www.seq rite.com /blog/judicial-notification-phish-colombia-svg-asyncrat/

Judicial Notification Phish Targets Colombian Users — .SVG
Attachment Deploys Info-stealer Malware

Prashil Moon @ : 10/13/2025

13 October 2025
Written by Prashil Moon

Content Overview

¢ Introduction
e |Initial Vector
¢ Infection Chain
¢ Analysis of .SVG Attachment
¢ Analysis of .HTA file
¢ Analysis of .VBS file
¢ Analysis of .ps1 file
¢ Analysis of Downloader/Loader
o Anti-VM Technique
o Persistence Technique
o Download and Loader Function
¢ AsyncRAT Payload
¢ File MD5’s
¢ Quick Heal \ Seqrite Detections
 MITRE Attack Tactics, Techniques, and Procedures (TTPs)

Introduction —

There has been a significant increase in the use of SVG files in malware campaigns. These harmless looking files
can hide harmful scripts that hackers use to launch sneaky phishing attacks.

Recently, we have observed one such attack in Spanish language targeting Colombian users with Judicial Notification
lure. The campaign demonstrates the use of geographical and institutional details to make the phishing lure look
more legitimate and trustworthy to the targeted victim. The campaign leverages SVG, HTA, VBS, and Powershell
stages to download and decode a loader, which finally injects AsyncRAT into a legitimate Windows process, evading
detection.

Initial Vector —

Campaign follows a cleverly crafted phish email that impersonates a judicial notification from “Juzgado 17 Civil
Municipal del Circuito de Bogota”. It references to “17th Municipal Civil Court of the Bogota Circuit”. Bogota is the
capital and largest city of Colombia and many government institutions like courts, ministries and other officials are
based there.

1/11

https://www.seqrite.com/blog/judicial-notification-phish-colombia-svg-asyncrat/
https://www.seqrite.com/blog/author/prashil/

Juan Camilo Castillo

9/11/2025 834:51 PM

| Demanda judicial en su contra - Juzgado 17 Civil Municipa| Subject
|Fisca|ia General De La Nacion Juzgado Civil 17.svg (2.66 MB) | Attachment
Se adjunta documento de demanda e&n su contra.

Juzgado 17 Civil Municipal del Circuito de Bogota

11 de sepriembre de 2025 Body

Cozdialmente,
Sistema de Hotificaciones Judiciales

Fig-1: Phishing Email
Body of the email contains below message in Spanish-

Attached is a lawsuit filed against you.

17th Municipal Civil Court of the Bogota Circuit
September 11, 2025

Sincerely,

Judicial Notification System

The email is written and mimicked the style of an official judicial notice by using formal legal language and
institutional naming.

The spam contains an .SVG (Scaler Vector Graphics) file as an attachment. Name of the file is “Fiscalia General De
La Nacion Juzgado Civil 17.svg” that translate to “Attorney General’s Office Civil Court 17.svg” in English.

This carefully crafted email is an important entry point of infection chain that leverages social engineering and official-
looking contents to entice recipients into opening the attachment.

Infection Chain —

- — '@ : M,e

.
Fake weh Page Attacker Controlled classlibrary3 X, pownicacs
[ATTORNEY GENE RAL S OFFICE] Download Fake Web Page dil p
¢ﬂmm Deeoded 1o AsycRAT
@ & b, Payload
HTA TXT
Attachment
[Mtermey General's Office OFFICIAL_COURT_DOCUMENT.hta Ysemg. tt
Civil Court 17.5vg]
+ Drops
Download
@ from dpaste
w Decndes
,.,u_‘. and Drops
Phishing Email
[Subject - Lawsuit against him - actualizavbs veool psl

17th Municipal Civil Court]

Fig-2: Infection Chain of Campaign

As we can see in above diagram, the infection chain begins with judicial phishing lure (Spanish-language) with
Subject “Demanda judicial en su contra — Juzgado 17 Civil Municipal” — carrying a seemingly harmless .SVG file.

Opening the .SVG file takes the user to a fake Web page masquerading as the Attorney General’s Office. It asks the
user to download an important document from the official website. Once clicked on the page, an attacker-controlled-

2/11

download is triggered that downloads embedded .HTA file. It further executes and drops a Visual Basic dropper
(actualiza.vbs).

The VBS calls a Powershell downloader (veooZ.ps1) which retrieves an encoded blob as a text file (Ysemg.txt). After
decoding, the blob is written as classlibrary3.dll.

classlibrary3.dll acts as a module loader. It fetches an injector component and the AsyncRAT payload, then performs
an in-memory injection of AsyncRAT into MSBuild.exe. By running the RAT inside a trusted process, the attacker
gains persistence and stealth.

Analysis of .SVG Attachment -

SVGs (Scalable Vector Graphics) are a type of image file that uses XML code (a text-based format) to describe
shapes, lines, colors, and text. Unlike normal images (like JPGs or PNGs), SVGs don’t store pixels. Instead, they
store instructions which can become a very easy place for attackers to store their malicious intentions. Moreover,
these file types enable attacker to stay FUD (Fully Undetected), as many of the traditional security solutions do not
check these files for malicious code.

During the time of analysis of this campaign, the SVG file in attachment was detected by QuickHeal/Seqrite.

b (D 1/63 security vendor flagged this file as malicious
3 05d0e4b3be0f2e93fdb 1 84800 30036109T97ae68ed 64 55041d2930dca le T4a 10
Fiscalia General De La Nacion Juzgade Civil 17.5vg
attachment
DETECTION DETAILS RELATIONS BEHAVIOR CONTENT TELEMETRY COMMUNITY

Crowdsourced YARA rules O

Security vendors' analysison 2025002
QuickHeal () HtmiAsynerat.4997L.6C | —e—

G 7) Undetected ﬁ:’
Fig-3: Very Less Detection on Attached .SVG File

Upon executing malicious .SVG file, a Web page gets opened in Web Browser.

v G Facala Genaval e La Macion . % - O X

C DR Cf = oFiscalig®20Gener a0 De i 20La %2 M acion ™ 20Muzgade M2 0CHi% 201 T vy " £ @ @

FISCALIA ;J>a|'ram\-ucmsnm.'9' EidE
DEMERAL DE LA MAZION]

OFAICE

Portal de Consulta Ciudadana

Sistema de Informacion Judicial

Consulta de Procesos Judiciales | Cisisen Conubtution Persal
Radicado: FGN-2023-492017

Se ha generado decumentacién relacionada con su consulta en el sistema de
informacidn judicial. La descarga de los documentos oficiales
50 iniciard avlomalicaments
[DESCARGAR DOCUMENTO [, sowinioas socument |

Fiscalls Ganeral dg is Matidn

Fig-4: Lure Web Page for Attorney General’s Office

3/11

This mimics a Web page or a website related to Attorney General’s Office and Citizen’s Consultation Portal. It
contains some more fake fields like Judicial Information System, fake consultation registration number etc. to make it
look more genuine. It also lures victims to DOWNLOAD DOCUMENT.

When analyzed the code in SVG file we can see below defined elements —

Width="100%" height="100%" [style="Cursor:pointez;"
onclick="openbocument () "M

Tﬁvg xmlns="http: " yersion="1.1"

Fig-5: Important Elements in SVG Flle o

o style=“cursor:pointer;” — Shows clickable cursor on the image.
¢ onclick="“openDocument()” — This is an important defined element. When user clicks the SVG, the browser
will call the openDocument(), which is JavaScript function. Function definition looks like below —

Base6d Encoded

Fig-6: Code/Action of openDocument()
Function openDocument() —

1. accept base64 encoded embedded data,

2. decode it to attacker controlled “HTML” blob,
3. create a temporary URL object for that blob,
4. open that URL in new tab.

This opens next stage HTML page —

D Feceie Serwwd B woe . B) PacssSesewiDulatiecon . X @ Mavedod-lowide? £ 4 - a

Tt I‘..-av-.uu(.ll!l Opared im Browiar L

ol - e arew e

" Rita Downlosd ol HTA file

Consulta Oficial del Proceso

e ha Qoneredo i dOCUMEMAcN (ORSIpanyients. | & GLOATH S0 NICAN MROMmalCaments
Déscangs Finallzasa
125 SaCamaniss I Sa0 SESCAIGRANG CoMmaCIama)

100% completad

L Rarma Judicind Comson b suberte ded de eate process j valds la geraricion del docussnts

Fig-7: Lure Judicial Page, with Fake Progress Bar Ul

The above HTML page poses as an official “Rama Judicial” document viewer. It uses a fake progress bar Ul to
convince victims that a legitimate download is going on.

On load it decodes a Base64 blob and forces the browser to download DOCUMENTO_OFICIAL_JUZGADO.HTA file.
HTA files execute an arbitrary Windows script.

4/11

document .
url
rad

document

document
window.URL

window.onload = function

setTimeout

~ipt

Fig-8: Preparing .HTA File for Download

This client-side dropper (Base64 — Blob — createObjectURL — forced .HTA dropper) is a clear staged dropper
intended to deliver and run further payloads.

Analysis of .HTA file —

HTA file contains a lot of junk code and there is a chunk of malicious script kept tucked between this junk code with
huge blob of base64 encoded part. This base64 encoded part is decoded and saved as actualiza.vbs as shown in fig

dim
dim v
dim

dim

dim
dim
dim v

UEQARCBCYEDwQ1BEAEQgQmBABETAA1BDUE 2gM7BNoDIAAIBEAEQg ABEIEJgQPBCA

JEW

ell” "wscrip e

Fig-9: HTA file with base64 encoded code

& Chr(34) & r C >
which will drop actualiza.vbs
Analysis of .VBS file —

The base64 decoded file again contains lots of repetitive junk lines which on cleanup, looks like below:

5/11

Fig-10: VBS file

The code writes a Powershell script which is inside variable named GftsOTSaty. The actual Powershell code is kept
incomprehensible by placing character “9&” instead of “A” with further base64 encoding. The decoded code is written
to file veooZ.ps1 which will be executed further.

Analysis of .ps1 file —

The Powershell script will connect to dpaste domain URL and download a plaintext file, named as “Ysemg.txt".

Fig-11: Powershell script

Ysemg.txt is a raw text file. Contents of this file is cleaned and is base64 decoded. As you can see in Fig-11, “$” is
replaced by letter “A” and is base64 decoded which gives us a

.NET assembly file with its name as classlibrary3.dll. One of its method called “MSqBIbY” is invoked in the script and
some values are passed to this method as arguments. In our case, the first argument passed is base64 encoded
string, as we can see in Fig-11:

EgIbd)

Fig-12: Method from classlibrary3.dll

The second argument in script is %JkQasDfgrTg% but when you check the other commands (refer below snippets),
you can see it is passing the .vbs file with its path as second argument.

Popolizio=WScript.ScriptFullName

Fig-13: Code snippets from script

In Fig-11, from this file path which is being passed in second argument, “\"as replaced by “$*, this will be again
replaced in .net file.

Analysis of Downloader-Loader —

The decoded file is a .NET dll which will get one URL through the arguments passed in the script and it has one
embedded in it. On checking the static code, it primarily looks like a downloader file with some other checks that will
make sure everything goes well and in certain scenarios, can also try to add persistence factor for the malware.

The file is heavily obfuscated and uses XOR’ing and shifting operations loop to decode these obfuscated values.

6/11

;[] processes;

C num3;

ool flags;
ool flag8;
switch (num2)

{
- H
(flag)

SGkdx
num2

Fig-14: File-path check

As said previously, the second argument will be the file path of vbs script in which “\” is replaced with “$”, the dll file
again replaces the value and makes the file-path proper.

Anti-VM Technique:

Fig-15: Anti-VM technique

There is an anti-analysis trick found in the code, where it is checking for VirtualBox and VMware related processes.

First it checks if yktfr variable is 4 if yes, it checks for running processes and if VM related processes found, it exists.

In our case it is 0, so this will be ignored.

Persistence Technique:

It also checks for “1” in the fourth argument, if yes it creates a Powershell script through concatenation which is run
through shell (Fig-15). But in our case, as previously said it is 0.

The Powershell script adds the vbs file in run registry to maintain persistence.

7/11

1 flag7 = flag8 == yktfr.C ins(\uFDD1. \ufdcb", 6));
num2 = 17;

Fl

wE,

flag7;
(flag7)

b
Fig-16: PS script creation to maintain persistence

Similarly, it drops .Ink shortcut file in the startup folder if the value is 3. Again, a persistence technique much used by
attackers.

Download and Loader Function:

po(" \uag8c8H \ue2 uf8ce\ueodoiBfift+ \ufeds s B &

Fig-17: Encoded dpaste url

The value in text5 decodes to a reversed dpaste url again which is formatted first and then through
“webClient.DownloadString(text5)”, a txt kind of file with base64 code and stars is downloaded and saved in text4. On

reversal, we can see TVqQ which is base64 encoded MZ marker. In next step, the dll replaces stars with A. So, now
we have a new PE file.

e e e e 2 E e e ok e ke sk e Rk e vk sk e ok ke i sk ok ke e ok e ke ok e e ok o e ok e ke ok ke o ke e e ek ke e ok e ke Lk e ke ok
Reverse -

e e v e T e vk ke e ke Mok de e §OGD] Jn L ke B e e e e e e e e v e ke e (ke vl e ke o ke e e e D Tk e ke
WYL e G e e ok ke e e e e e e o e o ek Tk e ke e ok sk e 2o e e e CO e e e DNXZO5C A e e e e ek e
d dedkkpEk ok kOO e e ek e T e ok e ek ke ke ke
Character

e s e e s e e e e e ek e ok ke e ok ek ke ok ke ke ok e [e ok ok e s ke e ek ek ok
t)BZtt*lx‘.'I'PE!III:!P"’*t*t'*."l"-ﬂtt“t‘.'! dok bk ke kB kBT MR
e AR A ST G AR B e R E AR E T e Y kR g AR Ch TR
e e A Gk Ak 2 e ke Lo T e 0ok ke kb ek ok 2G BT A DE & Tk A QROEH ek e Ak ke JKBODUUGZVIGT]
SERgAWagaWdyBSZ 1BCdvSmbhNG T tFmenamowBy cphGVhAMTBbIHn £ drdgufd e de ke e deg e o e ok e ek ok e ke e e
s s e ke e sk ke e ke e ek sk e sk ke ke sk ke e ok ke ek e ek e ek sk ok ek ke ek e g Lk e B/ ok ke e ke e ke Mok e Qg T

- 16388 1 Tr faw Bytes &

QOutput B [a m o

TG e ok e e ok o e s ke okl L e e ook e ook ol e (ke ol e v vl e e ol e e ok ol e ke o e de ke e de ke e de o e e ke e de ke de ke e
Fee ek ok ok ek gk ek kA fugd &t A nNIbgBTHMBhVGhpyBwemdncmFt IGNhbmSvdCBiZSBydWagaWagREITIGIVZGU
UDQRH D e s ke sk ok ek BORQ ok e T ED e LS J G e e e sk ok sk e o e 0k e L o Lok Uk e e C g ok s e s ok ke ke e ke e ThC e
s e 13k o e ke ok ok ok ok £ ok e o ok ok ke ok [k B ke ok ok ok ok ok sk Gk kol ok ok e e ok ok e ok ok ok ke ok o e ok e ke
T o B e o B o oo o e o ok o o o o e ok B R ok Rk o R PG R BE kR G d IOk ko ek
R e T e s e e e s sl e s

Fig-18: Downloaded content upon reversal

The file is also a .NET dll. In similar fashion, one more file is downloaded but, in this case, the URL is our first
argument. The file is just reversed and base64encoded and it is a .NET executable stored in variable text7. The text7
file is actually AsyncRAT file which will be discussed later.

8/11

(hBFCu));

(num3)

(@string);

1:
webClient3 =

numd = 2;

text7 = i 1 (text8);

num9 = 3;
Fig-19: File code takin passed encoded URL and downloading another file

As in below figure (Fig-18), the new downloaded dll (stored in text4) is loaded through AppDomain.CurrentDomain()
function and a method is invoked to which two arguments are passed as we can see. On checking the function that is
being called (Fig-19), it takes two arguments, one in which injection that will take place and the other containing the
code that is to be injected.

text7;
textle;
AppDomain. =i .
\uFDDe ("52 x ERGHE F BT \ufSdajn = i

[l

textl® + \uFDD1. ("HEESEEM\ua7d1 2 & Y\ ufadoBteE", 4),
(text7)

Fig-20: Process Injection function being called
So, the new dll acts as injector which is injecting AsyncRAT payload in MSBuild.exe.

Below is a snippet from the injector dll, The \uFDDO function have all the injection related functions:

Fig-21: Process Injection Function from Injector DI

AsyncRAT Payload-

9/11

AsyncRAT is a remote access Trojan (RAT) written in C#. It provides typical RAT and data-stealing functions—such
as keystroke logging, executing or injecting additional payloads, and command-and-control—whose exact capabilities
depend on its embedded configuration. It is a .NET compiled binary, and, in our case, the code was not obfuscated
and can be analyzed easily. AsyncRAT ’s primary usage is to steal your data and send it to C&C. Some of the notable
observations from this payload we analyzed are below —

» For creating persistence, it checks whether current process is running with elevated privileges.
o If yes, creates a scheduled task with command — schtasks /create /f /sc onlogon /rl highest /tn
“<filename>" /tr “<fullpath>"
o If no, writes its path under registry-HKCU\SOF TWARE\Microsoft\Windows\CurrentVersion\Run\
¢ Has Anti-Analysis, Anti-VM, Amsi-bypass checks.
¢ Checks for the presence of Mutex with name “DcRatMutex_qwqgdanchun”.
¢ Checks whether a webcam is available on the infected machine. If a camera is found, the malware can later
use it for spying or surveillance purpose.
¢ lterate through running processes and kill process monitoring and analysis tools, like Taskmgr.exe,
ProcessHacker.exe, etc.

¢ Gathers system details such as HWID, OS, user privileges, camera presence, and antivirus information.

¢ Establish connection to C2.

¢ Dynamically load and run a plugin sent from the C2 server.

¢ Securely pack the gathered data into MessagePack object and send over the TLS connection (Large messages
are split into chunks before transmitting).

File MD5’s —
b1ed63ee45ec48b324bf126446fdc888
817081c745aa14fcb15d76f029e80e15
6da792b17c4bba72ca995061e040f984
f3b56b3cfe462e4f8a32c989cd0c5a7¢c
5fad0c5b6e5a758059c5a4e€633424555
fe0fc2949addeefa6506b50215329ed9
Quick Heal \ Seqrite Detections —
Trojan.InjectorCiR
Html.Asyncrat.49974.GC
Script.Trojan.49969.GC
Backdoor.MsilFC.S13564499
Trojandownloader.AgentCiR

MITRE Attack Tactics, Techniques, and Procedures (TTPs)

Techniques /

Tactics (ATT&CK ID) Sub-technique Procedure
(ID)

Initial Access (TA0001) T1566.001 Malicious .svg attachment opened

. T1218.005/
Execution (TA0002) T1059.001 SVG drops/executes .hta — PowerShell
Execution (TA0002) T1059.005 HTA writes & runs actualiza.vbs
Persistence (TA0003) T1547.001 Adds Run key under HKCU\...\Run
Persistence (TA0003) T1053.005 Creates schtasks onlogon task
Defense Evasion (TA0005) T1027 Base64 / reversed strings / junk obfuscation
Defense Evasion (TA0005) T1562.001 Kills security / monitoring tools

10/11

Defense Evasion (TA0005) T1055 Injects AsyncRAT into MSBuild.exe
Defense Evasion (TA0005) T1497 VM/sandbox WMI & process checks (exit in

VMs)
Defense Evasion / Impact T1112/T1070 Deletes/cleans specific registry keys
(TAO005 / TAO006)
Discovery (TA0007) T1057 Enumerates running processes
Discovery (TA0007) T1082/T1012 Collects system info; reads registry
Collection (TA0009) T1125 Checks for webcam presence
Command and Control .
(TA0011) T1071/T1573 TLS-wrapped TCP using MsgPack
C2 & Modular Capabilities -
(TA0011) T1105 Downloads injector and payload modules
(C_rig(ol\ﬂo)dular Capabilties T1543 / T1609 Loads plugins from registry on demand
Exfiltration (TA0010) T1041 Sends data over encrypted C2 (chunked)
Authors —

Prashil Moon, Kirti Kshatriya

Prashil is a Senior Security Researcher at Quick Heal Security Labs. He enthusiastically keeps hunting for ongoing
malware trends, runs analysis on malware...

Articles by Prashil Moon »

11/11

https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/blog/author/prashil/

