686aa0cd88b4cd0b1be3ad5ac6192f3b8a1943ed5b6f7

b100aac64134b3f794daac47888728765cf748af14dd200d92d231ce22c4deaf

37cf078555db17187620167ae5cf42635732a08dcf84ca571ec1ce5c2ab3df68

63af5fec17b54a3ad460aac86c30158a4c825158e1af4988a40baf69094abca1

9d05e7ab460ee8e4b542e23f54402f75a820481e94a3ef8a279693d9a040a07b

aaee01a0a38190f013f06db4cabcd7b3398b7eb336d3aef19c2c259688097355

4e54023534c99b586f4253c25a83d18234393ac72d411462689e24982dab49e3

6c775e2ce7de008f2373e99175f669acfd5e72d728151769cfe5fe464f19aa6e

ccd7756c30763c1074f754b61f98a55a1ffa4a743b3c198c72ef2b1b15436b5c

ff3181ed289fcabd244e946073199dbfc98599552ff8ed4fd5224aa5c684e0a2

4327033fce088b26c7811462d15d825efaf51bf638f7eeec2c813646254c1ae0

f380ebf824402072752b34b45d4e8847969810954d3ce702d3438c5fd7200cd9

5de7af8e82889a983a935693892df8739bdeb887c903b6df84bce0da5e508ddf

29a5f916350d94b67edfd099fa03a043f758be01e6d54e8339586509ab2d6432

69c9e691619a6888c4fc71588bcf42220881c3fd37d2e685bb6c8547585b83ae

SHA256

Downloaded

malicious

APK file

hashes

hxxps://raw[.]githubusercontent[.]com/Anb1212312/thu/refs/heads/main/Mparivahan[.]apk

hxxps://raw[.]githubusercontent[.]com/aman77383/2/refs/heads/main/mParivahan[.]apk

hxxps://www[.]x3mgolf[.]dk/wp-admin/network/[.]clone_SgLT9buH/mParivahan[.]apk

hxxp://adamfeibelman[.]com/wp-admin/network/[.]clone_asOlB0zY/mParivahan-eTicket[.]apk

hxxps://raw[.]githubusercontent[.]com/ChaIIan-94/ChaIIan-68/refs/heads/main/mParivahan[.]apk

hxxps://raw[.]githubusercontent[.]com/Lhasa1223/10-09-FINAL-

mParivahan-/refs/heads/main/mParivahan[.]apk hxxps://github[.]com/harshxcmf-

dev/V1/releases/download/V1/NextGen_mparivahan[.]apk hxxps://explore-

delhi[.]github[.]io/Application/mParivahan[.]apk

hxxp://raw[.]githubusercontent[.]com/sagargupta104/kkos/refs/heads/main/mParivahan[.]apk

hxxps://raw[.]githubusercontent[.]com/Roni78555/alpha111/refs/heads/main/Mparivahan[.]apk

hxxps://raw[.]githubusercontent[.]com/vehichle-97/Check-your/refs/heads/main/mParivahan[.]apk

hxxps://fashionablyemployed[.]com/mParivahan[.]apk hxxps://skincareanti-

aging[.]com/mParivahan[.]apk hxxps://raw[.]githubusercontent[.]com/a75892701-

cmd/ALPHJA1111/refs/heads/main/mparivahan[.]apk hxxps://klinikadentalclinic[.]ae/wp-

content/themes/pridmag/mParivahan[.]apk hxxps://raw[.]githubusercontent[.]com/a75892701-

cmd/badabadaboor/refs/heads/main/mparivahan[.]apk

hxxps://raw.githubusercontent[.]com/Gramme-veichle/Veichle-67/refs/heads/main/mParivahan[.]apk

hxxps://github[.]com/Gramme-veichle/Veichle-67/raw/refs/heads/main/mParivahan.apk

hxxps://github[.]com/Gramme-veichle/Check/raw/refs/heads/main/mParivahan.apk

hxxps://raw[.]githubusercontent.com/chutmarike0987/Bhangbhosda/refs/heads/main/Mparivahan.apk

hxxps://raw[.]githubusercontent[.]com/alpha5681/besa/refs/heads/main/mParivahan.apk

URL

URLs

downloading

APK files

hxxps://yxbu02[.]short[.]gy/Govt-Check-challan hxxps://yxbu02[.]short[.]gy/paychallan

hxxp://tinyurl[.]com/jJMCW hxxp://tinyurl[.]com/jjmcw hxxp://tinyurl[.]com/0lziG

hxxps://tinyurl[.]com/Hxmveo hxxps://tinyurl[.]com/mseva7 hxxps://cutlink[.]now/ChaIIan-82

hxxps://shorturl[.]at/YDFSq hxxps://shorturl[.]at/YDFSq hxxps://tinyurl[.]com/E-ChallanRTO

hxxps://tinyurl[.]com/Echallan2025 hxxps://tinyurl[.]com/Payfineonline08

hxxps://tinyurl[.]com/payEchallankl08 hxxps://tinyurl[.]com/Paychallankl08 hxxps://tinyurl[.]com/Tap-

Here-For-Challan hxxps://tinyurl[.]com/payEchallanOnline

URL Short URLs

hxxps://api[.]telegram[.]org/bot7756409072:AAFQGOT0vQ5gcV1wa2BnTEDsl6KJSBog18w/

hxxps://api[.]telegram[.]org/bot6751695148:AAHEYUWDN0BKvpvSycVHp_2kcXPhfeZk75o/
URL

Telegram

Bot URL

hxxps://jeuduc-c3310-default-rtdb[.]firebaseio.com/ URL
Firebase

server

12/12

https://attack.mitre.org/tactics/TA0030/
https://attack.mitre.org/techniques/T1406/002/
https://attack.mitre.org/tactics/TA0030/
https://attack.mitre.org/techniques/T1633/
https://attack.mitre.org/tactics/TA0032
https://attack.mitre.org/techniques/T1426/
https://attack.mitre.org/tactics/TA0035/
https://attack.mitre.org/techniques/T1636/004/
https://attack.mitre.org/tactics/TA0037
https://attack.mitre.org/techniques/T1437/001/
https://attack.mitre.org/tactics/TA0036/
https://attack.mitre.org/techniques/T1646/
https://attack.mitre.org/tactics/TA0034
https://attack.mitre.org/techniques/T1582/

