www.fortinet.com /blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous

The Evolution of Chaos Ransomware: Faster, Smarter, and
More Dangerous

Yen-Ting Lee Yen-Ting Lee : : 10/8/2025

:=Article Contents
e Downloading and Execution

¢ [nitialization
e File Traversal
e Post-Deployment
¢ Clipboard Hijacking
¢ File Traversal Strategy Comparison
e Conclusion
Fortinet Protection
e |0Cs

By Yen-Ting Lee | October 08, 2025

Affected Platforms: Microsoft Windows

Impacted Users: Microsoft Windows

Impact: Most files on the compromised machines are encrypted
Severity Level: High

In 2025, Chaos ransomware resurfaced with a C++ variant. We believe this marks the first time it was not
written in .NET. Beyond encryption and ransom demands, it adds destructive extortion tactics and clipboard
hijacking for cryptocurrency theft. This evolution underscores Chaos's shift toward more aggressive
methods, amplifying both its operational impact and the financial risk it poses to victims.

1/16

https://www.fortinet.com/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous
https://undefined/blog/search?author=Yen-Ting+Lee

2025 Global Threat Landscape Report

Use this report to understand the latest attacker tactics, assess your exposure, and prioritize action before
the next exploit hits your environment.

This blog provides a comprehensive technical analysis of Chaos-C++, covering its execution flow, encryption
process, and clipboard hijacking mechanism. In addition, we will compare different behaviors between
Chaos’s earlier variants.

2/16

https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon

Downloading and Execution

The Chaos-C++ ransomware downloader (SHA256:
2fb01284cb8496ce32e57d921070acd54c64cab5bb3e37fa5750ece54f88b2a4) masquerades as a fake
utility, System Optimizer v2.1. It opens a console with bogus optimization messages to build credibility
while silently deploying its ransomware payload in the background. (Chaos-C++_type3 - SHA256:
19f5999948a4dccIb5956e797d1194f9498b214479d2a6da8cb8d5a1c0ce3267)

R System Optimizerv2.1

Zatlion C .'ll.g.":.'. e
system performance has been

Figure 1: Chaos-C++ downloader — fake system optimizer

As part of its operation, it generates a hidden log file, sysopt.log, within the % TMP% directory to record
details of the payload download and execution process. The payload itself is written to

% TMP%\\\svc[XXXX].tmp, where [XXXX] represents four randomly generated characters, and is combined
with hardcoded strings embedded within the downloader.

To launch the payload, Chaos-C++ downloader initially attempts to invoke CreateProcessA() with the
CREATE_NO_WINDOW (0x08000000) flag, ensuring execution without a visible window. If this approach
fails, it falls back to executing the payload through a command line using cmd.exe /c start /b

"% TMP%\\\\svc[XXXX].tmp", again prioritizing stealth and silent execution.

Initialization

3/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy.img.jpeg/1759877726234/fig01-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy.img.jpeg/1759877726234/fig01-chaos-ransomware.jpeg

Like every variant of Chaos ransomware, it begins by disguising itself as a legitimate Windows process,
creating and setting the console window title to svchost.exe. It also creates a log file at
%TMP%\svchost_debug.log, which is likely used for internal debugging or execution tracking purposes.

To ensure only one instance runs at a time, Chaos-C++ also creates a mutex named
SvcHost_Mutex_7z459ajrk.

Deslaop \Diefault

Dhoec oy \EnownDlls

Disec toay Beznons\\Base NamedObjeots

File C AUser\KsoofiDeskiop\sample223-Chacs\ohscs — Timsirmilex
File \DevioeConDyv

File \Devioe W onDyy

File \Device'ConDyy

File \Device\ConDyr

File DeviceConDyv

File CAUsers\Kmoof\dippData\Local\ Temp'svchost_debug. log

Key HEKIMSOFTWARFMicrosoffiWindows N TWCraxextVeraonbrege File Execwtion Ophons
Eey HKIMSYS TEMYC catocdSe 01 'Contuol Wls'S ceting\ Verons

Eey HK1M

Mutsat Sesacas|1\Base NamedObpeo ts\SMD: 10864 304 WilStagng (12
Sernaphore Seznons\]\Base NarmedObeo te\SMD. 10864 304 WilSwgng (2_p0
Serrmphone Sezncns\1\Base NarmedObeo te'\SM0. 10864 304 WilStagung 02 plk
WindowS tation Besncas\ 1 \Windows\WindowSta bons\WinSta

WindowS tatice Sasmons\ 1 'Windows\ WindowSte tems\ WinStalD
Figure 2: Chaos-C++-created mutex

Before proceeding with encryption, Chaos-C++ checks for the existence of the file
%APPDATA%\READ _IT.txt. If the file is present, it indicates that the ransomware has already run. In this
case, Chaos-C++ does not reinitiate encryption. Instead, it enters a monitoring mode, where it begins to
observe the system clipboard.

Chaos-C++ attempts to create a file at C:\WINDOWS\test.tmp, a location that requires administrative
privileges. If the creation fails, it indicates the ransomware is not running with elevated permissions.
However, if the file is successfully created, Chaos-C++ deletes it and proceeds to execute a series of
commands designed to hinder system recovery, such as disabling backup and recovery features.

vssadmin delete shadows /all /quiet >nul 2>&1

wmic shadowcopy delete >nul 2>&1

bcdedit /set {default} bootstatuspolicy ignoreallfailures >nul 2>&1
bcdedit /set {default} recoveryenabled no >nul 2>&1

wbadmin delete catalog -quiet >nul 2>&1

Although written in different languages and with varying triggering criteria, these operations are widely
observed across different variants of Chaos families.

4/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1695863116.img.jpeg/1759877741976/fig02-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1695863116.img.jpeg/1759877741976/fig02-chaos-ransomware.jpeg

PrintConsoleWindow (" Admin check..."):

GetWindowsDirectoryW(FileName, 0x104u);
zlT = &v31(3];
do
+HvlT;
while (*v17)
*(_OWORD #)v17 = xmmword_14002D540; [f test.tmp
*((_DWORD #)wlT + 4) = 112; :
FileW = CreateFileW(FileName, 0x40000000u, 0, OLL, 2u, 0x80u, OLL):// C:\\Windows\\test.tmp
?f { FileW = (HANDLE)-1LL)
PrintConsoleVindow("No admin privileges");
elze
{
CloseHandle (FileW) :
DeleteFileW(FileName) ;

PrintConsoleWindow (" Admin privileges confirmed”)

sub_1400102EC ("vssadmin delete shadows /all Jquiet >rml 2X&17):

sub_1400102EC ("wmic shadowcopy delete >nul 2>&17);

sub_1400102EC ("bededit /set {default] bootstatuspolicy ignoreallfailures >rml 2>417);
sub_1400102EC ("bededit /set {default] recoveryenabled no »rul 23417):

sub_1400102EC ("wbadmin delete catalog —quiet >nul 2>&17):

PrintConsoleWindow (" Admin operations completed”):

1

Figure 3: Checking admin privilege to execute the system-destructive encryption command

During the encryption phase, Chaos-C++ executes two primary functions: identifying target files and

encrypting them using either the AES-256-CFB cipher or a simple XOR algorithm. We also see other similar

variants (Chaos-C++_type1) using RSA instead of AES. In addition, it drops a ransom note into each
affected directory to notify victims of the attack.

File Traversal

After an initial 15-second delay—likely implemented to evade automated sandbox analysis—Chaos-C++
begins enumerating target files. The process begins with user directories, such as Desktop, Documents,
and Downloads, before expanding its search to other available drives.

Once potential targets are identified, Chaos-C++ evaluates each file based on its size to determine the
appropriate action:

e <50 MB: The file is fully encrypted.

e 50 MB - 1.3 GB: The file is skipped and left untouched, possibly to reduce encryption time or avoid
detection on large files commonly included in backups.

e >1.3 GB: Content is deleted, not encrypted. This unusual tactic causes irreversible data loss,
particularly affecting archives, databases, and backups.

5/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_879448809.img.jpeg/1759877811118/fig03-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_879448809.img.jpeg/1759877811118/fig03-chaos-ransomware.jpeg

Isrge_file 2025/9712 FF 01:22 b e 1,363,149 KB L |arge file tet chaos 202574012 T 01:33 CHACS 18

B Hizw: large_file.txt.cheo:

Figure 4: Chaos-C++ clears all the content in a large file.

Deleting file content is a rare move among ransomware families, as it eliminates any possibility of recovering
files. We also observed another size-based encryption strategy in other variants, which we will introduce in
the File Traversal Strategy Comparison section.

In addition, Chaos-C++ selectively targets files based on extension while deliberately excluding critical
system paths to avoid destabilizing the infected host. This strategy ensures maximum disruption to user data
while maintaining system operability long enough to pressure victims into paying the ransom.

Targeted file extensions include:

Ixt, .jar, .dat, .contact, .settings, .doc, .docx, .xIs, .xIsx, .ppt, .pptx, .odt, .jpg, .jpeg, .png, .csv, .py, .sql, .mdb,
.php, .asp, .aspx, .html, .htm, .xml, .psd, .pdf, .mp3, .mp4, .avi, .mov, .zip, .rar, .7z, .tar, .gz, .bak, .backup,
.iso, .vdi, .vmdk, .accdb, .json, .js, .cpp, .java, .cs

Excluded directories and files:

Program Files, Program Files (x86), Windows, $Recycle.Bin, ProgramData, MSOCache, Documents and
Settings, System Volume Information

Encryption Process

Once a file is marked for encryption, Chaos-C++ randomly generates a string, hashes it, and later uses it to
derive the AES encryption key.

After the string is generated, Chaos-C++ checks whether the Windows CryptoAPI functions are accessible
and have been correctly loaded into memory. These functions are necessary for carrying out standard AES
encryption. If the APIs are unavailable, Chaos switches to a fallback encryption method using XOR, a
significantly weaker algorithm. This fallback ensures the ransomware can still function even in restricted or
degraded environments, albeit with lower encryption quality.

AES Encryption

6/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_767128480.img.jpeg/1759877827043/fig04-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_767128480.img.jpeg/1759877827043/fig04-chaos-ransomware.jpeg

If the CryptoAPI is accessible, Chaos-C++ proceeds to perform AES-256-CFB encryption using a
sequence of API calls. It begins with CryptAcquireContextA, which initializes a cryptographic context using
the PROV_RSA_AES (0x18) provider. Next, CryptCreateHash creates a hash object using SHA-256
(ALG_ID = 0x800C), and CryptHashData processes the earlier-generated random string to produce a
finalized SHA-256 hash. Then, CryptDeriveKey uses the hash to generate a 256-bit AES key
(CALG_AES_256 = 0x6610).

After that, CryptSetKeyParam sets the encryption mode to CFB (Cipher Feedback, mode = 4). Before

performing the actual encryption, Chaos calculates the required encrypted data size by calling CryptEncrypt
with a NULL buffer. Once memory is allocated, the file content is copied into this buffer, and CryptEncrypt is
called again to encrypt the file content in place using the previously derived AES key.

sub_ IQUDDQEED{_l uffer) ; // generate hash data for AES key
*(I1\' ORD +::l 52 = 0OLL:
= OLL;
3= 1
1f { |ﬂPISuccessFlag)
g@tn LABEL_41;
hPr OLL;
W?ﬂ = DLL
w49 = (LL:
if (!|CryptAcquireContextA(&lFrov, OLL, OLL, Ox18u, 0xF0000000))
goto LABEL_41:
%f { CryptCreateHash(hFrov, 0x800Cu, OLL, 0, &vE0))

| , = :..i. 'J'

1f (6l .m1231 154[1] > OxFulL)
(LPCVOID %) lpBuffer[0];

it (CryptHashData(50, (const BYTE #)v18, v60.m128i u32[0], 0)
{&& CryptDeriveKey (WProv, O0x6610u, w50, IIleDEIDDEIUu, &v49))
15 = i:

CryptSetKeyPar:am(1, qu, (const BYTE *)&v4E, 0):
it ;1,' 0L, 1, 0, OLL, &vdd, 0);
AllocateSpace(v52, wdd);

mEmcpy((u4d +) r5 [U], v16, content_size);

| e— -

1{f (CryptEnciypt (49, OLL, 1, 0, (BTTE +)v52[0], &vd5, vdd))

AllocateSpace(v52, wd5);
vig = 1:
PrintConsoleWindow (" AES encryption successful”);

1
CryptDestroyKey (v49) :

CryptDestroyHash (v50) ;

1
CryptReleaseContext (Wrov, 0):

Figure 5: File encryption routine using AES-256-CFB

Fallback Encryption

7/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1126611888.img.jpeg/1759877847228/fig05-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1126611888.img.jpeg/1759877847228/fig05-chaos-ransomware.jpeg

If CryptoAPI functions are unavailable, Chaos-C++ applies a simpler XOR-based encryption as a fallback.
It calls GetTickCount() to retrieve the number of milliseconds since the system started and uses this value as
the XOR key. Each byte of the file content is XOR-ed with bytes derived from the tick count. Although this
method is much less secure than AES and can be trivial to reverse-engineer, it still renders the original
content unreadable to the average victim, fulfilling the ransomware's goal of data disruption.

:1{f (1v18)
LABEL 41:
PrlntCr:-ns-::leWmd-:sw(Using fallback encryption”) ;
ﬁ.lluzlcateSpace(v3) .
memcpy{l: roid *)w [D] v16, w3);
Count = G r-"T'T]_l]-n ount () :
for (1 =0;: 1 £ (unsigned int)w3; +1i)
{
v22[1] "= 1 7 (unsigned __int8)v2l;
LOBYTE (v21) = w21 Yy 13

Figure 6: File encryption routine using XOR

After completing the encryption process, Chaos-C++ ransomware initiates a cleanup and file replacement
phase to overwrite the original data. It begins by freeing any heap memory that was allocated during
encryption to manage system resources and reduce its runtime footprint. Chaos-C++ first deletes the original
file, then proceeds to overwrite it directly by writing the encrypted data back to the same file path. This
technique prevents the creation of additional copies and ensures that the original content is irreversibly lost.
To facilitate this, it adds the ransomware-specific extension .chaos to the original file name, which both
serves as an indicator of compromise and discourages the victim from tampering with it.

8/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_261099405.img.jpeg/1759877887458/fig06-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_261099405.img.jpeg/1759877887458/fig06-chaos-ransomware.jpeg

2 SOBE b1kt .
| infected dae 2025/6/11 T4 0432 DAEGE 1 K8
infected.cvs 2025/6/11 T 04:32 (CvsE= | KB
| infected cub 2025/6/11 T 04:32 CUBEE 1 KB
infected. core 2025/6/11 T504:32 CORE BE | KE
| unnamed.png.chaos 2025/6/26 T 02:24 HADS BE KE
photo jpg.chaos 2025/6/26 T 02:24 CHAQOS B 2 KB
| infected zip.chaos 2025/6/26 TS 02:24 CHADS & 1 KB
infected xml.chaos 2025/6/26 T 0224 CHAQSEEZE KB
| infected xlsx.chaos 2025/6/26 T 02:24 CHAOS BE KB
| infected xls.chaos 2025/6/26 T 02:24 CHADS B 4:
| infected vmdk chaos 2025/6/26 T502:24 CHAOS BE 1 KB
infected.vdi.chaos 2025/6/26 T 02:24 HADS B 1 KB
| infected txt.chaos 2025/6/26 T 0224 CHAQS R 1 KB
infected tar gz chaos 2025/6/26 T 0224 CHAOS E= K&
| infected tar.chaos 2025/6/26 T5 0224 CHAQS T = KE
infected sql.chaos 2025/6/26 T 0224 CHAQS B2 KB
| infected settings.chaos 2025/6/26 T 02:24 CHADS B E KE
| infected rar.chaos 2025/6/26 M 02-24 CHADS B | KB

Figure 7: Chaos-C++ ransomware extension

Using the Windows API functions CreateFileW() and WriteFileW(), Chaos-C++ re-creates the file and writes
to it in a specific order: it first embeds the encryption key size and encryption key used in the encryption
process, followed by the actual encrypted file content. This guarantees that only the unusable, encrypted
version of the file remains on disk, effectively locking the victim out of their data unless decryption software is
provided.

9/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_452549147.img.jpeg/1759877904378/fig07-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_452549147.img.jpeg/1759877904378/fig07-chaos-ransomware.jpeg

Figure 8: AES-encrypted files begin with a 4-byte header that specifies the key size

10/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1787821498.img.jpeg/1759877922449/fig08-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1787821498.img.jpeg/1759877922449/fig08-chaos-ransomware.jpeg

Post-Deployment

After completing its encryption routine, Chaos-C++ displays the message Encryption complete. Total files: in
the command prompt as a status indicator. It then drops a ransom note in the %AppData% directory that
contains payment instructions, the attacker's contact email, and a unique victim identifier.

11/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_12791412.img.jpeg/1759877940872/fig09-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_12791412.img.jpeg/1759877940872/fig09-chaos-ransomware.jpeg

| READIT - £==

EEFR REE =#X0 EBERN BE
B11 of your files have been encrypted!
|

ffour computer was infected with a ransomvare virus.

What can | do to get my files back?

Tour files have been encrypted and you won't be able to decrypt them withovt our help.

ffou can buy our special decryption software, this software will allov vou to recover all of vour data.

Follow these steps:
1. Send 0.1 BTC to wallet:

S srnanceion 10 o A

3. Walt for confirmation and decryption tool

——

&ree decryption as guarantee:
Before paying you can send us | file for free decryption.

How to obtain Bitcoin:
[* LocalBitcoins - https://localbitcoins.com
if‘ CoinBase - https://coinbase.con

Figure 10: Chaos-C++ ransom note

To ensure the victim notices the ransom demand, Chaos-C++ triggers a MessageBoxW alert that directs the

user to read the ransom note.

CHAQS X

Your important files have been encrypted!
Total files: 7852

Check READ IT.txt files for instructions.

Figure 11: Message box prompting the victim to read the ransom note

Clipboard Hijacking

Clipboard hijacking represents a new capability not observed in earlier Chaos variants. The ransomware
validates potential Bitcoin addresses by checking their length (26—-64 characters) and prefix. Addresses

beginning with 1 (P2PKH), 3 (P2SH), or bc1 (Bech32) are recognized as legitimate wallet formats, enabling

Chaos-C++ to reliably detect cryptocurrency addresses.

12/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1694443669.img.jpeg/1759877957604/fig10-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1694443669.img.jpeg/1759877957604/fig10-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_205427857.img.jpeg/1759877981452/fig11-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_205427857.img.jpeg/1759877981452/fig11-chaos-ransomware.jpeg

Once a valid address is identified, Chaos-C++ replaces it with a hardcoded attacker-controlled Bech32
Bitcoin wallet. This ensures that any attempted Bitcoin payment is silently redirected to the attacker,
regardless of the intended recipient's identity. If the victim tries to rescue a wallet, the transaction might be
sent to the attacker by mistake.

The replacement process is implemented via the Windows Clipboard API: Chaos-C++ allocates memory
using GlobalAlloc(), copies the attacker's wallet string into that memory space, clears the clipboard, and
finally injects the attacker's address using SetClipboardData().

Because Chaos skips regex validation, any string starting with 'bc1', '1', or '3' of the correct length is treated
as a wallet address and replaced.

Flgure 12 Cllpboard huacklng process

PrintConsole¥indow("Clipboard monitor started”):
while (1)
{
do
Sleep (500u) ;
while |: |I|1:rr-'r1 llpbli_ll!j(DLL))
ClipboardData = GetC 11L¢HJ;IdI'1t:i(lu)

if (ClipboardData')

{
“? = (jmn51 char #)GlobalLock(ClipboardData) ;
1{f—(73)
if (strlen(v3) >= 26

&& strlen(vd) <= 64

&& (((xvd - 49) & 253) == 0 || *vd == "b" && vd[1] == "¢ && vd[2] = "1"))
{

PrintConsoleWindow("Bitcoin address detected: %s°, vd) :
G l"t'_‘l.l \11loc (2u, Ox2Bull) ;

vT = (char #)GlobalLock (v5);
strepy (v7, T)
GlobalUnlaock (v6) ;
Fmpf vClipboard() ;
SetClipboardDat :(lu, wh) ;
} Pr1ntConsuleW1ndaw(Replaced with our address"):
H
GlobalUnlock (v2) :

—— -.'
~ 1 I

}
I_ 11_I._-'-‘] 1 1pbll ar d':)

Figure 13: Specific condition to trigger hijacking action

13/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_762667464.img.jpeg/1759877995093/fig12-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_762667464.img.jpeg/1759877995093/fig12-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_860941818.img.jpeg/1759878036577/fig13-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_860941818.img.jpeg/1759878036577/fig13-chaos-ransomware.jpeg

File Traversal Strategy Comparison

The encryption strategy of the Chaos ransomware variant has evolved, raising questions about the
attackers' motives: are they prioritizing efficiency or a more aggressive, data-destructive approach? Our
analysis reveals a shift in their methodology across different variants.

Early versions are written in .NET and employ a full encryption strategy on all targeted files, including
Chaos (as found in 2021 [noted as Chaos_2021]) and the later variant, BlackSnake, in 2023. This was a
straightforward, albeit potentially slow, method that was shared among most of the ransomwares.

The Chaos variant Lucky GhOS$t, identified in early 2025, marked a notable transition toward more
destructive behavior. It replaces the contents of files larger than 1.3 GB with identical bytes, a tactic that
bypasses traditional encryption to achieve rapid and irreversible data destruction. Unlike later Chaos
variants, Lucky GhO$t did not skip files between 50 MB and 1.3 GB. Instead, it included them in its
encryption routine. This suggests a desire for broad impact rather than a focus on speed.

After Lucky_GhO0$t, we identified a new set of Chaos variants written in C++. The objective of keeping the
optimization process ongoing is clear as we compare the differences between each type. Chaos-C++_type1
is an RSA-based variant that employs a more aggressive but arguably less effective strategy. This variant
fully encrypts targeted files and, in an efficient and destructive twist, deletes the content of any file larger
than 1.3 GB, effectively reducing the file size to 0 bytes.

Chaos-C++_type2 experiments demonstrate efficiency and employ a less aggressive tactic by skipping
files larger than 50 MB, leaving their contents intact. Victims may be encouraged to pay the ransom to save
the smaller files, but the attacker risks missing large-sized backup files.

Chaos-C++_type3—the primary subject of this article—employs both aggressive and efficient file encryption
methods. It encrypts small files with either AES or XOR, skips medium-sized files, and deletes the content of
large files. This combination promises speed, and while destructive, it leaves some hope to the victim that
some of the files are intact.

This divergence in behavior suggests that the developers of Chaos ransomware are experimenting with
different strategies, likely striking a balance between the speed of execution and the scope of damage.

A comparison of the encryption strategy of various Chaos ransomware variants is shown in the following

table:
Series Language [Encryption <50MB 50MB-13 [>1.3GB
GB
Chaos_2021 .Net Base64 Encoded |Encrypt |Encrypt |[Encrypt
[BlackSnake .Net AES + RSA Encrypt |Encrypt [Encrypt
[Lucky GhO$t .Net AES + RSA Encrypt |Encrypt Replace
ith

14/16

identical

bytes
Chaos-C++_type1 |[C++ RSA Encrypt |Encrypt |Delete
Chaos-C++_type2 |C++ XOR Encrypt [Skip Skip
Chaos-C++_type3 |C++ AES or XOR Encrypt [Skip Delete

Conclusion

The latest Chaos ransomware variant, Chaos-C++, marks a significant evolution in attack strategy. Rather
than relying solely on full file encryption, Chaos-C++ employs a combination of methods, including
symmetric or asymmetric encryption and a fallback XOR routine. Its versatile downloader also guarantees
successful execution. Together, these approaches make the ransomware execution more robust and harder
to disrupt.

Beyond encryption, Chaos-C++ adopts a destructive strategy by deleting the contents of very large files
rather than encrypting them. This method increases efficiency by reducing processing time and enabling
faster attacks across large volumes of data. However, it also introduces risk for the attackers: by making
recovery impossible, victims may see little incentive to pay the ransom, potentially reducing the likelihood of

financial gain.

The variant also introduces a sophisticated clipboard hijacking mechanism that automatically swaps copied
Bitcoin addresses with an attacker-controlled wallet. This dual strategy of destructive encryption and covert
financial theft underscores Chaos' transition into a more aggressive and multifaceted threat designed to

maximize financial gain.

Finally, an overview of the evolving encryption methods provides a clear understanding of the Chaos
variants seeking a balance between speed and strength. It also implies that future Chaos variants may
function more like a wiper than traditional ransomware.

Fortinet Protection
FortiGuard Labs detects the Chaos ransomware samples with the following AV signatures:

e W64/Filecoder.XM!tr.ransom
e W64/Filecoder. MLKGEBH!tr.ransom
e W64/Imps.1!tr.ransom

FortiGate, FortiMail, FortiClient, and FortiEDR support the FortiGuard AntiVirus service. The FortiGuard
AntiVirus engine is a part of each of those solutions. As a result, customers who have these products with
up-to-date protections are protected.

loCs

SHA256 [Note

15/16

https://www.fortinet.com/support/support-services/fortiguard-security-subscriptions/antivirus

2fb01284cb8496ce32e57d921070acd54c64cabbbb3e37fa5750ece54f88b2a4

Chaos
Downloader

19f5999948a4dcc9b5956e797d1194f9498b214479d2a6da8cb8d5a1c0ce3267

Chaos
ransomware

f200ea7ccchc9b0eaada74046551ed18a3a9d11c9e87999b25e6b8ee55857359

Chaos
ransomware

f4b5b1166¢1267fc5a565a861295a20cf357¢c17d75418f40b4f14b094409d431

Chaos
ransomware

09521a154b06743fcb3a24b6b61ae0b4cbd1f1ba74d3d9cd9110042082d0b1d5¢

Chaos
ransomware

5d3fcf6532c9ee5778753c3f13e71d1e3b157b49e56133bdff5d04d6e6d6¢c8be

Chaos
ransomware

fe717bab60f1b03012b1e6287e3f3725f1ad5163897041b824024aedabb7c46d

Chaos
ransomware

76fde847037ca79c8e897fac9d80567efc4ec3a193ec3d8ae9c9fcd9e1ac4939

Chaos
ransomware

bbf9ebbfd93306108299e54ecbfb59bb9433eeb34f89cef61864f4e87640eafl

Chaos

ransomware

16/16

