
www.fortinet.com /blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous

The Evolution of Chaos Ransomware: Faster, Smarter, and

More Dangerous

Yen-Ting Lee Yen-Ting Lee ⋮ ⋮ 10/8/2025

Article Contents

Downloading and Execution

Initialization

File Traversal

Post-Deployment

Clipboard Hijacking

File Traversal Strategy Comparison

Conclusion

Fortinet Protection

IoCs

By Yen-Ting Lee | October 08, 2025

Affected Platforms: Microsoft Windows

Impacted Users: Microsoft Windows

Impact: Most files on the compromised machines are encrypted

Severity Level: High

In 2025, Chaos ransomware resurfaced with a C++ variant. We believe this marks the first time it was not

written in .NET. Beyond encryption and ransom demands, it adds destructive extortion tactics and clipboard

hijacking for cryptocurrency theft. This evolution underscores Chaos's shift toward more aggressive

methods, amplifying both its operational impact and the financial risk it poses to victims.

1/16

https://www.fortinet.com/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous
https://undefined/blog/search?author=Yen-Ting+Lee


2025 Global Threat Landscape Report

Use this report to understand the latest attacker tactics, assess your exposure, and prioritize action before

the next exploit hits your environment.

This blog provides a comprehensive technical analysis of Chaos-C++, covering its execution flow, encryption

process, and clipboard hijacking mechanism. In addition, we will compare different behaviors between

Chaos’s earlier variants.

2/16

https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon
https://undefined/resources/reports/threat-landscape-report?utm_content=blog-fglabs-ribbon


Downloading and Execution

The Chaos-C++ ransomware downloader (SHA256:

2fb01284cb8496ce32e57d921070acd54c64cab5bb3e37fa5750ece54f88b2a4) masquerades as a fake

utility, System Optimizer v2.1. It opens a console with bogus optimization messages to build credibility

while silently deploying its ransomware payload in the background. (Chaos-C++_type3 - SHA256:

19f5999948a4dcc9b5956e797d1194f9498b214479d2a6da8cb8d5a1c0ce3267)

Figure 1: Chaos-C++ downloader – fake system optimizer

As part of its operation, it generates a hidden log file, sysopt.log, within the %TMP% directory to record

details of the payload download and execution process. The payload itself is written to

%TMP%\\\\svc[XXXX].tmp, where [XXXX] represents four randomly generated characters, and is combined

with hardcoded strings embedded within the downloader.

To launch the payload, Chaos-C++ downloader initially attempts to invoke CreateProcessA() with the

CREATE_NO_WINDOW (0x08000000) flag, ensuring execution without a visible window. If this approach

fails, it falls back to executing the payload through a command line using cmd.exe /c start /b

"%TMP%\\\\svc[XXXX].tmp", again prioritizing stealth and silent execution.

Initialization

3/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy.img.jpeg/1759877726234/fig01-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy.img.jpeg/1759877726234/fig01-chaos-ransomware.jpeg


Like every variant of Chaos ransomware, it begins by disguising itself as a legitimate Windows process,

creating and setting the console window title to svchost.exe. It also creates a log file at

%TMP%\svchost_debug.log, which is likely used for internal debugging or execution tracking purposes.

To ensure only one instance runs at a time, Chaos-C++ also creates a mutex named

SvcHost_Mutex_7z459ajrk.

Figure 2: Chaos-C++-created mutex

Before proceeding with encryption, Chaos-C++ checks for the existence of the file

%APPDATA%\READ_IT.txt. If the file is present, it indicates that the ransomware has already run. In this

case, Chaos-C++ does not reinitiate encryption. Instead, it enters a monitoring mode, where it begins to

observe the system clipboard.

Chaos-C++ attempts to create a file at C:\WINDOWS\test.tmp, a location that requires administrative

privileges. If the creation fails, it indicates the ransomware is not running with elevated permissions.

However, if the file is successfully created, Chaos-C++ deletes it and proceeds to execute a series of

commands designed to hinder system recovery, such as disabling backup and recovery features.

vssadmin delete shadows /all /quiet >nul 2>&1

wmic shadowcopy delete >nul 2>&1

bcdedit /set {default} bootstatuspolicy ignoreallfailures >nul 2>&1

bcdedit /set {default} recoveryenabled no >nul 2>&1

wbadmin delete catalog -quiet >nul 2>&1

Although written in different languages and with varying triggering criteria, these operations are widely

observed across different variants of Chaos families.

4/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1695863116.img.jpeg/1759877741976/fig02-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1695863116.img.jpeg/1759877741976/fig02-chaos-ransomware.jpeg


Figure 3: Checking admin privilege to execute the system-destructive encryption command

During the encryption phase, Chaos-C++ executes two primary functions: identifying target files and

encrypting them using either the AES-256-CFB cipher or a simple XOR algorithm. We also see other similar

variants (Chaos-C++_type1) using RSA instead of AES. In addition, it drops a ransom note into each

affected directory to notify victims of the attack.

File Traversal

After an initial 15-second delay—likely implemented to evade automated sandbox analysis—Chaos-C++

begins enumerating target files. The process begins with user directories, such as Desktop, Documents,

and Downloads, before expanding its search to other available drives.

Once potential targets are identified, Chaos-C++ evaluates each file based on its size to determine the

appropriate action:

≤ 50 MB: The file is fully encrypted.

50 MB – 1.3 GB: The file is skipped and left untouched, possibly to reduce encryption time or avoid

detection on large files commonly included in backups.

> 1.3 GB: Content is deleted, not encrypted. This unusual tactic causes irreversible data loss,

particularly affecting archives, databases, and backups.

5/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_879448809.img.jpeg/1759877811118/fig03-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_879448809.img.jpeg/1759877811118/fig03-chaos-ransomware.jpeg


Figure 4: Chaos-C++ clears all the content in a large file.

Deleting file content is a rare move among ransomware families, as it eliminates any possibility of recovering

files. We also observed another size-based encryption strategy in other variants, which we will introduce in

the File Traversal Strategy Comparison section.

In addition, Chaos-C++ selectively targets files based on extension while deliberately excluding critical

system paths to avoid destabilizing the infected host. This strategy ensures maximum disruption to user data

while maintaining system operability long enough to pressure victims into paying the ransom.

Targeted file extensions include:

.txt, .jar, .dat, .contact, .settings, .doc, .docx, .xls, .xlsx, .ppt, .pptx, .odt, .jpg, .jpeg, .png, .csv, .py, .sql, .mdb,

.php, .asp, .aspx, .html, .htm, .xml, .psd, .pdf, .mp3, .mp4, .avi, .mov, .zip, .rar, .7z, .tar, .gz, .bak, .backup,

.iso, .vdi, .vmdk, .accdb, .json, .js, .cpp, .java, .cs

Excluded directories and files:

Program Files, Program Files (x86), Windows, $Recycle.Bin, ProgramData, MSOCache, Documents and

Settings, System Volume Information

Encryption Process

Once a file is marked for encryption, Chaos-C++ randomly generates a string, hashes it, and later uses it to

derive the AES encryption key.

After the string is generated, Chaos-C++ checks whether the Windows CryptoAPI functions are accessible

and have been correctly loaded into memory. These functions are necessary for carrying out standard AES

encryption. If the APIs are unavailable, Chaos switches to a fallback encryption method using XOR, a

significantly weaker algorithm. This fallback ensures the ransomware can still function even in restricted or

degraded environments, albeit with lower encryption quality.

AES Encryption

6/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_767128480.img.jpeg/1759877827043/fig04-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_767128480.img.jpeg/1759877827043/fig04-chaos-ransomware.jpeg


If the CryptoAPI is accessible, Chaos-C++ proceeds to perform AES-256-CFB encryption using a

sequence of API calls. It begins with CryptAcquireContextA, which initializes a cryptographic context using

the PROV_RSA_AES (0x18) provider. Next, CryptCreateHash creates a hash object using SHA-256

(ALG_ID = 0x800C), and CryptHashData processes the earlier-generated random string to produce a

finalized SHA-256 hash. Then, CryptDeriveKey uses the hash to generate a 256-bit AES key

(CALG_AES_256 = 0x6610).

After that, CryptSetKeyParam sets the encryption mode to CFB (Cipher Feedback, mode = 4). Before

performing the actual encryption, Chaos calculates the required encrypted data size by calling CryptEncrypt

with a NULL buffer. Once memory is allocated, the file content is copied into this buffer, and CryptEncrypt is

called again to encrypt the file content in place using the previously derived AES key.

Figure 5: File encryption routine using AES-256-CFB

Fallback Encryption

7/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1126611888.img.jpeg/1759877847228/fig05-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1126611888.img.jpeg/1759877847228/fig05-chaos-ransomware.jpeg


If CryptoAPI functions are unavailable, Chaos-C++ applies a simpler XOR-based encryption as a fallback.

It calls GetTickCount() to retrieve the number of milliseconds since the system started and uses this value as

the XOR key. Each byte of the file content is XOR-ed with bytes derived from the tick count. Although this

method is much less secure than AES and can be trivial to reverse-engineer, it still renders the original

content unreadable to the average victim, fulfilling the ransomware's goal of data disruption.

Figure 6: File encryption routine using XOR

After completing the encryption process, Chaos-C++ ransomware initiates a cleanup and file replacement

phase to overwrite the original data. It begins by freeing any heap memory that was allocated during

encryption to manage system resources and reduce its runtime footprint. Chaos-C++ first deletes the original

file, then proceeds to overwrite it directly by writing the encrypted data back to the same file path. This

technique prevents the creation of additional copies and ensures that the original content is irreversibly lost.

To facilitate this, it adds the ransomware-specific extension .chaos to the original file name, which both

serves as an indicator of compromise and discourages the victim from tampering with it.

8/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_261099405.img.jpeg/1759877887458/fig06-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_261099405.img.jpeg/1759877887458/fig06-chaos-ransomware.jpeg


Figure 7: Chaos-C++ ransomware extension

Using the Windows API functions CreateFileW() and WriteFileW(), Chaos-C++ re-creates the file and writes

to it in a specific order: it first embeds the encryption key size and encryption key used in the encryption

process, followed by the actual encrypted file content. This guarantees that only the unusable, encrypted

version of the file remains on disk, effectively locking the victim out of their data unless decryption software is

provided.

9/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_452549147.img.jpeg/1759877904378/fig07-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_452549147.img.jpeg/1759877904378/fig07-chaos-ransomware.jpeg


Figure 8: AES-encrypted files begin with a 4-byte header that specifies the key size

10/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1787821498.img.jpeg/1759877922449/fig08-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1787821498.img.jpeg/1759877922449/fig08-chaos-ransomware.jpeg


Figure 9: XOR-encrypted files begin with a 4-byte header that specifies the key size

Post-Deployment

After completing its encryption routine, Chaos-C++ displays the message Encryption complete. Total files: in

the command prompt as a status indicator. It then drops a ransom note in the %AppData% directory that

contains payment instructions, the attacker's contact email, and a unique victim identifier.

11/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_12791412.img.jpeg/1759877940872/fig09-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_12791412.img.jpeg/1759877940872/fig09-chaos-ransomware.jpeg


Figure 10: Chaos-C++ ransom note

To ensure the victim notices the ransom demand, Chaos-C++ triggers a MessageBoxW alert that directs the

user to read the ransom note.

Figure 11: Message box prompting the victim to read the ransom note

Clipboard Hijacking

Clipboard hijacking represents a new capability not observed in earlier Chaos variants. The ransomware

validates potential Bitcoin addresses by checking their length (26–64 characters) and prefix. Addresses

beginning with 1 (P2PKH), 3 (P2SH), or bc1 (Bech32) are recognized as legitimate wallet formats, enabling

Chaos-C++ to reliably detect cryptocurrency addresses.

12/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1694443669.img.jpeg/1759877957604/fig10-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_1694443669.img.jpeg/1759877957604/fig10-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_205427857.img.jpeg/1759877981452/fig11-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_205427857.img.jpeg/1759877981452/fig11-chaos-ransomware.jpeg


Once a valid address is identified, Chaos-C++ replaces it with a hardcoded attacker-controlled Bech32

Bitcoin wallet. This ensures that any attempted Bitcoin payment is silently redirected to the attacker,

regardless of the intended recipient's identity. If the victim tries to rescue a wallet, the transaction might be

sent to the attacker by mistake.

The replacement process is implemented via the Windows Clipboard API: Chaos-C++ allocates memory

using GlobalAlloc(), copies the attacker's wallet string into that memory space, clears the clipboard, and

finally injects the attacker's address using SetClipboardData().

Because Chaos skips regex validation, any string starting with 'bc1', '1', or '3' of the correct length is treated

as a wallet address and replaced.

Figure 12: Clipboard hijacking process

Figure 13: Specific condition to trigger hijacking action

13/16

https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_762667464.img.jpeg/1759877995093/fig12-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_762667464.img.jpeg/1759877995093/fig12-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_860941818.img.jpeg/1759878036577/fig13-chaos-ransomware.jpeg
https://undefined/blog/threat-research/evolution-of-chaos-ransomware-faster-smarter-and-more-dangerous/_jcr_content/root/responsivegrid/table_content/par/image_copy_860941818.img.jpeg/1759878036577/fig13-chaos-ransomware.jpeg


File Traversal Strategy Comparison

The encryption strategy of the Chaos ransomware variant has evolved, raising questions about the

attackers' motives: are they prioritizing efficiency or a more aggressive, data-destructive approach? Our

analysis reveals a shift in their methodology across different variants.

Early versions are written in .NET and employ a full encryption strategy on all targeted files, including

Chaos (as found in 2021 [noted as Chaos_2021]) and the later variant, BlackSnake,  in 2023. This was a

straightforward, albeit potentially slow, method that was shared among most of the ransomwares.

The Chaos variant Lucky_Gh0$t, identified in early 2025, marked a notable transition toward more

destructive behavior. It replaces the contents of files larger than 1.3 GB with identical bytes, a tactic that

bypasses traditional encryption to achieve rapid and irreversible data destruction. Unlike later Chaos

variants, Lucky_Gh0$t did not skip files between 50 MB and 1.3 GB. Instead, it included them in its

encryption routine. This suggests a desire for broad impact rather than a focus on speed.

After Lucky_Gh0$t, we identified a new set of Chaos variants written in C++. The objective of keeping the

optimization process ongoing is clear as we compare the differences between each type. Chaos-C++_type1

is an RSA-based variant that employs a more aggressive but arguably less effective strategy. This variant

fully encrypts targeted files and, in an efficient and destructive twist, deletes the content of any file larger

than 1.3 GB, effectively reducing the file size to 0 bytes.

Chaos-C++_type2 experiments demonstrate efficiency and employ a less aggressive tactic by skipping

files larger than 50 MB, leaving their contents intact. Victims may be encouraged to pay the ransom to save

the smaller files, but the attacker risks missing large-sized backup files.

Chaos-C++_type3—the primary subject of this article—employs both aggressive and efficient file encryption

methods. It encrypts small files with either AES or XOR, skips medium-sized files, and deletes the content of

large files. This combination promises speed, and while destructive, it leaves some hope to the victim that

some of the files are intact.

This divergence in behavior suggests that the developers of Chaos ransomware are experimenting with

different strategies, likely striking a balance between the speed of execution and the scope of damage.

A comparison of the encryption strategy of various Chaos ransomware variants is shown in the following

table:

 

Series Language Encryption ≤ 50 MB 50 MB – 1.3

GB

> 1.3 GB

Chaos_2021 .Net Base64 Encoded Encrypt Encrypt Encrypt

BlackSnake .Net AES + RSA Encrypt Encrypt Encrypt

Lucky_Gh0$t .Net AES + RSA Encrypt Encrypt Replace

with

14/16



identical

bytes

Chaos-C++_type1 C++ RSA Encrypt Encrypt Delete

Chaos-C++_type2 C++ XOR Encrypt Skip Skip

Chaos-C++_type3 C++ AES or XOR Encrypt Skip Delete

Conclusion

The latest Chaos ransomware variant, Chaos-C++, marks a significant evolution in attack strategy. Rather

than relying solely on full file encryption, Chaos-C++ employs a combination of methods, including

symmetric or asymmetric encryption and a fallback XOR routine. Its versatile downloader also guarantees

successful execution. Together, these approaches make the ransomware execution more robust and harder

to disrupt.

Beyond encryption, Chaos-C++ adopts a destructive strategy by deleting the contents of very large files

rather than encrypting them. This method increases efficiency by reducing processing time and enabling

faster attacks across large volumes of data. However, it also introduces risk for the attackers: by making

recovery impossible, victims may see little incentive to pay the ransom, potentially reducing the likelihood of

financial gain.

The variant also introduces a sophisticated clipboard hijacking mechanism that automatically swaps copied

Bitcoin addresses with an attacker-controlled wallet. This dual strategy of destructive encryption and covert

financial theft underscores Chaos' transition into a more aggressive and multifaceted threat designed to

maximize financial gain.

Finally, an overview of the evolving encryption methods provides a clear understanding of the Chaos

variants seeking a balance between speed and strength. It also implies that future Chaos variants may

function more like a wiper than traditional ransomware.

Fortinet Protection

FortiGuard Labs detects the Chaos ransomware samples with the following AV signatures:

W64/Filecoder.XM!tr.ransom

W64/Filecoder.MLKGEBH!tr.ransom   

W64/Imps.1!tr.ransom

FortiGate, FortiMail, FortiClient, and FortiEDR support the FortiGuard AntiVirus service. The FortiGuard

AntiVirus engine is a part of each of those solutions. As a result, customers who have these products with

up-to-date protections are protected.

IoCs

SHA256 Note

15/16

https://www.fortinet.com/support/support-services/fortiguard-security-subscriptions/antivirus


2fb01284cb8496ce32e57d921070acd54c64cab5bb3e37fa5750ece54f88b2a4
Chaos

Downloader

19f5999948a4dcc9b5956e797d1194f9498b214479d2a6da8cb8d5a1c0ce3267
Chaos

ransomware

f200ea7ccc5c9b0eaada74046551ed18a3a9d11c9e87999b25e6b8ee55857359
Chaos

ransomware

f4b5b1166c1267fc5a565a861295a20cf357c17d75418f40b4f14b094409d431
Chaos

ransomware

9521a154b06743fcb3a24b6b61ae0b4cbd1f1ba74d3d9cd9110042082d0b1d5c
Chaos

ransomware

5d3fcf6532c9ee5778753c3f13e71d1e3b157b49e56133bdff5d04d6e6d6c8be
Chaos

ransomware

fe717bab60f1b03012b1e6287e3f3725f1ad5163897041b824024aedabb7c46d
Chaos

ransomware

76fde847037ca79c8e897fac9d80567efc4ec3a193ec3d8ae9c9fcd9e1ac4939
Chaos

ransomware

bbf9ebbfd93306108299e54ecbfb59bb9433eeb34f89cef61864f4e87640eaf0
Chaos

ransomware

16/16


